Skip to main content

Transgenic Plants Over-expressing Glutathione Biosynthetic Genes and Abiotic Stress Tolerance

  • Chapter
  • First Online:
Glutathione in Plant Growth, Development, and Stress Tolerance

Abstract

Plants cannot survive without glutathione, or a functionally homologous thiol, as glutathione has diverse functions in plant growth and development, many of which cannot be performed by other thiols or antioxidants. The roles of glutathione in plants include the regulation of redox homeostasis, cell signaling and gene expression, and essential roles in key physiological and metabolic processes such as photosynthesis and sulfur assimilation. The cellular pool of reduced glutathione (GSH) can be depleted by oxidation of GSH to glutathione disulfide (GSSG), by reactive oxygen species (ROS), or by reacting with methylglyoxal (MG). The generation of ROS and MG increases in plant cells under abiotic stress, e.g., in plants exposed to heavy metals, salinity, drought, high or low temperatures, herbicides, or air pollutants. There is considerable evidence to suggest that enhanced activities of GSH utilizing and regenerating enzymes are crucial for abiotic stress tolerance in both model and cultivated plant species. Recently, the use of transgenic plants has clearly demonstrated the importance of GSH for stress tolerance, with plants over-expressing GSH biosynthetic genes and genes associated with maintaining GSH levels having increased GSH levels and showing improved tolerance to individual stressors. In addition, modulating the activities of GSH-related enzymes has also been shown to be important for multiple stress tolerance; however, many of the details of the roles GSH plays in multiple stress tolerance are still unresolved. The aim of this chapter is to provide a comprehensive overview of the diverse roles of GSH biosynthetic genes in improving abiotic stress tolerance by critically evaluating the research conducted using transgenic plants, expressing GSH-associated genes, grown under abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad N, Malagoli M, Wirtz M, Hell R (2016) Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots. BMC Plant Biol 16(1):247

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed IM, Cao F, Zhang M, Chen X, Zhang G, Wu F (2013) Difference in yield and physiological features in response to drought and salinity combined stress during anthesis in Tibetan wild and cultivated barleys. PLoS One 8:e77869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akram S, Siddiqui MN, Hussain BMN, Bari MAA, Mostofa MG, Hossain MA, Tran LSP (2017) Exogenous glutathione modulates salinity tolerance of soybean [Glycine max (L.) Merrill] at reproductive stage. J Plant Growth Regul 36:877–888

    Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Avery SV (2011) Molecular targets of oxidative stress. Biochem J 434:201–210

    Article  CAS  PubMed  Google Scholar 

  • Bae MJ, Kim YS, Kim IS (2013) Transgenic rice overexpressing the Brassica juncea gamma-glutamylcysteine synthetase gene enhances tolerance to abiotic stress and improves grain yield under paddy field conditions. Mol Breed 31:931–945

    Article  CAS  Google Scholar 

  • Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938–942

    Article  CAS  PubMed  Google Scholar 

  • Bittsanszky A, Komives T, Gullner G, Gyulai G, Kiss J, Heszky L, Radimszky L, Rennenberg H (2005) Ability of transgenic poplars with elevated glutathione content to tolerate zinc (2+) stress. Environ Int 31:251–254

    Article  CAS  PubMed  Google Scholar 

  • Burns EE, Keith BK, Refai MY, Bothner B, Dyer WE (2017) Proteomic and biochemical assays of glutathione-related proteins in susceptible and multiple herbicide resistant Avena fatua L. Pestic Biochem Physiol. https://doi.org/10.1016/ j.pestbp.2017.06.007

  • Chen J, Goldsborough PB (1994) Increased activity of γ-glutamylcysteine synthetase in tomato cells selected for cadmium tolerance. Plant Physiol 106:233–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, Lin TP (2012) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158:340–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng MC, Ko K, Chang WL, Kuo WC, Chen GH, Lin TP (2015) Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis. Plant J 83(5):926–939

    Article  CAS  PubMed  Google Scholar 

  • Choe YH, Kim YS, Kim IS, Bae MJ, Lee EJ, Kim YH, Park HM, Yoon HS (2013) Homologous expression of gamma-glutamylcysteine synthetase increases grain yield and tolerance of transgenic rice plants to environmental stresses. J Plant Physiol 170:610–618

    Article  CAS  PubMed  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in gamma-glutamylcysteine synthetase. Plant J 16:73–78

    Article  CAS  PubMed  Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies WJ, Zhang J (1991) Roots signals and the regulation of growth and development of plant in dry soil. Annu Rev Plant Physiol Plant Mol Biol 42:55–76

    Article  CAS  Google Scholar 

  • De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gosselé V, RaoMovva N, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6(9):2513–2518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    Article  CAS  PubMed  Google Scholar 

  • El-Shabrawi H, Kumar B, Kaul T, Reddy MK, Singla-Pareek SL, Sopory SK (2010) Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma 245:85–96

    Article  CAS  PubMed  Google Scholar 

  • Flocco CG, Lindblom SD, Pilon-Smits EAH (2004) Overexpression of enzymes involved in glutathione synthesis enhances tolerance to organic pollutants in Brassica juncea. Int J Phytochem 6:289–304

    Article  CAS  Google Scholar 

  • Foyer CH, Harbinson J (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense system in plants. CRC Press, Boca Raton, pp 1–42

    Google Scholar 

  • Foyer CH, Noctor G (2005a) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 29:1056–1071

    Article  Google Scholar 

  • Foyer CH, Noctor G (2005b) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, DescoUrvieres P, Kunert KJ (1994) Protection against oxygen radicals; an important defense mechanism studied in transgenic plants. Cell Environ 17:507–523

    Article  CAS  Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L (1995) Overexpression of glutathione-reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J 33:691–705

    Article  CAS  PubMed  Google Scholar 

  • Gaber A, Yoshimura K, Tamoi M, Takeda T, Nakano Y, Shigeoka S (2004) Induction and functional analysis of two reduced nicotinamide adenine dinucleotide phosphate-dependent glutathione peroxidase-like proteins in Synechocystis PCC 6803 during the progression of oxidative stress. Plant Physiol 136(1):2855–2861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaber A, Yoshimura K, Yamamoto T, Yabuta Y, Takeda T, Kanaboshi H, Miyasaka H, Nakano Y, Shigeoka S (2006) Glutathione peroxidase-like protein of Synechocystis PCC 6803 confers tolerance to oxidative and environmental stresses in transgenic Arabidopsis. Physiol Plant 128:251–262

    Article  CAS  Google Scholar 

  • Gaber A, Maruta T, Ogata T, Yoshimura K, Tamoi M, Shigeoka S (2012) Glutathione peroxidase 8 is a novel enzyme for the detoxification of reactive oxygen species in the nucleus of Arabidopsis. Plant Cell Physiol 53(9):1596–1606

    Article  CAS  PubMed  Google Scholar 

  • Galant A, Preuss ML, Cameron JC, Jez JM (2011) Plant glutathione biosynthesis-diversity in biochemical regulation and reaction products. Front Plant Sci 2:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Gechev TS, Dinakar C, Benina M, Toneva V, Bartels D (2012) Molecular mechanisms of desiccation tolerance in resurrection plants. Cell Mol Life Sci 69:3175–3186

    Article  CAS  PubMed  Google Scholar 

  • George S, Parida A (2010) Characterization of an oxidative stress inducible nonspecific lipid transfer protein coding cDNA and its promoter from drought tolerant plant Prosopis juliflora. Plant Mol Biol Report 28:32–40

    Article  CAS  Google Scholar 

  • Ghanta S, Chattopadhyay S (2011) Glutathione as a signaling molecule: another challenge to pathogens. Plant Signal Behav 6:783–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci U S A 84:439–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grill E, Lffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal binding peptides of plants, are synthesized from glutathione by a specific c-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci U S A 86:6838–6842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gullner G, Kömives T, Rennenberg H (2001) Enhanced tolerance of transgenic poplar plants overexpressing γ-glutamylcysteine synthetase towards chloroacetanilide herbicides. J Exp Bot 52:971–979

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Harms K, von Ballmoos P, Brunold C, Hofgen R, Hesse H (2000) Expression of a bacterial serine acetyltransferase in transgenic potato plants leads to increased levels of cysteine and glutathione. Plant J 22:335–343

    Article  CAS  PubMed  Google Scholar 

  • Hoque TS, Hossain MA, Mostofa MG, Burritt DJ, Fujita M, Tran LSP (2016) Methylglyoxal: an emerging signaling molecule in plant abiotic stress responses and tolerance. Front Plant Sci 7:1341

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Hasanuzzaman M, Fujita M (2010) Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plants 16:259–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Teixeira da Silva JA, Fujita M (2011) Glyoxalase system and reactive oxygen species detoxification system in plant abiotic stress response and tolerance: an intimate relationship. In: Shanker A, Venkateswarlu B (eds) Abiotic stress in plants-mechanisms and adaptations. INTECH-Open Access Publisher, Rijeka, pp 235–266

    Google Scholar 

  • Hossain MA, Piyatida P, Teixeira da Silva JA, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:872875

    Google Scholar 

  • Hossain MA, Mostofa MG, Fujita M (2013a) Cross protection by cold-shock to salinity and drought stress-induced oxidative stress in mustard (Brassica campestris L.) seedlings. Mol Plant Breed 4:50–70

    Google Scholar 

  • Hossain MA, Mostofa MG, Fujita M (2013b) Heat-shock positively modulates oxidative protection of salt and drought-stressed mustard (Brassica campestris L.) seedlings. J Plant Sci Mol Breed 2:1–14

    Article  CAS  Google Scholar 

  • Hossain MA, Hoque MA, Burritt DJ, Fujita M (2014) Proline protects plants against abiotic oxidative stress: biochemical and molecular mechanisms. In: Ahmad P (ed) Oxidative damage to plants. Elsevier, USA, pp 477–522

    Chapter  Google Scholar 

  • Hossain MA, Bhattacharjee S, Armin SM, Qian P, Xin W, Li H-Y, Burritt DJ, Fujita M, Tran LSP (2015) Hydrogen peroxide-priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front Plant Sci 6:420

    PubMed  PubMed Central  Google Scholar 

  • Hussain BMN, Akram S, Raffi SA, Burritt DJ, Hossain MA (2016) Exogenous glutathione improves salinity stress tolerance in rice (Oryza sativa L.). Plant Gene Trait 7:1–17

    Article  CAS  Google Scholar 

  • Islam M, Begum MC, Kabir AH, Alam MF (2015) Molecular and biochemical mechanisms associated with differential responses to drought tolerance in wheat (Triticum aestivum L.). J Plant Interact 10:195–201

    Article  CAS  Google Scholar 

  • Ivanova LA, Ronzhina DA, Ivanov LA, Stroukova LV, Peuke AD, Rennenberg H (2011) Over-expression of gsh1 in the cytosol affects the photosynthetic apparatus and improves the performance of transgenic poplars on heavy metal-contaminated soil. Plant Biol 13:649–659

    Article  CAS  PubMed  Google Scholar 

  • Jones DP (2000) Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol 348:93–112

    Article  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657

    Article  CAS  PubMed  Google Scholar 

  • Katerova ZI, Miteva LPE (2010) Glutathione and herbicide resistance in plants. In: Anjum NA et al (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, Dordrecht, pp 189–207

    Google Scholar 

  • Kocsy G, Galiba G, Brunold C (2001) Role of glutathione in adaptation and signaling during chilling and cold acclimation in plants. Physiol Plant 113:158–164

    Article  CAS  PubMed  Google Scholar 

  • Koffler BE, Luschin-Ebengreuth N, Stabentheiner E, Müller M, Zechmann B (2014) Compartment specific response of antioxidants to drought stress in Arabidopsis. Plant Sci 227:133–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kranner I, Beckett RP, Wornik S, Zorn M, Pfeifhofer HW (2002) Revival of a resurrection plant correlates with its antioxidant status. Plant J 31:13–24

    Article  CAS  PubMed  Google Scholar 

  • Krumova K, Cosa G (2016) Overview of reactive oxygen species. In: Nonell S, Flors C (eds) Singlet oxygen: applications in biosciences and nanosciences, vol 1. Royal Society of Chemistry, Cambridge, pp 1–21

    Chapter  Google Scholar 

  • Kumar D, Datta R, Sinha R, Ghosh A, Chattopadhyay S (2014) Proteomic profiling of gamma-ECS overexpressed transgenic Nicotiana in response to drought stress. Plant Signal Behav 9:e29246

    Article  PubMed Central  CAS  Google Scholar 

  • LeBlanc MS, Lima A, Montello P, Kim T, Meagher RB, Merkle S (2011) Enhanced arsenic tolerance of transgenic eastern cottonwood plants expressing gamma-glutamylcysteine synthetase. Int J Phytoremediation 13:657–673

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Dhankher OP, Carreira L, Balish RS, Meagher RB (2005) Arsenic and mercury tolerance and cadmium sensitivity in Arabidopsis plants expressing bacterial gamma-glutamylcysteine synthetase. Environ Toxicol Chem 24(6):1376–1386

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Dankher OP, Carreira L, Smith AP, Meagher RB (2006a) The shoot-specific expression of γ-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol 141:288–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Heaton ACP, Carreira L, Meagher RB (2006b) Enhanced tolerance to and accumulation of mercury, but not arsenic, in plants overexpressing two enzymes required for thiol peptide synthesis. Physiol Plant 128:48–57

    Article  CAS  Google Scholar 

  • Li H, Jin-long H, Jing L, Qing-song Y, Chang Y (2015) A γ-glutamylcysteine synthetase gene from Pyrus calleryana is responsive to ions and osmotic stresses. Plant Mol Biol Report 33:1088–1097

    Article  CAS  Google Scholar 

  • Liedschulte V, Wachter A, An Z, Rausch T (2010) Exploiting plants for glutathione (GSH) production: uncoupling GSH synthesis from cellular controls results in unprecedented GSH accumulation. Plant Biotechnol J 8:807–820

    Article  CAS  PubMed  Google Scholar 

  • Liu D, An Z, Mao Z, Ma L, Lu Z (2015) Enhanced heavy metal tolerance and accumulation by transgenic sugar beets expressing Streptococcus thermophilus StGCS-GS in the presence of Cd, Zn and Cu alone or in combination. PLoS One 10(6):e0128824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loyall L, Uchida K, Braun S, Furuya M, Frohnmeyer H (2000) Glutathione and a UV light-induced glutathione-S-transferase are involved in signaling to chalcone synthase in cell cultures. Plant Cell 12:1939–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu SC (2000) Regulation of glutathione synthesis. Curr Top Cell Regul 36:95–116

    Article  CAS  PubMed  Google Scholar 

  • May MJ, Leaver CJ (1993) Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension-cultures. Plant Physiol 103:621–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinhard M, Rodriguez PL, Grill E (2002) The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signalling. Planta 214:775–782

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003a) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26:845–856

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Theodoulou FL, Kiddle G, Gomez L, Volokita M, Tal M, Foyer CH, Guy M (2003b) Coordinate induction of glutathione biosynthesis and glutathione-metabolizing enzymes is correlated with salt tolerance in tomato. FEBS Lett 554:417–421

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Hossain MA, Siddiqui MN, Fujita M, Tran LSP (2017) Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants. Chemosphere 178:212–223

    Article  CAS  PubMed  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    Article  CAS  PubMed  Google Scholar 

  • Munné-Bosch S, Queval G, Foyer CH (2013) The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol 161:5–19

    Article  PubMed  CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015) Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. AoB Plants 7:plv069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Strohm M, Jouanin L, Kunert KJ, Foyer CH, Rennenberg H (1996) Synthesis of glutathione in leaves of transgenic poplar overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 112:1071–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Arisi A, Jouanin L, Foyer C (1998a) Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiol 118:471–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Arisi A, Jouanin L, Kunert K, Rennenberg H, Foyer CH (1998b) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:623–647

    CAS  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53:1283–1304

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH (2011) Glutathione. Arabidopsis Book 9:e0142

    Article  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • op den Camp RGL, Przbyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Göbel C, Feussner I, Nater M, Apel K (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15:2320–2332

    Article  CAS  Google Scholar 

  • Park SI, Kim YS, Kim JJ, Mok JE, Kim YH, Park HM, Kim IS, Yoon HS (2017) Improved stress tolerance and productivity in transgenic rice plants constitutively expressing the Oryza sativa glutathione synthetase OsGS under paddy field conditions. J Plant Physiol 215:39–47

    Article  CAS  PubMed  Google Scholar 

  • Pneuli L, Liang H, Rozenberg M, Mittler R (2003) Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1) deficient Arabidopsis plants. Plant J 34:187–203

    Article  Google Scholar 

  • Prabu G, Kawar PG, Pagariya MC, Prasad DT (2011) Identification of water deficit stress upregulated genes in sugarcane. Plant Mol Biol Report 29:291–304

    Article  Google Scholar 

  • Prasad TK (1996) Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities. Plant J 10:1017–1026

    Article  CAS  Google Scholar 

  • Rawlins MR, Leaver CJ, May MJ (1995) Characterization of an Arabidopsis thaliana cDNA-encoding glutathione synthetase. FEBS Lett 376:81–86

    Article  CAS  PubMed  Google Scholar 

  • Rea PA, Vatamaniuk OK, Rigden DJ (2004) Weeds, worms, and more. Papain’s long-lost cousin, phytochelatin synthase. Plant Physiol 136:2463–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reisinger S, Schiavon M, Terry N, Pilon-Smits EAH (2008) Heavy metal tolerance and accumulation in Indian mustard (Brassica juncea L.) expressing bacterial gamma-glutamylcysteine synthetase or glutathione synthetase. Int J Phytoremediation 10:1–15

    Article  CAS  Google Scholar 

  • Rossel JB, Wilson IM, Pogson BJ (2002) Global changes in gene expression in response to high light in Arabidopsis. Plant Physiol 130:1109–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta D, Reddy AR (2011) Water deficit as a regulatory switch for legume root responses. Plant Signal Behav 6:914–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta D, Kannan M, Reddy AR (2011) A root proteomics-based insight reveals dynamic regulation of root proteins under progressive drought stress and recovery in Vigna radiata (L.) Wilczek. Planta 233:1111–1127

    Article  CAS  PubMed  Google Scholar 

  • Sengupta D, Ramesh G, Mudalkar S, Kumar KRR, Kirti PB, Reddy AR (2012) Molecular cloning and characterization of γ-glutamyl cysteine synthetase (VrγECS) from roots of Vigna radiata (L.) Wilczek under progressive drought stress and recovery. Plant Mol Biol Report 30:894–903

    Article  CAS  Google Scholar 

  • Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7:187

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimazaki K, Sugahara K (1980) Inhibition site of the electron transport system in lettuce chloroplasts by fumigation of leaves with SO2. Plant Cell Physiol 12:303–312

    Google Scholar 

  • Su Z, Li X, Hao Z, Xie C, Li M, Weng J, Zhang D, Liang X, Wang Z, Gao J, Zhang S (2011) Association analysis of the nced and rab28 genes with phenotypic traits under water stress in maize. Plant Mol Biol Report 29:714–772

    Article  Google Scholar 

  • Szalai G, KelloË‹Ë‹s T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul 28:66–80

    Google Scholar 

  • Tseng TY, Ou JF, Wang CY (2013) Role of the ascorbate–glutathione cycle in paraquat tolerance of rice. Weed Sci 61:361–373

    Article  CAS  Google Scholar 

  • WawrzyÅ„ski A, Kopera E, WawrzyÅ„ska A, KamiÅ„ska J, Bal W, Sirko A (2006) Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiol content and cadmium accumulation in tobacco plants. J Exp Bot 57:2173–2182

    Article  PubMed  CAS  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inze D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C-3 plants. EMBO J 16:4806–4816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wingate VMP, Lawton MA, Lamb CJ (1988) Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol 87:206–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wingsle G, Karpinski S (1996) Differential redox regulation of glutathione reductase and Cu/Zn superoxide dismutase gene expression in Pinus sylvestris L. needles. Planta 198:151–157

    Article  CAS  PubMed  Google Scholar 

  • Xiang CB, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zechmann B (2014) Compartment-specific importance of glutathione during abiotic and biotic stress. Front Plant Sci 5:566

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Qiao M, Yu Y, Xia G, Xiang F (2010) The effect of the heterologous expression of Phragmites australis γ-glutamylcysteine synthetase on the Cd2+ accumulation of Agrostis palustris. Plant Cell Environ 33:877–887

    Article  CAS  PubMed  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999a) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–79

    Article  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed Gaber or Mohammad Anwar Hossain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaber, A., Burritt, D.J., Hossain, M.A. (2017). Transgenic Plants Over-expressing Glutathione Biosynthetic Genes and Abiotic Stress Tolerance. In: Hossain, M., Mostofa, M., Diaz-Vivancos, P., Burritt, D., Fujita, M., Tran, LS. (eds) Glutathione in Plant Growth, Development, and Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-319-66682-2_18

Download citation

Publish with us

Policies and ethics