Skip to main content

Respiratory Physiology in Liver Disease

  • Chapter
  • First Online:
Hepatic Critical Care

Abstract

In this chapter, we will discuss hepatic-pulmonary pathophysiologic interactions in acute and chronic liver disease. Most of our understanding of how liver disease compromises the key functions of the respiratory system comes from studies of physiologic extremes. From these data, we can infer how milder manifestations of liver disease may contribute to abnormalities in ventilation and gas exchange. In liver disease, it is well established that optimal ventilation is most often perturbed by altered respiratory mechanics from ascites, hydrothorax, and hepatic cachexia. Ventilation-perfusion (V-Q) mismatching may be caused or worsened by compressive atelectasis from ascites or hydrothorax, imbalanced matching in hepatopulmonary syndrome, dynamic small airway collapse from increased pulmonary blood flow, or any of the various causes typically seen in hypoxemic hospitalized patients. Diffusion abnormalities also have myriad causes, and a low diffusion capacity (DLCO) without alternative explanation may represent the uncommon but well characterized hepatopulmonary syndrome. Additionally, acute liver failure may be complicated by the acute respiratory distress syndrome (ARDS), which itself hampers respiratory mechanics, V-Q matching, and gas diffusion. Patients with chronic liver disease are also at risk for ARDS as they are prone to sepsis and aspiration pneumonitis. Managing ARDS in these populations requires special consideration of extra-hepatic complications of liver failure such as elevated intracerebral pressure and tense ascites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ARDS:

Acute respiratory distress syndrome

COPD:

Chronic obstructive pulmonary disease

DLCO:

Diffusion capacity of lungs for carbon monoxide

HPS:

Hepatopulmonary syndrome

MELD:

Model for end-stage liver disease (score)

PCO2 :

Partial pressure of carbon dioxide

PACO2 :

Alveolar partial pressure of carbon dioxide

PaCO2 :

Arterial partial pressure of carbon dioxide

PAO2 :

Arterial partial pressure of oxygen

PaO2 :

Arterial partial pressure of oxygen

PEEP:

Positive end-expiratory pressure

V-Q:

Ventilation-perfusion

ERV:

Expiratory reserve volume

FEV1:

Forced expiratory volume in one second

FRC:

Functional residual capacity

FVC:

Forced vital capacity

TLC:

Total lung capacity

RV:

Residual volume

VC:

Vital capacity

References

  1. Lumb AB, Nunn JF. Nunn’s applied respiratory physiology. 8th ed. Edinburgh: Churchill Livingstone, Elsevier; 2017:1 online resource (xii, 556 pages): illustrations (some color). 123Library http://www.123library.org/book_details/?id=46803; ClinicalKey http://www.clinicalkey.com/dura/browse/bookChapter/3-s2.0-C2009055355X; ClinicalKey http://www.clinicalkey.com.au/dura/browse/bookChapter/3-s2.0-C2009055355X; ebrary http://site.ebrary.com/id/10537298; EBSCOhost http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=973648.

  2. Grinnan DC, Truwit JD. Clinical review: respiratory mechanics in spontaneous and assisted ventilation. Crit Care. 2005;9(5):472–84.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Slonim NB, Hamilton LH. Respiratory physiology. 5th ed. St. Louis, MI: The C.V. Mosby Company; 1987.

    Google Scholar 

  4. West JB. Pulmonary pathophysiology: The essentials. 8th ed. Baltimore, MD: Lippincott Williams & Wilkins; 2013.

    Google Scholar 

  5. Wanger J, Clausen JL, Coates A, et al. Standardisation of the measurement of lung volumes. Eur Respir J. 2005;26(3):511–22.

    Article  CAS  PubMed  Google Scholar 

  6. Pellegrino R, Viegi G, Brusasco V, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26(5):948–68.

    Article  CAS  PubMed  Google Scholar 

  7. Aaron SD, Dales RE, Cardinal P. How accurate is spirometry at predicting restrictive pulmonary impairment? Chest. 1999;115(3):869–73.

    Article  CAS  PubMed  Google Scholar 

  8. Krowka MJ, Dickson ER, Wiesner RH, Krom RA, Atkinson B, Cortese DA. A prospective study of pulmonary function and gas exchange following liver transplantation. Chest. 1992;102(4):1161–6.

    Article  CAS  PubMed  Google Scholar 

  9. Yao EH, Kong BC, Hsue GL, Zhou AC, Wang H. Pulmonary function changes in cirrhosis of the liver. Am J Gastroenterol. 1987;82(4):352–4.

    CAS  PubMed  Google Scholar 

  10. Nagral A, Kolhatkar VP, Bhatia SJ, Taskar VS, Abraham P. Pulmonary function tests in cirrhotic and non-cirrhotic portal hypertension. Indian J Gastroenterol. 1993;12(2):36–40.

    CAS  PubMed  Google Scholar 

  11. Abelmann WH, Frank NR, Gaensler EA, Cugell DW. Effects of abdominal distention by ascites on lung volumes and ventilation. AMA Arch Intern Med. 1954;93(4):528–40.

    Article  CAS  PubMed  Google Scholar 

  12. Hanson CA, Ritter AB, Duran W, Lavietes MH. Ascites: its effect upon static inflation of the respiratory system. Am Rev Respir Dis. 1990;142(1):39–42.

    Article  CAS  PubMed  Google Scholar 

  13. Yigit IP, Hacievliyagil SS, Seckin Y, Oner RI, Karincaoglu M. The relationship between severity of liver cirrhosis and pulmonary function tests. Dig Dis Sci. 2008;53(7):1951–6.

    Article  PubMed  Google Scholar 

  14. Levesque E, Hoti E, Azoulay D, et al. Pulmonary complications after elective liver transplantation-incidence, risk factors, and outcome. Transplantation. 2012;94(5):532–8.

    Article  PubMed  Google Scholar 

  15. Mutoh T, Lamm WJ, Embree LJ, Hildebrandt J, Albert RK. Volume infusion produces abdominal distension, lung compression, and chest wall stiffening in pigs. J Appl Physiol (1985). 1992;72(2):575–82.

    Article  CAS  Google Scholar 

  16. Berkowitz KA, Butensky MS, Smith RL. Pulmonary function changes after large volume paracentesis. Am J Gastroenterol. 1993;88(6):905–7.

    CAS  PubMed  Google Scholar 

  17. Angueira CE, Kadakia SC. Effects of large-volume paracentesis on pulmonary function in patients with tense cirrhotic ascites. Hepatology. 1994;20(4 Pt 1):825–8.

    Article  CAS  PubMed  Google Scholar 

  18. Chao Y, Wang SS, Lee SD, Shiao GM, Chang HI, Chang SC. Effect of large-volume paracentesis on pulmonary function in patients with cirrhosis and tense ascites. J Hepatol. 1994;20(1):101–5.

    Article  CAS  PubMed  Google Scholar 

  19. Chang SC, Chang HI, Chen FJ, Shiao GM, Wang SS, Lee SD. Therapeutic effects of diuretics and paracentesis on lung function in patients with non-alcoholic cirrhosis and tense ascites. J Hepatol. 1997;26(4):833–8.

    Article  CAS  PubMed  Google Scholar 

  20. Levesque E, Hoti E, Jiabin J, et al. Respiratory impact of paracentesis in cirrhotic patients with acute lung injury. J Crit Care. 2011;26(3):257–61.

    Article  PubMed  Google Scholar 

  21. Olegard C, Sondergaard S, Houltz E, Lundin S, Stenqvist O. Estimation of functional residual capacity at the bedside using standard monitoring equipment: A modified nitrogen washout/washin technique requiring a small change of the inspired oxygen fraction. Anesth Analg. 2005;101(1):206–12. table of contents

    Article  PubMed  Google Scholar 

  22. Peng TC, Kao TW, Wu LW, et al. Association between pulmonary function and nonalcoholic fatty liver disease in the NHANES III study. Medicine (Baltimore). 2015;94(21):e907.

    Article  CAS  Google Scholar 

  23. Jung DH, Shim JY, Lee HR, Moon BS, Park BJ, Lee YJ. Relationship between non-alcoholic fatty liver disease and pulmonary function. Intern Med J. 2012;42(5):541–6.

    Article  CAS  PubMed  Google Scholar 

  24. Leone N, Courbon D, Thomas F, et al. Lung function impairment and metabolic syndrome: the critical role of abdominal obesity. Am J Respir Crit Care Med. 2009;179(6):509–16.

    Article  PubMed  Google Scholar 

  25. Ford ES, Mannino DM, Health N, Study NESE F-u. Prospective association between lung function and the incidence of diabetes: findings from the national health and nutrition examination survey epidemiologic follow-up study. Diabetes Care. 2004;27(12):2966–70.

    Article  PubMed  Google Scholar 

  26. Aronson D, Roterman I, Yigla M, et al. Inverse association between pulmonary function and C-reactive protein in apparently healthy subjects. Am J Respir Crit Care Med. 2006;174(6):626–32.

    Article  CAS  PubMed  Google Scholar 

  27. Park MS, Lee MH, Park YS, Kim SH, Kwak MJ, Kang JS. Abnormal gas diffusing capacity and portosystemic shunt in patients with chronic liver disease. Gastroenterol Res. 2012;5(5):182–9.

    CAS  Google Scholar 

  28. Hourani JM, Bellamy PE, Tashkin DP, Batra P, Simmons MS. Pulmonary dysfunction in advanced liver disease: frequent occurrence of an abnormal diffusing capacity. Am J Med. 1991;90(6):693–700.

    Article  CAS  PubMed  Google Scholar 

  29. Godfrey MS, Jankowich MD. The vital capacity is vital: epidemiology and clinical significance of the restrictive spirometry pattern. Chest. 2016;149(1):238–51.

    Article  PubMed  Google Scholar 

  30. Miller MR, Sokol RJ, Narkewicz MR, Sontag MK. Pulmonary function in individuals who underwent liver transplantation: from the US cystic fibrosis foundation registry. Liver Transpl. 2012;18(5):585–93.

    Article  PubMed  Google Scholar 

  31. Carey EJ, Iyer VN, Nelson DR, Nguyen JH, Krowka MJ. Outcomes for recipients of liver transplantation for alpha-1-antitrypsin deficiency-related cirrhosis. Liver Transpl. 2013;19(12):1370–6.

    Article  PubMed  Google Scholar 

  32. Furukawa T, Hara N, Yasumoto K, Inokuchi K. Arterial hypoxemia in patients with hepatic cirrhosis. Am J Med Sci. 1984;287(3):10–3.

    Article  CAS  PubMed  Google Scholar 

  33. Caruso G, Catalano D, Corsaro A, et al. Respiratory function and liver cirrhosis. Riv Eur Sci Med Farmacol. 1990;12(2):83–9.

    CAS  PubMed  Google Scholar 

  34. Domino KB, Eisenstein BL, Tran T, Hlastala MP. Increased pulmonary perfusion worsens ventilation-perfusion matching. Anesthesiology. 1993;79(4):817–26.

    Article  CAS  PubMed  Google Scholar 

  35. Ruff F, Hughes JM, Stanley N, et al. Regional lung function in patients with hepatic cirrhosis. J Clin Invest. 1971;50(11):2403–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Funahashi A, Kutty AV, Prater SL. Hypoxaemia and cirrhosis of the liver. Thorax. 1976;31(3):303–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hara N, Yoshida T, Furukawa T, Inokuchi K. Abnormalities in maximum flow volume curve and closing volume in patients with hepatic cirrhosis. Jpn J Surg. 1980;10(4):265–9.

    Article  CAS  PubMed  Google Scholar 

  38. Burgel PR. The role of small airways in obstructive airway diseases. Eur Respir Rev. 2011;20(119):23–33.

    Article  PubMed  Google Scholar 

  39. Braido F, Scichilone N, Lavorini F, et al. Manifesto on small airway involvement and management in asthma and chronic obstructive pulmonary disease: an interasma (global asthma association—GAA) and world allergy organization (WAO) document endorsed by allergic rhinitis and its impact on asthma (ARIA) and global allergy and asthma European network (GA2LEN). Asthma Res Pract. 2016;2:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Usmani OS. Small-airway disease in asthma: Pharmacological considerations. Curr Opin Pulm Med. 2015;21(1):55–67.

    Article  CAS  PubMed  Google Scholar 

  41. Burgel PR, Bergeron A, de Blic J, et al. Small airways diseases, excluding asthma and COPD: an overview. Eur Respir Rev. 2013;22(128):131–47.

    Article  PubMed  Google Scholar 

  42. Hayes D Jr, Kraman SS. The physiologic basis of spirometry. Respir Care. 2009;54(12):1717–26.

    PubMed  Google Scholar 

  43. Pride NB, Permutt S, Riley RL, Bromberger-Barnea B. Determinants of maximal expiratory flow from the lungs. J Appl Physiol. 1967;23(5):646–62.

    Article  CAS  PubMed  Google Scholar 

  44. Cullen DJ, Coyle JP, Teplick R, Long MC. Cardiovascular, pulmonary, and renal effects of massively increased intra-abdominal pressure in critically ill patients. Crit Care Med. 1989;17(2):118–21.

    Article  CAS  PubMed  Google Scholar 

  45. Mutoh T, Lamm WJ, Embree LJ, Hildebrandt J, Albert RK. Abdominal distension alters regional pleural pressures and chest wall mechanics in pigs in vivo. J Appl Physiol (1985). 1991;70(6):2611–8.

    Article  CAS  Google Scholar 

  46. Wauters J, Claus P, Brosens N, et al. Relationship between abdominal pressure, pulmonary compliance, and cardiac preload in a porcine model. Crit Care Res Pract. 2012;2012:763181.

    PubMed  PubMed Central  Google Scholar 

  47. Duranti R, Laffi G, Misuri G, et al. Respiratory mechanics in patients with tense cirrhotic ascites. Eur Respir J. 1997;10(7):1622–30.

    Article  CAS  PubMed  Google Scholar 

  48. Smith TC, Marini JJ. Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction. J Appl Physiol (1985). 1988;65(4):1488–99.

    Article  CAS  Google Scholar 

  49. Phillip V, Saugel B, Ernesti C, et al. Effects of paracentesis on hemodynamic parameters and respiratory function in critically ill patients. BMC Gastroenterol. 2014;14:18. https://doi.org/10.1186/1471-230X-14-18.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lazaridis KN, Frank JW, Krowka MJ, Kamath PS. Hepatic hydrothorax: pathogenesis, diagnosis, and management. Am J Med. 1999;107(3):262–7.

    Article  CAS  PubMed  Google Scholar 

  51. Malagari K, Nikita A, Alexopoulou E, et al. Cirrhosis-related intrathoracic disease. imaging features in 1038 patients. Hepato-Gastroenterology. 2005;52(62):558–62.

    CAS  PubMed  Google Scholar 

  52. Furukawa T, Yasumoto K, Inokuchi K. Pulmonary interstitial edema in experimental cirrhosis of the liver in rats. Eur Surg Res. 1984;16(6):366–71.

    Article  CAS  PubMed  Google Scholar 

  53. Hauge A, Bo G, Waaler BA. Interrelations between pulmonary liquid volumes and lung compliance. J Appl Physiol. 1975;38(4):608–14.

    Article  CAS  PubMed  Google Scholar 

  54. Noble WH, Kay JC, Obdrzalek J. Lung mechanics in hypervolemic pulmonary edema. J Appl Physiol. 1975;38(4):681–7.

    Article  CAS  PubMed  Google Scholar 

  55. Fritz JS, Fallon MB, Kawut SM. Pulmonary vascular complications of liver disease. Am J Respir Crit Care Med. 2013;187(2):133–43.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Khan AN, Al-Jahdali H, Abdullah K, Irion KL, Sabih Q, Gouda A. Pulmonary vascular complications of chronic liver disease: pathophysiology, imaging, and treatment. Ann Thorac Med. 2011;6(2):57–65.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Evans JA, Whitelaw WA. The assessment of maximal respiratory mouth pressures in adults. Respir Care. 2009;54(10):1348–59.

    PubMed  Google Scholar 

  58. Terziyski K, Andonov V, Marinov B, Kostianev S. Exercise performance and ventilatory efficiency in patients with mild and moderate liver cirrhosis. Clin Exp Pharmacol Physiol. 2008;35(2):135–40.

    CAS  PubMed  Google Scholar 

  59. Kaltsakas G, Antoniou E, Palamidas AF, et al. Dyspnea and respiratory muscle strength in end-stage liver disease. World J Hepatol. 2013;5(2):56–63.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Augusto VS, Castro E, Silva O, Souza ME, Sankarankutty AK. Evaluation of the respiratory muscle strength of cirrhotic patients: relationship with child-turcotte-pugh scoring system. Transplant Proc. 2008;40(3):774–6.

    Article  CAS  PubMed  Google Scholar 

  61. Galant LH, Ferrari R, Forgiarini LA Jr, Monteiro MB, Marroni CA, Dias AS. Relationship between MELD severity score and the distance walked and respiratory muscle strength in candidates for liver transplantation. Transplant Proc. 2010;42(5):1729–30.

    Article  CAS  PubMed  Google Scholar 

  62. da Silva AM, Cliquet A Jr, Boin IF. Profile of respiratory evaluation through surface electromyography, manovacuometry, and espirometry in candidates on the liver transplant waiting list. Transplant Proc. 2012;44(8):2403–5.

    Article  PubMed  Google Scholar 

  63. Carlucci A, Ceriana P, Prinianakis G, Fanfulla F, Colombo R, Nava S. Determinants of weaning success in patients with prolonged mechanical ventilation. Crit Care. 2009;13(3):R97.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Martin AD, Smith BK, Davenport PD, et al. Inspiratory muscle strength training improves weaning outcome in failure to wean patients: A randomized trial. Crit Care. 2011;15(2):R84.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Vallverdu I, Calaf N, Subirana M, Net A, Benito S, Mancebo J. Clinical characteristics, respiratory functional parameters, and outcome of a two-hour T-piece trial in patients weaning from mechanical ventilation. Am J Respir Crit Care Med. 1998;158(6):1855–62.

    Article  CAS  PubMed  Google Scholar 

  66. Faustini Pereira JL, Galant LH, Rossi D, et al. Functional capacity, respiratory muscle strength, and oxygen consumption predict mortality in patients with cirrhosis. Can J Gastroenterol Hepatol. 2016;2016:6940374.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Spyer KM, Gourine AV. Chemosensory pathways in the brainstem controlling cardiorespiratory activity. Philos Trans R Soc Lond Ser B Biol Sci. 2009;364(1529):2603–10.

    Article  Google Scholar 

  68. HEINEMANN HO, EMIRGIL C, MIJNSSEN JP. Hyperventilation and arterial hypoxemia in cirrhosis of the liver. Am J Med. 1960;28:239–46.

    Article  CAS  PubMed  Google Scholar 

  69. Moreau R, Hadengue A, Soupison T, et al. Arterial and mixed venous acid-base status in patients with cirrhosis. influence of liver failure. Liver. 1993;13(1):20–4.

    Article  CAS  PubMed  Google Scholar 

  70. Oster JR, Perez GO. Acid-base disturbances in liver disease. J Hepatol. 1986;2(2):299–306.

    Article  CAS  PubMed  Google Scholar 

  71. Henriksen JH, Bendtsen F, Moller S. Acid-base disturbance in patients with cirrhosis: relation to hemodynamic dysfunction. Eur J Gastroenterol Hepatol. 2015;27(8):920–7.

    Article  CAS  PubMed  Google Scholar 

  72. Passino C, Giannoni A, Mannucci F, et al. Abnormal hyperventilation in patients with hepatic cirrhosis: role of enhanced chemosensitivity to carbon dioxide. Int J Cardiol. 2012;154(1):22–6.

    Article  PubMed  Google Scholar 

  73. Funk GC, Doberer D, Osterreicher C, Peck-Radosavljevic M, Schmid M, Schneeweiss B. Equilibrium of acidifying and alkalinizing metabolic acid-base disorders in cirrhosis. Liver Int. 2005;25(3):505–12.

    Article  CAS  PubMed  Google Scholar 

  74. Record CO, Iles RA, Cohen RD, Williams R. Acid-base and metabolic disturbances in fulminant hepatic failure. Gut. 1975;16(2):144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lustik SJ, Chhibber AK, Kolano JW, et al. The hyperventilation of cirrhosis: progesterone and estradiol effects. Hepatology. 1997;25(1):55–8.

    Article  CAS  PubMed  Google Scholar 

  76. Huo YM, Hua R, Chen W, Sun YW. Clinical study on pulmonary diffusion function in patients with chronic liver disease. J Dig Dis. 2010;11(5):291–8.

    Article  PubMed  Google Scholar 

  77. Rodriguez-Roisin R, Krowka MJ. Hepatopulmonary syndrome—a liver-induced lung vascular disorder. N Engl J Med. 2008;358(22):2378–87.

    Article  CAS  PubMed  Google Scholar 

  78. Lemyze M, Dharancy S, Neviere R, Wallaert B. Cardiopulmonary response to exercise in patients with liver cirrhosis and impaired pulmonary gas exchange. Respir Med. 2011;105(10):1550–6.

    Article  PubMed  Google Scholar 

  79. Martinez G, Barbera JA, Navasa M, Roca J, Visa J, Rodriguez-Roisin R. Hepatopulmonary syndrome associated with cardiorespiratory disease. J Hepatol. 1999;30(5):882–9.

    Article  CAS  PubMed  Google Scholar 

  80. Fuhrmann V, Madl C, Mueller C, et al. Hepatopulmonary syndrome in patients with hypoxic hepatitis. Gastroenterology. 2006;131(1):69–75.

    Article  PubMed  Google Scholar 

  81. Macintyre N, Crapo RO, Viegi G, et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J. 2005;26(4):720–35.

    Article  CAS  PubMed  Google Scholar 

  82. Agusti AG, Roca J, Rodriguez-Roisin R, Mastai R, Wagner PD, Bosch J. Pulmonary hemodynamics and gas exchange during exercise in liver cirrhosis. Am Rev Respir Dis. 1989;139(2):485–91.

    Article  CAS  PubMed  Google Scholar 

  83. Powell F, Wagner P, West J. Ventilation, blood flow, and gas exchange. In: Broaddus VC, Mason RJ, Ernst J, King T, et al., editors. Murray & Nadel’s textbook of respiratory medicine. 6th ed. Philadelphia, PA: Elsevier Saunders; 2016. p. 44–75.

    Chapter  Google Scholar 

  84. Petrucci N, De Feo C. Lung protective ventilation strategy for the acute respiratory distress syndrome. Cochrane Database Syst Rev. 2013;(2):CD003844. doi:10.1002/14651858.CD003844.pub4.

    Google Scholar 

  85. Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107–16.

    Article  CAS  PubMed  Google Scholar 

  86. Guerin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.

    Article  CAS  PubMed  Google Scholar 

  87. The Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.

    Article  Google Scholar 

  88. Caricato A, Conti G, Della Corte F, et al. Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: The role of respiratory system compliance. J Trauma. 2005;58(3):571–6.

    Article  PubMed  Google Scholar 

  89. Frost EA. Effects of positive end-expiratory pressure on intracranial pressure and compliance in brain-injured patients. J Neurosurg. 1977;47(2):195–200.

    Article  CAS  PubMed  Google Scholar 

  90. Videtta W, Villarejo F, Cohen M, et al. Effects of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure. Acta Neurochir Suppl. 2002;81:93–7.

    CAS  PubMed  Google Scholar 

  91. Jakob SM. The effects of mechanical ventilation on hepato-splanchnic perfusion. Curr Opin Crit Care. 2010;16(2):165–8.

    Article  PubMed  Google Scholar 

  92. Putensen C, Wrigge H, Hering R. The effects of mechanical ventilation on the gut and abdomen. Curr Opin Crit Care. 2006;12(2):160–5.

    Article  PubMed  Google Scholar 

  93. De Wolf AM, Freeman JA, Scott VL, et al. Pharmacokinetics and pharmacodynamics of cisatracurium in patients with end-stage liver disease undergoing liver transplantation. Br J Anaesth. 1996;76(5):624–8.

    Article  PubMed  Google Scholar 

  94. Scholten EL, Beitler JR, Prisk GK, Malhotra A. Treatment of ARDS with prone positioning. Chest. 2017;151(1):215–24.

    Article  PubMed  Google Scholar 

  95. Mure M, Glenny RW, Domino KB, Hlastala MP. Pulmonary gas exchange improves in the prone position with abdominal distension. Am J Respir Crit Care Med. 1998;157(6 Pt 1):1785–90.

    Article  CAS  PubMed  Google Scholar 

  96. Mutoh T, Guest RJ, Lamm WJ, Albert RK. Prone position alters the effect of volume overload on regional pleural pressures and improves hypoxemia in pigs in vivo. Am Rev Respir Dis. 1992;146(2):300–6.

    Article  CAS  PubMed  Google Scholar 

  97. Pelosi P, Tubiolo D, Mascheroni D, et al. Effects of the prone position on respiratory mechanics and gas exchange during acute lung injury. Am J Respir Crit Care Med. 1998;157(2):387–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathon D. Truwit M.D., M.B.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bergl, P., Truwit, J.D. (2018). Respiratory Physiology in Liver Disease. In: Nanchal, R., Subramanian, R. (eds) Hepatic Critical Care . Springer, Cham. https://doi.org/10.1007/978-3-319-66432-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66432-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66431-6

  • Online ISBN: 978-3-319-66432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics