Skip to main content

Computing Multiple Zeros of Polynomial Systems: Case of Breadth One (Invited Talk)

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10490))

Included in the following conference series:

  • 634 Accesses

Abstract

Given a polynomial system f with a multiple zero x whose Jacobian matrix at x has corank one, we show how to compute the multiplicity structure of x and the lower bound on the minimal distance between the multiple zero x and other zeros of f. If x is only given with limited accuracy, we give a numerical criterion to guarantee that f has \(\mu \) zeros (counting multiplicities) in a small ball around x. Moreover, we also show how to compute verified and narrow error bounds such that a slightly perturbed system is guaranteed to possess an isolated breadth-one singular solution within computed error bounds. Finally, we present modified Newton iterations and show that they converge quadratically if x is close to an isolated exact singular solution of f. This is joint work with Zhiwei Hao, Wenrong Jiang, Nan Li.

This research was supported in part by the National Key Research Project of China 2016YFB0200504 (Zhi) and the National Natural Science Foundation of China under Grants 11571350 (Zhi).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New York (1998)

    Book  MATH  Google Scholar 

  2. Chen, X., Nashed, Z., Qi, L.: Convergence of Newton’s method for singular smooth and nonsmooth equations using adaptive outer inverses. SIAM J. Optim. 7(2), 445–462 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Corless, R.M., Gianni, P.M., Trager, B.M.: A reordered Schur factorization method for zero-dimensional polynomial systems with multiple roots. In: Küchlin, W.W. (ed) Proceedings of ISSAC 1997, pp. 133–140. ACM, New York (1997)

    Google Scholar 

  4. Dayton, B., Li, T., Zeng, Z.: Multiple zeros of nonlinear systems. Math. Comput. 80, 2143–2168 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dayton, B., Zeng, Z.: Computing the multiplicity structure in solving polynomial systems. In: Kauers, M. (ed) Proceedings of ISSAC 2005, pp. 116–123. ACM, New York (2005)

    Google Scholar 

  6. Decker, D.W., Kelley, C.T.: Newton’s method at singular points I. SIAM J. Numer. Anal. 17, 66–70 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Decker, D.W., Kelley, C.T.: Newton’s method at singular points II. SIAM J. Numer. Anal. 17, 465–471 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Decker, D.W., Kelley, C.T.: Convergence acceleration for Newton’s method at singular points. SIAM J. Numer. Anal. 19, 219–229 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dedieu, J.P., Shub, M.: On simple double zeros and badly conditioned zeros of analytic functions of n variables. Math. Comput. 70(233), 319–327 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Giusti, M., Lecerf, G., Salvy, B., Yakoubsohn, J.C.: On location and approximation of clusters of zeros of analytic functions. Found. Comput. Math. 5(3), 257–311 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giusti, M., Lecerf, G., Salvy, B., Yakoubsohn, J.C.: On location and approximation of clusters of zeros: case of embedding dimension one. Found. Comput. Math. 7(1), 1–58 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Griewank, A.: On solving nonlinear equations with simple singularities or nearly singular solutions. SIAM Rev. 27(4), 537–563 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Griewank, A.: Analysis and modification of Newton’s method at singularities. Australian National University, thesis (1980)

    Google Scholar 

  14. Griewank, A., Osborne, M.R.: Newton’s method for singular problems when the dimension of the null space is \(>1\). SIAM J. Numer. Anal. 18, 145–149 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hao, Z., Jiang, W., Li, N., Zhi, L.: Computing simple multiple zeros of polynomial systems (2017). https://www.arxiv.org/pdf/1703.03981.pdf

  16. Hauenstein, J.D., Sottile, F.: Algorithm 921: AlphaCertified: certifying solutions to polynomial systems. ACM Trans. Math. Softw. 38(4), 28:1–28:20 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing 4(3), 187–201 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lecerf, G.: Quadratic Newton iteration for systems with multiplicity. Found. Comput. Math. 2(3), 247–293 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Leykin, A., Verschelde, J., Zhao, A.: Newton’s method with deflation for isolated singularities of polynomial systems. Theoret. Comput. Sci. 359(1), 111–122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Leykin, A., Verschelde, J., Zhao, A.: Higher-order deflation for polynomial systems with isolated singular solutions. In: Dickenstein, A., Schreyer, F.O., Sommese, A.J. (eds.) Algorithms in Algebraic Geometry. IMA, vol. 146, pp. 79–97. Springer, New York (2008)

    Chapter  Google Scholar 

  21. Li, N., Zhi, L.: Compute the multiplicity structure of an isolated singular solution: case of breadth one. J. Symb. Comput. 47, 700–710 (2012)

    Article  MATH  Google Scholar 

  22. Li, N., Zhi, L.: Computing isolated singular solutions of polynomial systems: case of breadth one. SIAM J. Numer. Anal. 50(1), 354–372 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, N., Zhi, L.: Verified error bounds for isolated singular solutions of polynomial systems: case of breadth one. Theoret. Comput. Sci. 479, 163–173 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, N., Zhi, L.: Verified error bounds for isolated singular solutions of polynomial systems. SIAM J. Numer. Anal. 52(4), 1623–1640 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mantzaflaris, A., Mourrain, B.: Deflation and certified isolation of singular zeros of polynomial systems. In: Leykin, A. (ed.) Proceedings of ISSAC 2011, pp. 249–256. ACM, New York (2011)

    Google Scholar 

  26. Marinari, M.G., Mora, T., Möller, H.M.: Gröbner duality and multiplicities in polynomial system solving. In: Proceedings of ISSAC 1995, pp. 167–179. ACM, New York (1995)

    Google Scholar 

  27. Moore, R.E.: A test for existence of solutions to nonlinear systems. SIAM J. Numer. Anal. 14(4), 611–615 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mourrain, B.: Isolated points, duality and residues. J. Pure Appl. Algebra 117, 469–493 (1996). 117

    MathSciNet  MATH  Google Scholar 

  29. Ojika, T.: Modified deflation algorithm for the solution of singular problems. i. a system of nonlinear algebraic equations. J. Math. Anal. Appl. 123(1), 199–221 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ojika, T., Watanabe, S., Mitsui, T.: Deflation algorithm for the multiple roots of a system of nonlinear equations. J. Math. Anal. Appl. 96(2), 463–479 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rall, L.B.: Convergence of the Newton process to multiple solutions. Numer. Math. 9(1), 23–37 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  32. Reddien, G.W.: On Newton’s method for singular problems. SIAM J. Numer. Anal. 15(5), 993–996 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  33. Reddien, G.W.: Newton’s method and high order singularities. Comput. Math. Appl. 5(2), 79–86 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rump, S.M.: Solving algebraic problems with high accuracy. In: Proceedings of the Symposium on A New Approach to Scientific Computation, pp. 51–120. Academic Press Professional Inc., San Diego (1983)

    Google Scholar 

  35. Rump, S.M., Graillat, S.: Verified error bounds for multiple roots of systems of nonlinear equations. Numer. Algorithms 54(3), 359–377 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shen, Y.Q., Ypma, T.J.: Newton’s method for singular nonlinear equations using approximate left and right nullspaces of the Jacobian. Appl. Numer. Math. 54(2), 256–265 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shub, M., Smale, S.: Complexity of bezout’s theorem IV: probability of success; extensions. SIAM J. Numer. Anal. 33(1), 128–148 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shub, M., Smale, S.: Computational complexity: on the geometry of polynomials and a theory of cost: I. Ann. Sci. Éc. Norm. Supér. 18(1), 107–142 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shub, M., Smale, S.: Computational complexity: on the geometry of polynomials and a theory of cost: II. SIAM J. Comput. 15(1), 145–161 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  40. Smale, S.: The fundamental theorem of algebra and complexity theory. Bull. Amer. Math. Soc. 4(1), 1–36 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  41. Smale, S.: Newton’s method estimates from data at one point. In: Ewing, R.E., Gross, K.I., Martin, C.F. (eds.) The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics. Springer, New York (1986)

    Google Scholar 

  42. Stetter, H.: Numerical Polynomial Algebra. SIAM, Philadelphia (2004)

    Book  MATH  Google Scholar 

  43. Wang, X., Han, D.: On dominating sequence method in the point estimate and smale theorem. Sci. China Ser. A 33(2), 135–144 (1990)

    MathSciNet  MATH  Google Scholar 

  44. Wu, X., Zhi, L.: Computing the multiplicity structure from geometric involutive form. In: Jeffrey, D. (ed) Proceedings of ISSAC 2008, pp. 325–332. ACM, New York (2008)

    Google Scholar 

  45. Wu, X., Zhi, L.: Determining singular solutions of polynomial systems via symbolic-numeric reduction to geometric involutive forms. J. Symb. Comput. 47(3), 227–238 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yamamoto, N.: Regularization of solutions of nonlinear equations with singular Jacobian matrices. J. Inf. Process. 7(1), 16–21 (1984)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong Zhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhi, L. (2017). Computing Multiple Zeros of Polynomial Systems: Case of Breadth One (Invited Talk). In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2017. Lecture Notes in Computer Science(), vol 10490. Springer, Cham. https://doi.org/10.1007/978-3-319-66320-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66320-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66319-7

  • Online ISBN: 978-3-319-66320-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics