Skip to main content

Mid-Infrared Raman Fiber Lasers

  • Chapter
  • First Online:
Raman Fiber Lasers

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 207))

  • 1660 Accesses

Abstract

Stimulated Raman scattering has long been used to bridge the gap between the rare-earth emission bands. Since the Raman gain spectrum is fixed solely by the fiber material and the pump wavelength, these sources can also be designed to operate in the MIR spectral region to meet the current application needs in medicine, the defence & security, and spectroscopy. Although they bring new technical challenges, low phonon energy glasses such as fluorides and chalcogenides are typically used for this purpose because of their extended transparency at wavelengths above fused silica fiber transparency window. This chapter will review the state of the art of MIR Raman lasers, as well as their current limitations, and will discuss possible future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Endo, M., Walter, R.F.: Gas Lasers. CRC Press, Boca Raton (2006)

    Google Scholar 

  2. Myrabo, L.N., Knowles, T.R., Bagford, J.O., Seibert Ii, D.B., Harris, H.M.: Laser-boosted light sail experiments with the 150-kW LHMEL II CO2 laser. Proc. SPIE. 4760, 774–798 (2002)

    Article  ADS  Google Scholar 

  3. Farson, D.F., Ready, J.F., Feeley, T.: LIA Handbook of Laser Materials Processing. Springer, New York (2001)

    Google Scholar 

  4. Kaplan, I., Giler, S.: CO2 Laser Surgery. Springer Berlin Heidelberg (2012)

    Google Scholar 

  5. Ionin, A.A., Sinitsyn, D.V., Suchkov, A.F.: High-power N2O laser as alternative to CO2 laser. Proc. SPIE. 2206, 287–292 (1994)

    Article  ADS  Google Scholar 

  6. Arnold, S.J., Foster, K.D.: A purely chemical HBr laser. Appl. Phys. Lett. 33, 716–717 (1978)

    Article  ADS  Google Scholar 

  7. Faist, J., Capasso, F., Sivco, D.L., Sirtori, C., Hutchinson, A.L., Cho, A.Y.: Quantum cascade laser. Science. 264, 553–556 (1994)

    Article  ADS  Google Scholar 

  8. Yao, Y., Hoffman, A.J., Gmachl, C.F.: Mid-infrared quantum cascade lasers. Nat. Photonics. 6, 432–439 (2012)

    Article  ADS  Google Scholar 

  9. DeLoach, L.D., Page, R.H., Wilke, G.D., Payne, S.A., Krupke, W.F.: Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media. IEEE J. Quant. Electron. 32, 885–895 (1996)

    Article  ADS  Google Scholar 

  10. Moskalev, I., Mirov, S., Mirov, M., Vasilyev, S., Smolski, V., Zakrevskiy, A., Gapontsev, V.: 140 W Cr:ZnSe laser system. Opt. Express. 24, 21090–21104 (2016)

    Article  ADS  Google Scholar 

  11. IPG Photonics. www.ipgphotonics.com

  12. Maidment L., Schunemann P.G., Reid D.T.: Molecular fingerprint-region spectroscopy from 5–12 μm using an orientation-patterned gallium phosphide optical parametric oscillator. arXiv:1606.09613 (2016)

    Google Scholar 

  13. Lockheed Martin Corporation. www.lockheedmartin.com

  14. Bernier, M., Faucher, D., Vallée, R., Saliminia, A., Androz, G., Sheng, Y., Chin, S.L.: Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm. Opt. Lett. 32, 454–456 (2007)

    Article  ADS  Google Scholar 

  15. Berrou, A., Kieleck, C., Eichhorn, M.: Mid-infrared lasing from Ho 3+ in bulk InF3 glass. Opt. Lett. 40, 1699–1701 (2015)

    Article  ADS  Google Scholar 

  16. Le Verre Fluoré. www.leverrefluore.com

  17. Jackson, S.D.: Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics. 6, 423–431 (2012)

    Article  ADS  Google Scholar 

  18. Schneider, J., Carbonnier, C., Unrau, U.B.: Characterization of a Ho 3+ −doped fluoride fiber laser with a 3.9-μm emission wavelength. Appl. Opt. 36, 8595–8600 (1997)

    Article  ADS  Google Scholar 

  19. Aydın, Y.O., Fortin, V., Maes, F., Jobin, F., Jackson, S.D., Vallée, R., Bernier, M.: Diode-pumped mid-infrared fiber laser with 50% slope efficiency. Optica. 4, 235–238 (2017)

    Article  Google Scholar 

  20. El-Agmy, R.M., Al-Hosiny, N.M.: 2.31 μm laser under up-conversion pumping at 1.064 μm in Tm3+:ZBLAN fibre lasers. Electron. Lett. 46, 936–937 (2010)

    Article  Google Scholar 

  21. Fortin, V., Bernier, M., Caron, N., Faucher, D., El Amraoui, M., Messaddeq, Y., Vallée, R.: Towards the development of fiber lasers for the 2 to 4 μm spectral region. Opt. Eng. 52, 054202 (2013)

    Article  Google Scholar 

  22. Jackson, S.D.: High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 μm. Opt. Lett. 34, 2327–2329 (2009)

    Article  ADS  Google Scholar 

  23. Fortin, V., Bernier, M., Bah, S.T., Vallée, R.: 30 W fluoride glass all-fiber laser at 2.94 μm. Opt. Lett. 40, 2882–2885 (2015)

    Article  ADS  Google Scholar 

  24. Carbonnier, C., Tobben, H., Unrau, U.B.: Room temperature CW fibre laser at 3.22 μm. Electron. Lett. 34, 893–894 (1998)

    Article  Google Scholar 

  25. Majewski, M.R., Jackson, S.D.: Highly efficient mid-infrared dysprosium fiber laser. Opt. Lett. 41, 2173–2176 (2016)

    Article  ADS  Google Scholar 

  26. Fortin, V., Maes, F., Bernier, M., Bah, S.T., D’Auteuil, M., Vallée, R.: Watt-level erbium-doped all-fiber laser at 3.44 μm. Opt. Lett. 41, 559–562 (2016)

    Article  ADS  Google Scholar 

  27. Henderson-Sapir, O., Jackson, S.D., Ottaway, D.J.: Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser. Opt. Lett. 41, 1676–1679 (2016)

    Article  ADS  Google Scholar 

  28. Xiushan, Z., Jain, R.: Watt-level 100 nm tunable 3 μm fiber laser. IEEE Photon. Technol. Lett. 20, 156–158 (2008)

    Article  Google Scholar 

  29. Bernier, M., Fortin, V., Caron, N., El-Amraoui, M., Messaddeq, Y., Vallée, R.: Mid-infrared chalcogenide glass Raman fiber laser. Opt. Lett. 38, 127–129 (2013)

    Article  ADS  Google Scholar 

  30. Tittel, F.K., Richter, D., Fried, A.: Mid-infrared laser applications in spectroscopy. In: Sorokina, I., Vodopyanov, K. (eds.) Solid-State Mid-infrared Laser Sources, pp. 458–529. Springer, Germany (2003)

    Chapter  Google Scholar 

  31. Stuart, B.H.: Infrared Spectroscopy: Fundamentals and Applications. Wiley, Chichester (2004)

    Book  Google Scholar 

  32. Lin-Vien, D., Colthup, N.B., Fateley, W.G., Grasselli, J.G.: The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Elsevier Science, San Diego (1991)

    Google Scholar 

  33. Klingbeil, A.E., Jeffries, J.B., Hanson, R.K.: Temperature- and pressure-dependent absorption cross sections of gaseous hydrocarbons at 3.39 μm. Meas. Sci. Technol. 17, 1950 (2006)

    Article  ADS  Google Scholar 

  34. Lundqvist, S., Kluczynski, P., Weih, R., von Edlinger, M., Nähle, L., Fischer, M., Bauer, A., Höfling, S., Koeth, J.: Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493 nm. Appl. Opt. 51, 6009–6013 (2012)

    Article  ADS  Google Scholar 

  35. Sigrist, M.W., Bartlome, R., Marinov, D., Rey, J.M., Vogler, D.E., Wächter, H.: Trace gas monitoring with infrared laser-based detection schemes. Appl. Phys. B Lasers Opt. 90, 289–300 (2008)

    Article  ADS  Google Scholar 

  36. Fotia, M.L., Sell, B.C., Hoke, J., Wakefield, S., Schauer, F.: 1 kHz mid-IR absorption spectroscopy for CO and CO2 concentration and temperature measurement. Combust. Sci. Technol. 187, 1922–1936 (2015)

    Article  Google Scholar 

  37. Serebryakov, V.A., Boiko, É.V., Petrishchev, N.N., Yan, A.V.: Medical applications of mid-IR lasers. Problems and prospects. J. Opt. Technol. 77, 6–17 (2010)

    Article  Google Scholar 

  38. Apitz, I., Vogel, A.: Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin. Appl. Phys. A Mater. Sci. Process. 81, 329–338 (2005)

    Article  ADS  Google Scholar 

  39. Frenz, M., Pratisto, H., Konz, F., Jansen, E.D., Welch, A.J., Weber, H.P.: Comparison of the effects of absorption coefficient and pulse duration of 2.12-μm and 2.79-μm radiation on laser ablation of tissue. IEEE J. Quantum Electron. 32, 2025–2036 (1996)

    Article  ADS  Google Scholar 

  40. Johnson, D.E., Cromeens, D.M., Price, R.E.: Use of the holmium:YAG laser in urology. Laser Surg. Med. 12, 353–363 (1992)

    Article  Google Scholar 

  41. Schwartz, L.W., Moster, M.R., Spaeth, G.L., Wilson, R.P., Poryzees, E.: Neodymium-YAG laser Iridectomies in glaucoma associated with closed or Occludable angles. Am J. Ophthalmol. 102, 41–44 (1986)

    Article  Google Scholar 

  42. Ostertag, M., Walker, R., Weber, H., van der Meer, L., McKinley, J.T., Tolk, N.H., Jean, B.J.: Ablation in teeth with the free-electron laser around the absorption peak of hydroxyapatite (9.5 μm) and between 6.0 and 7.5 μm. Proc. SPIE. 2672, 181–192 (1996)

    Article  ADS  Google Scholar 

  43. Beck, O.J.: The use of the Nd-YAG and the CO2 laser in neurosurgery. Neurosurg. Rev. 3, 261–266 (1980)

    Article  Google Scholar 

  44. Lowe, N.J., Lask, G., Griffin, M.E.: Laser skin resurfacing. Dermatol. Surg. 21, 1017–1019 (1995)

    Google Scholar 

  45. Bekman, H.H.P.T., van den Heuvel, J.C., van Putten, F.J.M., Schleijpen, R.: Development of a mid-infrared laser for study of infrared countermeasures techniques. Proc. SPIE. 5615, 27–38 (2004)

    Article  ADS  Google Scholar 

  46. Zhu, G., Geng, L., Zhu, X., Li, L., Chen, Q., Norwood, R.A., Manzur, T., Peyghambarian, N.: Towards ten-watt-level 3-5 μm Raman lasers using tellurite fiber. Opt. Express. 23, 7559–7573 (2015)

    Article  ADS  Google Scholar 

  47. Ebendorff-Heidepriem, H., Kuan, K., Oermann, M.R., Knight, K., Monro, T.M.: Extruded tellurite glass and fibers with low OH content for mid-infrared applications. Opt. Mater. Express. 2, 432–442 (2012)

    Article  Google Scholar 

  48. Zhu, X., Peyghambarian, N.: High-power ZBLAN glass fiber lasers: review and prospect. Adv. Optoelectron. 2010, 501956 (2010)

    Article  Google Scholar 

  49. Dianov, E.M., Mashinsky, V.M.: Germania-based core optical fibers. J. Lightwave Technol. 23, 3500--3508 (2005)

    Article  ADS  Google Scholar 

  50. Sidharthan, R., Yoo, S., Ho, D., Zhang, L., Qi, W., Yue, M.S., Zhu, L., Dong, X., Tjin, S.C.: Fabrication of 74 mol% GeO2-doped fibers and mid-IR supercontinuum generation. Paper presented at conference on lasers and electro-optics, San Jose (2016)

    Google Scholar 

  51. Mossadegh, R., Sanghera, J.S., Schaafsma, D., Cole, B.J., Nguyen, V.Q., Miklos, R.E., Aggarwal, I.D.: Fabrication of single-mode chalcogenide optical fiber. J. Lightwave Technol. 16, 214–217 (1998)

    Article  ADS  Google Scholar 

  52. Savage, J.A.: Materials for infrared fibre optics. Mater. Sci. Rep. 2, 99–137 (1987)

    Article  ADS  Google Scholar 

  53. Digonnet, M.J.F.: Rare-Earth-Doped Fiber Lasers and Amplifiers. Marcel Dekker, New York (2001)

    Book  Google Scholar 

  54. Sanghera, J.S., Brandon Shaw, L., Aggarwal, I.D.: Chalcogenide glass-fiber-based mid-IR sources and applications. IEEE J. Sel. Topics Quantum Electron. 15, 114–119 (2009)

    Article  Google Scholar 

  55. FiberLabs Inc. www.fiberlabs-inc.com

  56. Thorlabs. www.thorlabs.com

  57. Gauthier, J.-C., Fortin, V., Carrée, J.-Y., Poulain, S., Poulain, M., Vallée, R., Bernier, M.: Mid-IR supercontinuum from 2.4 to 5.4  μm in a low-loss fluoroindate fiber. Opt. Lett. 41, 1756–1759 (2016)

    Article  ADS  Google Scholar 

  58. Handbook of Minerals Raman Spectra, Laboratoire de géologie de Lyon. www.ens-lyon.fr/LST/Raman

  59. Micoulaut, M., Cormier, L., Henderson, G.S.: The structure of amorphous, crystalline and liquid GeO2. J. Phys. Condens. Matter. 18, R753 (2006)

    Article  Google Scholar 

  60. Henderson, G.S., Neuville, D.R., Cochain, B., Cormier, L.: The structure of GeO2–SiO2 glasses and melts: a Raman spectroscopy study. J. Non-Cryst. Solids. 355, 468–474 (2009)

    Article  ADS  Google Scholar 

  61. Galeener, F.L., Mikkelsen, J.C., Geils, R.H., Mosby, W.J.: The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5. Appl. Phys. Lett. 32, 34–36 (1978)

    Article  ADS  Google Scholar 

  62. Bromage, J., Rottwitt, K., Lines, M.E.: A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles. IEEE Photon. Technol. Lett. 14, 24–26 (2002)

    Article  ADS  Google Scholar 

  63. Bürger, H., Kneipp, K., Hobert, H., Vogel, W., Kozhukharov, V., Neov, S.: Glass formation, properties and structure of glasses in the TeO2-ZnO system. J. Non-Cryst. Solids. 151, 134–142 (1992)

    Article  ADS  Google Scholar 

  64. Mori, A., Masuda, H., Shikano, K., Shimizu, M.: Ultra-wide-band tellurite-based fiber Raman amplifier. J. Lightwave Technol. 21, 1300–1306 (2003)

    Article  ADS  Google Scholar 

  65. Durteste, Y., Monerie, M., Lamouler, P.: Raman amplification in fluoride glass fibres. Electron. Lett. 21, 723–724 (1985)

    Article  ADS  Google Scholar 

  66. Saïssy, A., Botineau, J., Macon, L., Maze, G.: Diffusion Raman dans une fibre optique en verre fluoré. J. Phys. Lett. 46, 289–294 (1985)

    Article  Google Scholar 

  67. Almeida, R.M., Mackenzie, J.D.: Vibrational spectra and structure of fluorozirconate glasses. J. Chem. Phys. 74, 5954–5961 (1981)

    Article  ADS  Google Scholar 

  68. Fortin, V., Bernier, M., Carrier, J., Vallée, R.: Fluoride glass Raman fiber laser at 2185 nm. Opt. Lett. 36, 4152–4154 (2011)

    Article  ADS  Google Scholar 

  69. Malherbe, C., Gilbert, B.: Direct determination of the NaF/AlF3 molar ratio by Raman spectroscopy in NaF–AlF3–CaF2 melts at 1000 °C. Anal. Chem. 85, 8669–8675 (2013)

    Article  Google Scholar 

  70. Almeida, R.M., Pereira, J.C., Messaddeq, Y., Aegerter, M.A.: Vibrational spectra and structure of fluoroindate glasses. J. Non-Cryst. Solids. 161, 105–108 (1993)

    Article  ADS  Google Scholar 

  71. White, R.T., Monro, T.M.: Cascaded Raman shifting of high-peak-power nanosecond pulses in As2S3 and As2Se3 optical fibers. Opt. Lett. 36, 2351–2353 (2011)

    Article  ADS  Google Scholar 

  72. Lucovsky, G., Martin, R.M.: A molecular model for the vibrational modes in chalcogenide glasses. J. Non-Cryst. Solids. 8-10, 185–190 (1972)

    Article  ADS  Google Scholar 

  73. Fortin, V., Bernier, M., El-Amraoui, M., Messaddeq, Y., Vallée, R.: Modeling of As2S3 Raman fiber lasers operating in the mid-infrared. IEEE Photon. J. 5, 1502309 (2013)

    Article  Google Scholar 

  74. Buck, J.A.: Fundamentals of Optical Fibers. Wiley, Hoboken (2004)

    Google Scholar 

  75. Agrawal, G.: Nonlinear Fiber Optics. Academic Press, San Diego (2001)

    MATH  Google Scholar 

  76. Dianov, E.M., Bufetov, I.A., Mashinskii, V.M., Neustruev, V.B., Medvedkov, O.I., Shubin, A.V., Mel'kumov, M.A., Gur'yanov, A.N., Khopin, V.F., Yashkov, M.V.: Raman fibre lasers emitting at a wavelength above 2 μm. Quant. Electron. 34, 695 (2004)

    Article  ADS  Google Scholar 

  77. Jiang, H., Zhang, L., Feng, Y.: Silica-based fiber Raman laser at > 2.4 μm. Opt. Lett. 40, 3249–3252 (2015)

    Article  ADS  Google Scholar 

  78. CorActive High-Tech Inc. www.coractive.com

  79. Pask, H.M., Carman, R.J., Hanna, D.C., Tropper, A.C., Mackechnie, C.J., Barber, P.R., Dawes, J.M.: Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region. IEEE J. Sel. Topics Quantum Electron. 1, 2–13 (1995)

    Article  Google Scholar 

  80. Fermann, M.E., Hartl, I.: Ultrafast Fiber Laser Technology. IEEE J. Sel. Topics Quantum Electron. 15, 191–206 (2009)

    Article  Google Scholar 

  81. Richardson, D.J., Nilsson, J., Clarkson, W.A.: High power fiber lasers: current status and future perspectives [Invited]. J. Opt. Soc. Am. B. 27, B63–B92 (2010)

    Article  Google Scholar 

  82. Erdogan, T.: Fiber grating spectra. J. Lightwave Technol. 15, 1277–1294 (1997)

    Article  ADS  Google Scholar 

  83. Krause, M., Cierullies, S., Renner, H.: Stabilizing effect of line broadening in Raman fiber lasers. Opt. Commun. 227, 355–361 (2003)

    Article  ADS  Google Scholar 

  84. Vallée, R., Bélanger, E., Déry, B., Bernier, M., Faucher, D.: Highly efficient and high-power Raman fiber laser based on broadband chirped fiber bragg gratings. J. Lightwave Technol. 24, 5039–5043 (2006)

    Article  ADS  Google Scholar 

  85. Fortin, V., Bernier, M., Faucher, D., Carrier, J., Vallée, R.: 3.7 W fluoride glass Raman fiber laser operating at 2231 nm. Opt. Express. 20, 19412–19419 (2012)

    Article  ADS  Google Scholar 

  86. Kitcher, D.J., Nand, A., Wade, S.A., Jones, R., Baxter, G.W., Collins, S.F.: Directional dependence of spectra of fiber Bragg gratings due to excess loss. J. Opt. Soc. Am. A. 23, 2906–2911 (2006)

    Article  ADS  Google Scholar 

  87. Zeller, M., Lasser, T., Limberger, H.G., Maze, G.: UV-induced index changes in undoped fluoride glass. J. Lightwave Technol. 23, 624–627 (2005)

    Article  ADS  Google Scholar 

  88. Williams, G.M., Tsung-Ein, T., Merzbacher, C.I., Friebele, E.J.: Photosensitivity of rare-earth-doped ZBLAN fluoride glasses. J. Lightwave Technol. 15, 1357–1362 (1997)

    Article  ADS  Google Scholar 

  89. Taunay, T., Poignant, H., Boj, S., Niay, P., Bernage, P., Delevaque, E., Monerie, M., Xie, E.X.: Ultraviolet-induced permanent Bragg gratings in cerium-doped ZBLAN glasses or optical fibers. Opt. Lett. 19, 1269–1271 (1994)

    Article  ADS  Google Scholar 

  90. Poignant, H., Boj, S., Delevaque, E., Monerie, M., Taunay, T., Niay, P., Bernage, P., Xie, W.X.: Ultraviolet-induced permanent Bragg gratings in Ce-doped fluorozirconate glasses or optical fibres. J. Non-Cryst. Solids. 184, 282–285 (1995)

    Article  ADS  Google Scholar 

  91. Saad, M., Chen, L.R., Gu, X.: Highly reflective fiber Bragg gratings inscribed in Ce/Tm co-doped ZBLAN fibers. IEEE Photon. Technol. Lett. 25, 1066–1068 (2013)

    Article  ADS  Google Scholar 

  92. Snopatin, G.E., Shiryaev, V.S., Plotnichenko, V.G., Dianov, E.M., Churbanov, M.F.: High-purity chalcogenide glasses for fiber optics. Inorg. Mater. 45, 1439--1460 (2009)

    Article  Google Scholar 

  93. Asobe, M., Ohara, T., Yokohama, I., Kaino, T.: Fabrication of Bragg grating in chalcogenide glass fibre using the transverse holographic method. Electron. Lett. 32, 1611–1613 (1996)

    Article  Google Scholar 

  94. Florea, C., Sanghera, J.S., Shaw, B., Aggarwal, I.D.: Fiber Bragg gratings in As2S3 fibers obtained using a 0/−1 phase mask. Opt. Mater. 31, 942–944 (2009)

    Article  ADS  Google Scholar 

  95. Bernier, M., Asatryan, K.E., Vallée, R., Galstian, T.M., Sergei, A.V.e., Medvedkov, O.I., Plotnichenko, V.G., Gnusin, P.I., Evgenii, M.D.: Second-order Bragg gratings in single-mode chalcogenide fibres. Quant. Electron. 41, 465--468 (2011)

    Article  ADS  Google Scholar 

  96. Brawley, G.A., Ta’eed, V.G., Bolger, J.A., Sanghera, J.S., Aggarwal, I., Eggleton, B.J.: Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method. Electron. Lett. 44, 846–847 (2008)

    Article  Google Scholar 

  97. Zou, L.E., Kabakova, I.V., Mägi, E.C., Li, E., Florea, C., Aggarwal, I.D., Shaw, B., Sanghera, J.S., Eggleton, B.J.: Efficient inscription of Bragg gratings in As2S3 fibers using near bandgap light. Opt. Lett. 38, 3850–3853 (2013)

    Article  ADS  Google Scholar 

  98. Ahmad, R., Rochette, M., Baker, C.: Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires. Opt. Lett. 36, 2886–2888 (2011)

    Article  ADS  Google Scholar 

  99. Gattass, R.R., Mazur, E.: Femtosecond laser micromachining in transparent materials. Nat. Photonics. 2, 219–225 (2008)

    Article  ADS  Google Scholar 

  100. Davis, K.M., Miura, K., Sugimoto, N., Hirao, K.: Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731 (1996)

    Article  ADS  Google Scholar 

  101. Mihailov, S.J., Smelser, C.W., Lu, P., Walker, R.B., Grobnic, D., Ding, H., Henderson, G., Unruh, J.: Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation. Opt. Lett. 28, 995–997 (2003)

    Article  ADS  Google Scholar 

  102. Mihailov, S.J., Grobnic, D., Smelser, C.W.: Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask. Electron. Lett. 43, 442–443 (2007)

    Article  Google Scholar 

  103. Bernier, M., El-Amraoui, M., Couillard, J.F., Messaddeq, Y., Vallée, R.: Writing of Bragg gratings through the polymer jacket of low-loss As2S3 fibers using femtosecond pulses at 800 nm. Opt. Lett. 37, 3900–3902 (2012)

    Article  ADS  Google Scholar 

  104. Vallee, R., Bernier, M., Faucher, D.: System and method for permanently writing a diffraction grating in a low phonon energy glass medium. US Patent US8078023

    Google Scholar 

  105. Bernier, M., El-Amraoui, M., Messaddeq, Y., Vallee, R.: Mid-infrared Bragg grating in chalcogenide fiber. Paper presented at Advanced Photonics Congress, Colorado Springs, Colorado (2012)

    Google Scholar 

  106. Jackson, S.D., King, T.A.: Theoretical modeling of Tm-doped silica fiber lasers. J. Lightwave Technol. 17, 948–956 (1999)

    Article  ADS  Google Scholar 

  107. Moulton, P.F., Rines, G.A., Slobodtchikov, E.V., Wall, K.F., Frith, G., Samson, B., Carter, A.L.G.: Tm-doped fiber lasers: fundamentals and power scaling. IEEE J. Sel. Top. Quant. Elect. 15, 85–92 (2009)

    Article  Google Scholar 

  108. Jackson, S.D.: Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+ -doped silica fibre lasers. Opt. Commun. 230, 197–203 (2004)

    Article  ADS  Google Scholar 

  109. Qpeak. www.qpeak.com

  110. Ehrenreich, T., Leveille, R., Majid, I., Tankala, K., Rines, G., Moulton, P.: 1 kW, all-glass Tm:fiber laser. Paper presented at SPIE Photonics West 2010: LASE, Fibre Lasers VII: Technology, Systems and Applications, San Francisco (2010)

    Google Scholar 

  111. Yin, K., Zhu, R., Zhang, B., Liu, G., Zhou, P., Hou, J.: 300 W-level, wavelength-widely-tunable, all-fiber integrated thulium-doped fiber laser. Opt. Express. 24, 11085–11090 (2016)

    Article  ADS  Google Scholar 

  112. Keopsys Inc. www.keopsys.com

  113. Nufern. www.nufern.com

  114. Eichhorn, M., Jackson, S.D.: High-pulse-energy actively Q-switched Tm3+-doped silica 2 μm fiber laser pumped at 792 nm. Opt. Lett. 32, 2780–2782 (2007)

    Article  ADS  Google Scholar 

  115. Jackson, S.D.: Passively Q-switched Tm3+-doped silica fiber lasers. Appl. Opt. 46, 3311–3317 (2007)

    Article  ADS  Google Scholar 

  116. Ouyang, D.Q., Zhao, J.Q., Zheng, Z.J., Ruan, S.C., Guo, C.Y., Yan, P.G., Xie, W.X.: 110 W all fiber actively Q-switched thulium-doped fiber laser. IEEE Photon. J. 7, 1–6 (2015)

    Article  Google Scholar 

  117. Jackson, S.D., Pollnau, M., Jianfeng, L.: Diode pumped erbium cascade fiber lasers. IEEE J. of Quant. Electron. 47, 471–478 (2011)

    Article  ADS  Google Scholar 

  118. Pollnau, M., Jackson, S.D.: Energy recycling versus lifetime quenching in erbium-doped 3-μm fiber lasers. IEEE J. Quant. Electron. 38, 162–169 (2002)

    Article  ADS  Google Scholar 

  119. Jackson, S.D., King, T.A., Pollnau, M.: Diode-pumped 1.7-W erbium 3-μm fiber laser. Opt. Lett. 24, 1133–1135 (1999)

    Article  ADS  Google Scholar 

  120. Tokita, S., Hirokane, M., Murakami, M., Shimizu, S., Hashida, M., Sakabe, S.: Stable 10 W Er:ZBLAN fiber laser operating at 2.71–2.88 μm. Opt. Lett. 35, 3943–3945 (2010)

    Article  ADS  Google Scholar 

  121. Tokita, S., Murakami, M., Shimizu, S., Hashida, M., Sakabe, S.: 12 W Q-switched Er:ZBLAN fiber laser at 2.8 μm. Opt. Lett. 36, 2812–2814 (2011)

    Article  ADS  Google Scholar 

  122. Wei, C., Zhu, X., Norwood, R.A., Peyghambarian, N.: Passively continuous-wave mode-locked Er3+ doped ZBLAN fiber laser at 2.8 μm. Opt. Lett. 37, 3849–3851 (2012)

    Article  ADS  Google Scholar 

  123. Duval, S., Bernier, M., Fortin, V., Genest, J., Piché, M., Vallée, R.: Femtosecond fiber lasers reach the mid-infrared. Optica. 2, 623–626 (2015)

    Article  Google Scholar 

  124. Hu, T., Jackson, S.D., Hudson, D.D.: Ultrafast pulses from a mid-infrared fiber laser. Opt. Lett. 40, 4226–4228 (2015)

    Article  ADS  Google Scholar 

  125. Duval, S., Olivier, M., Fortin, V., Bernier, M., Piché, M., Vallée, R.: 23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 μm. Proc. SPIE. 9728, 972802–972808 (2016)

    Article  Google Scholar 

  126. Tobben, H.: Room temperature CW fibre laser at 3.5 μm in Er3+ doped ZBLAN glass. Electron. Lett. 28, 1361–1362 (1992)

    Article  ADS  Google Scholar 

  127. Henderson-Sapir, O., Munch, J., Ottaway, D.J.: Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping. Opt. Lett. 39, 493–496 (2014)

    Article  ADS  Google Scholar 

  128. Yablon, A.D.: Optical Fiber Fusion Splicing. Springer, Berlin/Heidelberg (2005)

    Google Scholar 

  129. Okamoto, H., Kasuga, K., Kubota, Y.: Efficient 521 nm all-fiber laser: splicing Pr3+-doped ZBLAN fiber to end-coated silica fiber. Opt. Lett. 36, 1470–1472 (2011)

    Article  ADS  Google Scholar 

  130. Yin, K., Zhang, B., Yao, J., Yang, L., Chen, S., Hou, J.: Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers. Opt. Lett. 41, 946–949 (2016)

    Article  ADS  Google Scholar 

  131. Thapa, R., Gattass, R.R., Nguyen, V., Chin, G., Gibson, D., Kim, W., Shaw, L.B., Sanghera, J.S.: Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development. Opt. Lett. 40, 5074–5077 (2015)

    Article  ADS  Google Scholar 

  132. Shustack, P.J.: Ultraviolet radiation-curable coatings for optical fibers. US Patent 5352712 A, 4 Oct 1994

    Google Scholar 

  133. Coady, C.J., Krajewski, J.J., Bishop, T.E.: Polyacrylated oligomers in ultraviolet curable optical fiber coatings. EP Patent 0204160 A2, 10 Dec 1986

    Google Scholar 

  134. Chien, C.K., Fewkes, E.J., Urruti, E.H., Winningham, M.J.: Coating composition for optical fibers. WO Patent 2002072498 A1, 19 Sep 2002

    Google Scholar 

  135. Gagnon, M.-A., Fortin, V., Vallée, R., Farley, V., Lagueux, P., Guyot, É., Marcotte, F.: Non-destructive testing of mid-IR optical fiber using infrared imaging. Proc. SPIE. 9861, 986110–986116 (2016)

    Article  Google Scholar 

  136. Caron, N., Bernier, M., Faucher, D., Vallée, R.: Understanding the fiber tip thermal runaway present in 3 μm fluoride glass fiber lasers. Opt. Express. 20, 22188–22194 (2012)

    Article  ADS  Google Scholar 

  137. Stolen, R.H., Ippen, E.P., Tynes, A.R.: Raman oscillation in glass optical waveguide. Appl. Phys. Lett. 20, 62–64 (1972)

    Article  ADS  Google Scholar 

  138. Dianov, E.M., Bufetov, I.A., Mashinskii, V.M., Shubin, A.V., Medvedkov, O.I., Rakitin, A.E., Mel'kumov, M.A., Khopin, V.F., Gur'yanovb, A.N.: Raman fibre lasers based on heavily GeO2-doped fibres. Quant. Electron. 35, 435–441 (2005)

    Article  ADS  Google Scholar 

  139. Cumberland, B.A., Popov, S.V., Taylor, J.R., Medvedkov, O.I., Vasiliev, S.A., Dianov, E.M.: 2.1 μm continuous-wave Raman laser in GeO2 fiber. Opt. Lett. 32, 1848–1850 (2007)

    Article  ADS  Google Scholar 

  140. Liu, J., Tan, F., Shi, H., Wang, P.: High-power operation of silica-based Raman fiber amplifier at 2147 nm. Opt. Express. 22, 28383–28389 (2014)

    Article  ADS  Google Scholar 

  141. Zhang, H., Tao, R., Zhou, P., Wang, X., Xu, X.: 1.5-kW Yb-Raman combined nonlinear fiber amplifier at 1120 nm. IEEE Photon. Technol. Lett. 27, 628–630 (2015)

    Article  ADS  Google Scholar 

  142. Rakich, P.T., Fink, Y., Soljačić, M.: Efficient mid-IR spectral generation via spontaneous fifth-order cascaded-Raman amplification in silica fibers. Opt. Lett. 33, 1690–1692 (2008)

    Article  ADS  Google Scholar 

  143. Gruppi, D., Eichhorn, M., Hirth, A., Pfeiffer, P.: Numerical modeling of pulsed Raman fiber converters at 2 μm. IEEE J. Quantum Electron. 45, 446–453 (2009)

    Article  ADS  Google Scholar 

  144. Jiang, H., Zhang, L., Yang, X., Yu, T., Feng, Y.: Pulsed amplified spontaneous Raman emission at 2.2 μm in silica-based fiber. Appl. Phys. B Lasers Opt. 122, 1–4 (2016)

    Article  ADS  Google Scholar 

  145. Munasinghe, H.T., Winterstein-Beckmann, A., Schiele, C., Manzani, D., Wondraczek, L., Afshar, S., Monro, T.M., Ebendorff-Heidepriem, H.: Lead-germanate glasses and fibers: a practical alternative to tellurite for nonlinear fiber applications. Opt. Mater. Express. 3, 1488–1503 (2013)

    Article  Google Scholar 

  146. Bernier, M., Fortin, V., El-Amraoui, M., Messaddeq, Y., Vallée, R.: 3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber. Opt. Lett. 39, 2052–2055 (2014)

    Article  ADS  Google Scholar 

  147. Mizunami, T., Iwashita, H., Takagi, K.: Gain saturation characteristics of Raman amplification in silica and fluoride glass optical fibers. Opt. Commun. 97, 74–78 (1993)

    Article  ADS  Google Scholar 

  148. Petersen, C., Dupont, S., Agger, C., Thøgersen, J., Bang, O., Rud Keiding, S.: Stimulated Raman scattering in soft glass fluoride fibers. J. Opt. Soc. Am. B. 28, 2310–2313 (2011)

    Article  ADS  Google Scholar 

  149. Luo, H., Li, J., Li, J., He, Y., Liu, Y.: Numerical modeling and optimization of mid-infrared fluoride glass Raman fiber lasers pumped by Tm3+ doped fiber laser. IEEE Photon. J. 5, 2700211 (2013)

    Article  Google Scholar 

  150. Gongwen, Z., Xiushan, Z., Norwood, R.A., Peyghambarian, N.: Experimental and numerical investigations on Q-switched laser-seeded fiber MOPA at 2.8 μm. J. Lightwave Technol. 32, 3951–3955 (2014)

    ADS  Google Scholar 

  151. Tang, Y., Wright, L.G., Charan, K., Wang, T., Xu, C., Wise, F.W.: Generation of intense 100 fs solitons tunable from 2 to 4.3 μm in fluoride fiber. Optica. 3, 948–951 (2016)

    Article  Google Scholar 

  152. Duval, S., Gauthier, J.-C., Robichaud, L.-R., Paradis, P., Olivier, M., Fortin, V., Bernier, M., Piché, M., Vallée, R.: Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6  μm. Opt. Lett. 41, 5294–5297 (2016)

    Article  ADS  Google Scholar 

  153. Jackson, S.D., Anzueto-Sanchez, G.: Chalcogenide glass Raman fiber laser. Appl. Phys. Lett. 88, 221106 (2006)

    Article  ADS  Google Scholar 

  154. Ahmad, R., Rochette, M.: Raman lasing in a chalcogenide microwire-based Fabry-Perot cavity. Opt. Lett. 37, 4549–4551 (2012)

    Article  ADS  Google Scholar 

  155. Ahmad, R., Rochette, M.: All-Chalcogenide Raman-parametric laser, wavelength converter, and amplifier in a single microwire. IEEE J. Sel. Top. Quant. Elect. 20, 299–304 (2014)

    Article  Google Scholar 

  156. Vanier, F., Peter, Y.-A., Rochette, M.: Cascaded Raman lasing in packaged high quality As2S3 microspheres. Opt. Express. 22, 28731–28739 (2014)

    Article  ADS  Google Scholar 

  157. Vanier, F., Rochette, M., Godbout, N., Peter, Y.-A.: Raman lasing in As2S3 high-Q whispering gallery mode resonators. Opt. Lett. 38, 4966–4969 (2013)

    Article  ADS  Google Scholar 

  158. Kulkarni, O.P., Xia, C., Joon Lee, D., Kumar, M., Kuditcher, A., Islam, M.N., Terry, F.L., Freeman, M.J., Aitken, B.G., Currie, S.C., McCarthy, J.E., Powley, M.L., Nolan, D.A.: Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient. Opt. Express. 14, 7924–7930 (2006)

    Article  ADS  Google Scholar 

  159. Troles, J., Coulombier, Q., Canat, G., Duhant, M., Renard, W., Toupin, P., Calvez, L., Renversez, G., Smektala, F., El Amraoui, M., Adam, J.L., Chartier, T., Mechin, D., Brilland, L.: Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm. Opt. Express. 18, 26647–26654 (2010)

    Article  ADS  Google Scholar 

  160. Gao, W., Cheng, T., Xue, X., Liu, L., Zhang, L., Liao, M., Suzuki, T., Ohishi, Y.: Stimulated Raman scattering in AsSe2-As2S5 chalcogenide microstructured optical fiber with all-solid core. Opt. Express. 24, 3278–3293 (2016)

    Article  ADS  Google Scholar 

  161. Toupin, P., Brilland, L., Mechin, D., Adam, J.L., Troles, J.: Optical aging of chalcogenide microstructured optical fibers. J. Lightwave Technol. 32, 2428–2432 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Fortin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fortin, V., Bernier, M., Vallée, R. (2017). Mid-Infrared Raman Fiber Lasers. In: Feng, Y. (eds) Raman Fiber Lasers. Springer Series in Optical Sciences, vol 207. Springer, Cham. https://doi.org/10.1007/978-3-319-65277-1_3

Download citation

Publish with us

Policies and ethics