Skip to main content

Part of the book series: Foundations in Signal Processing, Communications and Networking ((SIGNAL,volume 14))

  • 322 Accesses

Abstract

Multicast communication refers to one or multiple information sources transmitting data to one or multiple information sinks such that all sinks can recover the information from all sources. Network coding, introduced by Ahlswede et al. (IEEE Trans Inf Theory 46(4):1204–1216, 2000, [1]) for graphical networks, has revolutionized multicast communication in wired and wireless networks by shifting the paradigm from communication in a store-and-forward manner to coded communication where the network itself acts as a distributed encoding entity with all nodes being encoder parts. Traditional graph models for wireless networks typically ignore the wireless broadcast advantage, i.e., some receivers may also be able to get messages that are actually intended for other receivers. This chapter provides a literature survey on how the wireless broadcast advantage has been modeled and outlines the structure and results of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ralf Kötter coined the simple phrase “A bit is not a car!” to highlight why network coding outperforms store-and-forward in most kinds of wired and wireless communication networks, see ITW 2006 tutorial slides: [online] http://www.ee.cityu.edu.hk/~itw06/static/ITW06_KeynotePPT_RalfKoetter.pdf.

  2. 2.

    This analogy is due to the Lovász extension [26], which associates a unique polyhedral convex function with each submodular set function and relates submodular function minimization to a particular type of polyhedral convex function minimization.

  3. 3.

    For surveys on submodular set function minimization see also [29, 30].

  4. 4.

    The standard notation for the distribution represented by its probability mass or density function is \(p_{X,Y|Z}(x,y|z)\). However, for brevity of notation and to avoid notation conflicts with flows x and auxiliary rates y, the short hand p(XY|Z) is used throughout this book to abstractly represent the distribution and, if applicable, its factorization properties.

References

  1. Ahlswede R, Cai N, Li SYR, Yeung RW (2000) Network information flow. IEEE Trans Inf Theory 46(4):1204–1216

    Article  MathSciNet  MATH  Google Scholar 

  2. Li SYR, Yeung RW, Cai N (2003) Linear network coding. IEEE Trans Inf Theory 49(2):371–381

    Article  MathSciNet  MATH  Google Scholar 

  3. Kötter R, Médard M (2003) An algebraic approach to network coding. IEEE/ACM Trans Netw 11(5):782–795

    Article  Google Scholar 

  4. Ho T, Médard M, Kötter R, Karger DR, Effros M, Shi J, Leong B (2006) A random linear network coding approach to multicast. IEEE Trans Inf Theory 52(10):4413–4430

    Article  MathSciNet  MATH  Google Scholar 

  5. Ho T, Médard M, Effros M, Kötter R, Karger D (2004) Network coding for correlated sources. In: Conference on information sciences and systems (CISS). Princeton, NJ, USA

    Google Scholar 

  6. Song L, Yeung RW, Cai N (2006) A separation theorem for single-source network coding. IEEE Trans Inf Theory 52(5):1861–1871

    Article  MathSciNet  MATH  Google Scholar 

  7. Wieselthier JE, Nguyen GD, Ephremides A (2000) On the construction of energy-efficient broadcast and multicast trees in wireless networks. IEEE INFOCOM 2:585–594

    Google Scholar 

  8. Wu Y, Chou PA, Zhang Q, Jain K, Zhu W, Kung SY (2005b) Network planning in wireless ad hoc networks: a cross-layer approach. IEEE J Sel Areas Commun 23(1):136–150

    Article  Google Scholar 

  9. Lun D, Ratnakar N, Médard M, Kötter R, Karger D, Ho T, Ahmed E, Zhao F, (2006) Minimum-cost multicast over coded packet networks. IEEE Trans Inf Theory 52(6):2608–2623

    Google Scholar 

  10. Wan L, Luo J (2010) Wireless multicasting via iterative optimization. In: IEEE international symposium on information theory (ISIT), pp 2333–2337

    Google Scholar 

  11. Wan L, Luo J (2012) On the complexity of wireless multicast optimization. IEEE Wirel Commun Lett 1(6):593–596

    Article  Google Scholar 

  12. Zhao F, Médard M, Lun D, Ozdaglar A (2009) Minimum cost subgraph algorithms for static and dynamic multicasts with network coding. In: Tarokh V (ed) New directions in wireless communications research, Springer, pp 317–349

    Google Scholar 

  13. Zhao F, Médard M, Ozdaglar A, Lun D (2014) Convergence study of decentralized min-cost subgraph algorithms for multicast in coded networks. IEEE Trans Inf Theory 60(1):410–421

    Article  MathSciNet  MATH  Google Scholar 

  14. Riemensberger M, Dotzler A, Utschick W (2009) Factorization for advanced physical layer techniques in network-coded wireless communication networks. In: Wireless network coding (WiNC), pp 1–6

    Google Scholar 

  15. Riemensberger M, Utschick W (2014) A polymatroid flow model for network coded multicast in wireless networks. IEEE Trans Inf Theory 60(1):443–460

    Article  MathSciNet  MATH  Google Scholar 

  16. Traskov D, Heindlmaier M, Médard M, Kötter R, Lun D (2008) Scheduling for network coded multicast: a conflict graph formulation. In: IEEE GLOBECOM workshops, pp 1–5

    Google Scholar 

  17. Traskov D, Heindlmaier M, Médard M, Kötter R (2012) Scheduling for network-coded multicast. IEEE/ACM Trans Netw 20(5):1479–1488

    Article  Google Scholar 

  18. Edmonds J (1970) Submodular functions, matroids, and certain polyhedra. In: Guy R, Hanani H, Sauer N, Schönheim J (eds) Combinatorial structures and their applications. Gordon and Breach, New York, pp 69–87

    Google Scholar 

  19. Ford LR Jr, Fulkerson DR (1962) Flows in networks. Princeton University Press

    Google Scholar 

  20. Lun D, Médard M, Kötter R, Effros M (2008) On coding for reliable communication over packet networks. Phys Commun 1(1):3–20

    Article  Google Scholar 

  21. Ho T, Lun D (2008) Network coding: an introduction. Cambridge University Press

    Google Scholar 

  22. Hassin R (1978) On network flows. Phd thesis, Yale University

    Google Scholar 

  23. Hassin R (1982) Minimum cost flow with set-constraints. Networks 12(1):1–21

    Article  MathSciNet  MATH  Google Scholar 

  24. Lawler EL, Martel CU (1982) Computing maximal “Polymatroidal” network flows. Math Oper Res 7(3):334–347

    Article  MathSciNet  MATH  Google Scholar 

  25. Murota K (2003) Discrete convex analysis. SIAM monographs on discrete mathematics and applications. Society for industrial and applied mathematics (SIAM). Philadelphia, PA

    Google Scholar 

  26. Lovász L (1983) Submodular Functions and Convexity. In: Bachem A, Korte B, Grötschel M (eds) Mathematical programming. The state of the art. Springer Verlag Berlin Heidelberg, pp 235–257

    Google Scholar 

  27. Shapley L (1971) Cores of convex games. Int J Game Theory 1(1):11–26

    Article  MathSciNet  MATH  Google Scholar 

  28. Fujishige S (2005) Submodular functions and optimization, Annals of discrete mathematics, vol 58, 2nd edn. Elsevier

    Google Scholar 

  29. McCormick ST (2006) Chap Submodular function minimization. In: Handbook on discrete optimization. Elsevier, pp 321–391

    Google Scholar 

  30. Iwata S (2008) Submodular function minimization. Math Program 112:45–64

    Article  MathSciNet  MATH  Google Scholar 

  31. Grötschel M, Lovász L, Schrijver A (1981) The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2):169–197

    Article  MathSciNet  MATH  Google Scholar 

  32. Nagano K (2007) A strongly polynomial algorithm for line search in submodular polyhedra. Discret Optim 4(3–4):349–359

    Article  MathSciNet  MATH  Google Scholar 

  33. Fonlupt J, Skoda A (2009) Strongly polynomial algorithm for the intersection of a line with a polymatroid. In: Vygen J, Cook W, Lovász L (eds) Research trends in combinatorial optimization. Springer, Berlin Heidelberg, pp 69–85

    Google Scholar 

  34. Riemensberger M, Gerdes L, Utschick W (2014) Submodular structure and optimal quantization in gaussian multiple access relay networks. In: IEEE workshop on signal processing advances in wireless communications (SPAWC), pp 319–323

    Google Scholar 

  35. Riemensberger M, Wiese T, Utschick W (2013) Network coded wireless multicast with advanced receiver capabilities. In: International ITG conference on systems, communications and coding (SCC), pp 1–6

    Google Scholar 

  36. Wiese T (2011) Scheduling with interference in coded wireless packet networks. Tech. Rep. TUM-MSV-TR-12-07, Associate Institute for Signal Processing, Technische Universit’"at München

    Google Scholar 

  37. Wiese T, Riemensberger M, Utschick W (2016) Scheduling for network-coded multicast with interference. IEEE Trans Signal Process 64(9):2245–2254

    Article  MathSciNet  Google Scholar 

  38. El Gamal A (1981) On information flow in relay networks. In: IEEE national telecommunications conference, vol 2. New Orleans, LA, USA, pp D4.1.1–D4.1.4

    Google Scholar 

  39. Cover TM, Thomas JA (2006) Elements of information theory, 2nd edn. John Wiley & Sons Inc, New York

    MATH  Google Scholar 

  40. El Gamal A, Kim YH (2011) Network information theory. Cambridge University Press

    Google Scholar 

  41. Lim S, Kim YH, El Gamal A, Chung SY (2011) Noisy network coding. IEEE Trans Inf Theory 57(5):3132–3152

    Article  MathSciNet  MATH  Google Scholar 

  42. Parvaresh F, Etkin R (2014) Efficient capacity computation and power optimization for relay networks. IEEE Trans Inf Theory 60(3):1782–1792

    Article  MathSciNet  MATH  Google Scholar 

  43. Aref M (1980) Information flow in relay networks. PhD thesis, Stanford University, Stanford, CA

    Google Scholar 

  44. Ratnakar N, Kramer G (2006) The multicast capacity of deterministic relay networks with no interference. IEEE Trans Inf Theory 52(6):2425–2432

    Article  MATH  Google Scholar 

  45. Avestimehr A, Diggavi S, Tse D (2011) Wireless network information flow: a deterministic approach. IEEE Trans Inf Theory 57(4):1872–1905

    Article  MathSciNet  MATH  Google Scholar 

  46. Dana A, Gowaikar R, Palanki R, Hassibi B, Effros M (2006) Capacity of wireless erasure networks. IEEE Trans Inf Theory 52(3):789–804

    Article  MathSciNet  MATH  Google Scholar 

  47. Kolte R, Özgür A, El Gamal A (2014) Optimized noisy network coding for gaussian relay networks. In: International zurich seminar on communications (IZS), pp 1–4

    Google Scholar 

  48. Chachulski S (2007) Trading structure for randomness in wireless opportunistic routing. M.sc. thesis, Massachusetts Institute of Technology

    Google Scholar 

  49. Chachulski S, Jennings M, Katti S, Katabi D (2007) Trading structure for randomness in wireless opportunistic routing. In: ACM SIGCOMM, pp 169–180

    Google Scholar 

  50. Neely MJ, Urgaonkar R (2009) Optimal backpressure routing for wireless networks with multi-receiver diversity. Ad Hoc Netw 7(5):862–881

    Article  Google Scholar 

  51. Traskov D, Lun D, Kötter R, Médard M (2007) Network coding in wireless networks with random access. In: IEEE international symposium on information theory (ISIT), pp 2726–2730

    Google Scholar 

  52. Riemensberger M, Heindlmaier M, Dotzler A, Traskov D, Utschick W (2010) Optimal slotted random access in coded wireless packet networks. In: International workshop on resource allocation in wireless networks (RAWNET). Avignon, France, pp 387–392

    Google Scholar 

  53. Riemensberger M, Utschick W (2011) Random access in coded wireless packet networks: feasibility and distributed optimization. In: International symposium on modeling and optimization in mobile, ad hoc, and wireless networks (WiOpt). Princeton, NJ, USA, pp 102–109

    Google Scholar 

  54. Riemensberger M, Utschick W (2013) A markov model for carrier sense multiple access in coded wireless packet networks. In: IEEE workshop on signal processing advances in wireless communications (SPAWC), pp 95–99

    Google Scholar 

  55. Riemensberger M, Utschick W (2015) On carrier sense multiple access in coded wireless packet networks. In: International ITG conference on systems, communications and coding (SCC)

    Google Scholar 

  56. Riemensberger M, Utschick W (2016a) Multicast in networks of broadcast channels—Part I: submodular models and optimization. In: Communications in interference limited networks. Springer International Publishing

    Google Scholar 

  57. Riemensberger M, Utschick W (2016b) Multicast in networks of broadcast channels—Part II: representation of bounds on the multicast capacity region. In: Communications in interference limited networks. Springer International Publishing

    Google Scholar 

  58. Gerdes L, Riemensberger M, Utschick W (2015) On the equivalence of degraded Gaussian MIMO broadcast channels. In: ITG workshop on smart antennas, pp 1–5

    Google Scholar 

  59. Gerdes L, Riemensberger M, Utschick W (2012a) On achievable rate regions for half-duplex Gaussian MIMO relay channels: a decomposition approach. IEEE J Sel Areas Commun 30(8):1319–1330

    Article  Google Scholar 

  60. Gerdes L, Riemensberger M, Utschick W (2012b) Utility maximization in the half-duplex two-way MIMO relay channel. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 2897–2900

    Google Scholar 

  61. Gerdes L, Riemensberger M, Utschick W (2013) Bounds on the capacity regions of half-duplex Gaussian MIMO relay channels. EURASIP J Adv Signal Process 1:43

    Article  Google Scholar 

  62. Gerdes L, Weiland L, Riemensberger M, Utschick W (2014) Optimal partial decode-and-forward rates for stochastically degraded Gaussian relay channels. In: Conference on information sciences and systems (CISS), pp 1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Riemensberger .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Riemensberger, M. (2018). Introduction. In: Submodular Rate Region Models for Multicast Communication in Wireless Networks. Foundations in Signal Processing, Communications and Networking, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-65232-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65232-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65231-3

  • Online ISBN: 978-3-319-65232-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics