Skip to main content

Filament-Assisted Impulsive Raman Spectroscopy

  • Chapter
  • First Online:
Air Lasing

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 208))

  • 865 Accesses

Abstract

This chapter explores the use of nonlinear spectroscopy as a means to detect molecules in the gas phase. This investigation is motivated by the need for remote sensing and provides concepts that can incorporate backward lasing schemes. The current state of the art with respect to remote Raman sensing using spontaneous Raman is reviewed, and then the use of stimulated Raman and impulsive Raman is presented. We review the use of remote Raman spectroscopy with potential applications in atmospheric sensing, pollution monitoring, and chemical signature detection including explosives, radiological signatures, and biological pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. D.A. Leonard, Nature 216, 142 (1967)

    Article  ADS  Google Scholar 

  2. J.A. Cooney, Appl. Phys. Lett. 12, 40 (1968)

    Article  ADS  Google Scholar 

  3. H. Inaba, T. Kobayasi, Opto-electronics 4, 101 (1972)

    Article  Google Scholar 

  4. U. Wandinger, Lidar (Springer, 2005) Berlin, Germany, p. 241

    Google Scholar 

  5. S. Nakahara, K. Ito, S. Ito, A. Fuke, S. Komatsu, H. Inaba, T. Kobayasi, Opto-electronics 4, 169 (1972)

    Article  Google Scholar 

  6. S.K. Poultney, M. Brumfield, J. Siviter, Appl. Opt. 16, 3180 (1977)

    Article  ADS  Google Scholar 

  7. T. Kobayasi, H. Inaba, Appl. Phys. Lett. 17, 139 (1970)

    Article  ADS  Google Scholar 

  8. J.D. Houston, S. Sizgoric, A. Ulitsky, J. Banic, Appl. Opt. 25, 2115 (1986)

    Article  ADS  Google Scholar 

  9. W.S. Heaps, J. Burris, Appl. Opt. 35, 7128 (1996)

    Article  ADS  Google Scholar 

  10. S. Nakahara, K. Ito, S. Tamura, M. Kamokiyo, H. Inaba, T. Kobayashi, IEEE J. Quant. Electr. 7, 325 (1971)

    Article  ADS  Google Scholar 

  11. H. Kildal, R.L. Byer, Proc. IEEE 59, 1644 (1971)

    Article  Google Scholar 

  12. R.L. Byer, Opt. Quant. Electr. 7, 147 (1975)

    Article  Google Scholar 

  13. J. Fontana, G. Hassin, B. Kincaid, Nature 234, 292 (1971)

    Article  ADS  Google Scholar 

  14. P.R. Hemmer, R.B. Miles, P. Polynkin, T. Siebert, A.V. Sokolov, P. Sprangle, M.O. Scully, PNAS 108, 3130 (2011)

    Article  ADS  Google Scholar 

  15. S. Angel, T.J. Kulp, T.M. Vess, Appl. Spectr. 46, 1085 (1992)

    Article  ADS  Google Scholar 

  16. M. Wu, M. Ray, K.H. Fung, M.W. Ruckman, D. Harder, A.J. Sedlacek, Appl. Spectr. 54, 800 (2000)

    Article  ADS  Google Scholar 

  17. M.D. Ray, A.J. Sedlacek, M. Wu, Rev. Sci. Instr. 71, 3485 (2000)

    Article  ADS  Google Scholar 

  18. J.C. Carter, S.M. Angel, M. Lawrence-Snyder, J. Scaffidi, R.E. Whipple, J.G. Reynolds, Appl. Spectr. 59, 769 (2005)

    Article  ADS  Google Scholar 

  19. S. Wallin, A. Pettersson, H. Östmark, A. Hobro, Anal. Bioanal. Chem. 395, 259 (2009)

    Article  Google Scholar 

  20. K.L. Gares, K.T. Hufziger, S.V. Bykov, S.A. Asher, J. Raman Spectr. 47, 124 (2016)

    Article  ADS  Google Scholar 

  21. E.L. Izake, Forensic Sci. Intern. 202, 1 (2010)

    Article  Google Scholar 

  22. A. W. Fountain III, J. A. Guicheteau, W. F. Pearman, T. H. Chyba, S. D. Christesen, in SPIE Defense, Security, and Sensing (International Society for Optics and Photonics, 2010), p. 76790H

    Google Scholar 

  23. M. Scully, G. Kattawar, R. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. Sokolov, S. Zubairy, PNAS 99, 10994 (2002)

    Article  ADS  Google Scholar 

  24. H. Li, D.A. Harris, B. Xu, P.J. Wrzesinski, V.V. Lozovoy, M. Dantus, M. Opt. Exp 16, 5499 (2008)

    Article  Google Scholar 

  25. O. Katz, A. Natan, Y. Silberberg, S. Rosenwaks, Appl. Phys. Lett. 92, 171116 (2008)

    Article  ADS  Google Scholar 

  26. P. Malevich, D. Kartashov, Z. Pu, S. Ališauskas, A. Pugžlys, A. Baltuška, L. Giniūnas, R. Danielius, A. Lanin, A. Zheltikov, Opt. Exp. 20, 18784 (2012)

    Article  ADS  Google Scholar 

  27. P. Malevich, R. Maurer, D. Kartashov, S. Ališauskas, A. Lanin, A. Zheltikov, M. Marangoni, G. Cerullo, A. Baltuška, A. Pugžlys, Opt. Lett. 40, 2469 (2015)

    Article  ADS  Google Scholar 

  28. A. Couairon, A. Mysyrowicz, Phys. Rep. 441, 47 (2007)

    Article  ADS  Google Scholar 

  29. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, J.-P. Wolf, Rep. Prog. Phys. 70, 1633 (2007)

    Article  ADS  Google Scholar 

  30. M. Mlejnek, E.M. Wright, J.V. Moloney, Opt. Lett. 23, 382 (1998)

    Article  ADS  Google Scholar 

  31. C. Brée, A. Demircan, S. Skupin, L. Berge, G. Steinmeyer, Laser Phys. 20, 1107 (2010)

    Google Scholar 

  32. C. Brée, J. Bethge, S. Skupin, L. Bergé, A. Demircan, G. Steinmeyer, New J. Phys. 12, 093046 (2010)

    Article  ADS  Google Scholar 

  33. Y.X. Yan, E.B. Gamble Jr., K.A. Nelson, J. Chem. Phys. 83, 5391 (1985)

    Article  ADS  Google Scholar 

  34. F. Calegari, C. Vozzi, S. De Silvestri, S. Stagira, Opt. Lett. 33, 2922 (2008)

    Article  ADS  Google Scholar 

  35. J. Odhner, D.A. Romanov, R.J. Levis, Phys. Rev. Lett. 103, 075005 (2009)

    Article  ADS  Google Scholar 

  36. T. Lang, M. Motzkus, H. Frey, P. Beaud, J. Chem. Phys. 115, 5418 (2001)

    Article  ADS  Google Scholar 

  37. J. Odhner, D. Romanov, R. Levis, Phys. Rev. Lett. 105, 125001 (2010)

    Article  ADS  Google Scholar 

  38. O. Kosareva, I. Murtazin, N. Panov, A. Savel'ev, V. Kandidov, S.-L. Chin, Laser Phys. Lett. 4, 126 (2006)

    Article  ADS  Google Scholar 

  39. R.A. Bartels, S. Backus, M.M. Murnane, H. Kapteyn, Chem. Phys. Lett. 374, 326 (2003)

    Article  ADS  Google Scholar 

  40. C. Brée, A. Demircan, S. Skupin, L. Berge, G. Steinmeyer, Opt. Exp. 17, 16429 (2009)

    Google Scholar 

  41. J.H. Odhner, E.T. McCole, R.J. Levis, J. Phys. Chem. A 115, 13407 (2011)

    Article  Google Scholar 

  42. E.T. McCole Dlugosz, R. Fisher, A. Filin, D.A. Romanov, J.H. Odhner, R.J. Levis, J. Phys. Chem. A 119, 9272 (2015)

    Article  Google Scholar 

  43. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press on Demand, 1999)

    Google Scholar 

  44. R. W. Boyd, Nonlinear Optics (Academic Press, 2003) Burlington, MA

    Google Scholar 

  45. J. Odhner, R.J. Levis, Opt. Lett. 37, 1775 (2012)

    Article  ADS  Google Scholar 

  46. T. Seideman, Phys. Rev. Lett. 83, 4971 (1999)

    Article  ADS  Google Scholar 

  47. V. Renard, M. Renard, S. Guérin, Y. Pashayan, B. Lavorel, O. Faucher, H.-R. Jauslin, Phys. Rev. Lett. 90, 153601 (2003)

    Article  ADS  Google Scholar 

  48. V. Renard, O. Faucher, B. Lavorel, Opt. Lett. 30, 70 (2005)

    Article  ADS  Google Scholar 

  49. J. Wu, H. Cai, Y. Tong, H. Zeng, Opt. Exp. 17, 16300 (2009)

    Article  ADS  Google Scholar 

  50. E.T. McCole, J.H. Odhner, D.A. Romanov, R.J. Levis, J. Phys. Chem. A 117, 6354 (2013)

    Article  Google Scholar 

  51. V. Loriot, P. Tzallas, E. Benis, E. Hertz, B. Lavorel, D. Charalambidis, O. Faucher, J. Phys. B 40, 2503 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Levis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Odhner, J.H., Levis, R.J. (2018). Filament-Assisted Impulsive Raman Spectroscopy. In: Polynkin, P., Cheng, Y. (eds) Air Lasing. Springer Series in Optical Sciences, vol 208. Springer, Cham. https://doi.org/10.1007/978-3-319-65220-7_6

Download citation

Publish with us

Policies and ethics