Complication Avoidance and Management Research

  • Mithun G. Sattur
  • Chandan Krishna
  • Aman Gupta
  • Matthew E. Welz
  • Rami James N. Aoun
  • Patrick B. Bolton
  • Brian W. Chong
  • Bart M. Demaerschalk
  • Pelagia Kouloumberis
  • Mark K. Lyons
  • Jamal McclendonJr.
  • Naresh Patel
  • Ayan Sen
  • Kristin Swanson
  • Richard S. Zimmerman
  • Bernard R. BendokEmail author


Complication avoidance is a major consideration with any surgical procedure, and evaluation of complications relies on clear definitions. However, defining what constitutes a complication can be difficult, as perspectives on errors of commission or omission often vary between providers and patients. Here, we present a concise analysis of complications related to neurovascular surgery (defined as any procedural care of patients with neurovascular diseases) and provide a framework for approaching research efforts. This is done by considering opportunities in disease screening and patient selection, perioperative morbidity reduction, and follow-up. In addition, the concept of complication avoidance through surgical simulation is briefly dealt with. This chapter is intended to serve as an initial reference point for the young neurovascular specialist for developing and elaborating on the concept of complication avoidance through various techniques of research.



A Randomized trial of Unruptured Brain Arteriovenous malformations


Carotid Occlusion Surgery Study


Computed tomography angiography


Digital subtraction angiography


Deep vein thrombosis






Indocyanine green


Intracerebral hemorrhage


The International Study of Unruptured Intracranial Aneurysms


Motor-evoked potential


Pulmonary embolism


Positron emission tomography


Sensory evoked potentials


Transient ischemic attack


Tissue plasminogen activator


Venous thromboembolism


  1. 1.
    Brott TG, Hobson RW, Howard G, Roubin GS, Clark WM, Brooks W, Mackey A, Hill MD, Leimgruber PP, Sheffet AJ. Stenting versus endarterectomy for treatment of carotid-artery stenosis. N Engl J Med. 2010;363:11–23.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Piantadosi S. Crossover designs. In: Clinical trials: a methodologic perspective. 2nd ed. Hoboken: Wiley; 2005. p. 515–27.CrossRefGoogle Scholar
  3. 3.
    McCulloch P, Morgan L, Flynn L, Rivero-Arias O, Martin G, Collins G, New S. Safer delivery of surgical services: a programme of controlled before-and-after intervention studies with pre-planned pooled data analysis. Southampton (UK): NIHR Journals Library; 2016.Google Scholar
  4. 4.
    Schievink WI. Intracranial aneurysms. N Engl J Med. 1997;336:28–40.CrossRefPubMedGoogle Scholar
  5. 5.
    Bor ASE, Koffijberg H, Wermer MJ, Rinkel GJ. Optimal screening strategy for familial intracranial aneurysms a cost-effectiveness analysis. Neurology. 2010;74:1671–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Crawley F, Clifton A, Brown MM. Should we screen for familial intracranial aneurysm? Stroke. 1999;30:312–6.CrossRefPubMedGoogle Scholar
  7. 7.
    International Study of Unruptured Intracranial Aneurysms Investigators. Unruptured intracranial aneurysms—risk of rupture and risks of surgical intervention. N Engl J Med. 1998;1998:1725–33.Google Scholar
  8. 8.
    Rozenfeld M, Ansari S, Shaibani A, Russell E, Mohan P, Hurley M. Should patients with autosomal dominant polycystic kidney disease be screened for cerebral aneurysms? Am J Neuroradiol. 2014;35:3–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Wiebers DO, International Study of Unruptured Intracranial Aneurysms Investigators. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362:103–10.CrossRefPubMedGoogle Scholar
  10. 10.
    Dhar S, Tremmel M, Mocco J, Kim M, Yamamoto J, Siddiqui AH, Hopkins LN, Meng H. Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery. 2008;63:185.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hasan D, Chalouhi N, Jabbour P, Dumont AS, Kung DK, Magnotta VA, Young WL, Hashimoto T, Winn HR, Heistad D. Early change in ferumoxytol-enhanced magnetic resonance imaging signal suggests unstable human cerebral aneurysm. Stroke. 2012;43:3258–65.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kashiwazaki D, Kuroda S. Size ratio can highly predict rupture risk in intracranial small (<5 mm) aneurysms. Stroke. 2013;44:2169–73.CrossRefPubMedGoogle Scholar
  13. 13.
    Xiang J, Tutino V, Snyder K, Meng H. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment. Am J Neuroradiol. 2014;35:1849–57.CrossRefPubMedGoogle Scholar
  14. 14.
    Chmayssani M, Rebeiz JG, Rebeiz TJ, Batjer HH, Bendok BR. Relationship of growth to aneurysm rupture in asymptomatic aneurysms </=7 mm: a systematic analysis of the literature. Neurosurgery. 2011;68:1164–71; discussion 1171.CrossRefPubMedGoogle Scholar
  15. 15.
    Rutledge WC, Ko NU, Lawton MT, Kim H. Hemorrhage rates and risk factors in the natural history course of brain arteriovenous malformations. Transl Stroke Res. 2014;5:538–42.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wu C, Ansari S, Honarmand A, Vakil P, Hurley M, Bendok B, Carr J, Carroll T, Markl M. Evaluation of 4D vascular flow and tissue perfusion in cerebral arteriovenous malformations: influence of Spetzler-Martin grade, clinical presentation, and AVM risk factors. Am J Neuroradiol. 2015;36:1142–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Mohr J, Moskowitz AJ, Stapf C, Hartmann A, Lord K, Marshall SM, Mast H, Moquete E, Moy CS, Parides M. The ARUBA trial. Stroke. 2010;41:e537–40.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ansari S, Schnell S, Carroll T, Vakil P, Hurley M, Wu C, Carr J, Bendok B, Batjer H, Markl M. Intracranial 4D flow MRI: toward individualized assessment of arteriovenous malformation hemodynamics and treatment-induced changes. Am J Neuroradiol. 2013;34:1922–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Williams L. North American symptomatic carotid endarterectomy trial. Methods, patient characteristics, and progress. Stroke. 1991;22:711–20.CrossRefGoogle Scholar
  20. 20.
    Baker WH, Howard VJ, Howard G, Toole JF, ACAS Investigators. Effect of contralateral occlusion on long-term efficacy of endarterectomy in the asymptomatic carotid atherosclerosis study (ACAS). Stroke. 2000;31:2330–4.CrossRefPubMedGoogle Scholar
  21. 21.
    Pujia A, Rubba P, Spencer M. Prevalence of extracranial carotid artery disease detectable by echo-Doppler in an elderly population. Stroke. 1992;23:818–22.CrossRefPubMedGoogle Scholar
  22. 22.
    Mantese VA, Timaran CH, Chiu D, Begg RJ, Brott TG. The carotid revascularization endarterectomy versus stenting trial (CREST). Stroke. 2010;41:S31–4.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Abbott AL. Medical (nonsurgical) intervention alone is now best for prevention of stroke associated with asymptomatic severe carotid stenosis. Stroke. 2009;40:e573–83.CrossRefPubMedGoogle Scholar
  24. 24.
    Munster AB, Franchini AJ, Qureshi MI, Thapar A, Davies AH. Temporal trends in safety of carotid endarterectomy in asymptomatic patients systematic review. Neurology. 2015;85:365–72.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Madani A, Beletsky V, Tamayo A, Munoz C, Spence J. High-risk asymptomatic carotid stenosis ulceration on 3D ultrasound vs. TCD microemboli. Neurology. 2011;77:744–50.CrossRefPubMedGoogle Scholar
  26. 26.
    Singh N, Moody AR, Gladstone DJ, Leung G, Ravikumar R, Zhan J, Maggisano R. Moderate carotid artery stenosis: mr imaging–depicted intraplaque hemorrhage predicts risk of cerebrovascular ischemic events in asymptomatic men 1. Radiology. 2009;252:502–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Powers WJ, Clarke WR, Grubb RL, Videen TO, Adams HP, Derdeyn CP, Investigators C. Extracranial-intracranial bypass surgery for stroke prevention in hemodynamic cerebral ischemia: the carotid occlusion surgery study randomized trial. JAMA. 2011;306:1983–92.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Amin-Hanjani S, Barker FG, Charbel FT, Connolly ES Jr, Morcos JJ, Thompson BG, Cerebrovascular Section of the American Association of Neurological Surgeons; Congress of Neurological Surgeons. Extracranial-intracranial bypass for stroke—is this the end of the line or a bump in the road? Neurosurgery. 2012;71:557–61.CrossRefPubMedGoogle Scholar
  29. 29.
    Fiedler J, Přibáň V, Škoda O, Schenk I, Schenková V, Poláková S. Cognitive outcome after EC-IC bypass surgery in hemodynamic cerebral ischemia. Acta Neurochir. 2011;153:1303–12.CrossRefPubMedGoogle Scholar
  30. 30.
    Fierstra J, Maclean DB, Fisher JA, Han JS, Mandell DM, Conklin J, Poublanc J, Crawley AP, Regli L, Mikulis DJ. Surgical revascularization reverses cerebral cortical thinning in patients with severe cerebrovascular steno-occlusive disease. Stroke. 2011;42(6):1631–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Inoue T, Jinnouchi J. Changes in brain volume after EC-IC bypass surgery. London: Springer; 2008.CrossRefGoogle Scholar
  32. 32.
    Kazumata K, Tha KK, Narita H, Kusumi I, Shichinohe H, Ito M, Nakayama N, Houkin K. Chronic ischemia alters brain microstructural integrity and cognitive performance in adult moyamoya disease. Stroke. 2015;46(2):354–60.CrossRefPubMedGoogle Scholar
  33. 33.
    Weinberg DG, Rahme RJ, Aoun SG, Batjer HH, Bendok BR. Moyamoya disease: functional and neurocognitive outcomes in the pediatric and adult populations. Neurosurg Focus. 2011;30:E21.CrossRefPubMedGoogle Scholar
  34. 34.
    Hemphill JC 3rd, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, Fung GL, Goldstein JN, Macdonald RL, Mitchell PH, Scott PA, Selim MH, Woo D. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46:2032–60.CrossRefPubMedGoogle Scholar
  35. 35.
    Kepplinger J, Prakapenia A, Barlinn K, Siegert G, Gehrisch S, Zerna C, Beyer-Westendorf J, Puetz V, Reichmann H, Siepmann T. Standardized use of novel oral anticoagulants plasma level thresholds in a new thrombolysis decision making protocol. J Thromb Thrombolysis. 2016;41:293–300.CrossRefPubMedGoogle Scholar
  36. 36.
    Kass-Hout T, Kass-Hout O, Mokin M, Thesier DM, Yashar P, Orion D, Jahshan S, Hopkins LN, Siddiqui AH, Snyder KV. Is bridging with intravenous thrombolysis of any benefit in endovascular therapy for acute ischemic stroke? World Neurosurg. 2014;82:e453–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Rebello LC, Haussen DC, Grossberg JA, Belagaje S, Lima A, Anderson A, Frankel MR, Nogueira RG. Early endovascular treatment in intravenous tissue plasminogen activator–ineligible patients. Stroke. 2016;47:1131–4.CrossRefPubMedGoogle Scholar
  38. 38.
    Sheth SA, Yoo B, Saver JL, Starkman S, Ali LK, Kim D, Gonzalez NR, Jahan R, Tateshima S, Duckwiler G. M2 occlusions as targets for endovascular therapy: comprehensive analysis of diffusion/perfusion MRI, angiography, and clinical outcomes. J Neurointerv Surg. 2015;7:478–83.CrossRefPubMedGoogle Scholar
  39. 39.
    Thomsen T, Tønnesen H, Møller A. Effect of preoperative smoking cessation interventions on postoperative complications and smoking cessation. Br J Surg. 2009;96:451–61.CrossRefPubMedGoogle Scholar
  40. 40.
    Hamilton MG, Yee WH, Hull RD, Ghali WA. Venous thromboembolism prophylaxis in patients undergoing cranial neurosurgery: a systematic review and meta-analysis. Neurosurgery. 2011;68:571–81.CrossRefPubMedGoogle Scholar
  41. 41.
    Kimmell KT, Jahromi BS. Clinical factors associated with venous thromboembolism risk in patients undergoing craniotomy. J Neurosurg. 2015;122:1004–11.CrossRefPubMedGoogle Scholar
  42. 42.
    Bacigaluppi S, Fontanella M, Manninen P, Ducati A, Tredici G, Gentili F. Monitoring techniques for prevention of procedure-related ischemic damage in aneurysm surgery. World Neurosurg. 2012;78:276–88.CrossRefPubMedGoogle Scholar
  43. 43.
    Zhao J, Wang Y, Zhao Y, Wang S. Neuroendoscope-assisted minimally invasive microsurgery for clipping intracranial aneurysms. Minim Invasive Neurosurg. 2006;49:335–41.CrossRefPubMedGoogle Scholar
  44. 44.
    Gardner PA, Vaz-Guimaraes F, Jankowitz B, Koutourousiou M, Fernandez-Miranda JC, Wang EW, Snyderman CH. Endoscopic endonasal clipping of intracranial aneurysms: surgical technique and results. World Neurosurg. 2015;84:1380–93.CrossRefPubMedGoogle Scholar
  45. 45.
    D’ercole L, Thyrion FZ, Bocchiola M, Mantovani L, Klersy C. Proposed local diagnostic reference levels in angiography and interventional neuroradiology and a preliminary analysis according to the complexity of the procedures. Phys Med. 2012;28:61–70.CrossRefPubMedGoogle Scholar
  46. 46.
    Kahn EN, Gemmete JJ, Chaudhary N, Thompson BG, Chen K, Christodoulou EG, Pandey AS. Radiation dose reduction during neurointerventional procedures by modification of default settings on biplane angiography equipment. J Neurointerv Surg. 2016;8:819–23.CrossRefPubMedGoogle Scholar
  47. 47.
    Mccaffrey J, Tessier F, Shen H. Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians. Med Phys. 2012;39:4537–46.CrossRefPubMedGoogle Scholar
  48. 48.
    Amarouche M, Hart J, Siddiqui A, Hampton T, Walsh D. Time-resolved contrast-enhanced MR angiography of spinal vascular malformations. Am J Neuroradiol. 2015;36:417–22.CrossRefPubMedGoogle Scholar
  49. 49.
    Lindenholz A, Terbrugge KG, Van Dijk JMC, Farb RI. The accuracy and utility of contrast-enhanced MR angiography for localization of spinal dural arteriovenous fistulas: the Toronto experience. Eur Radiol. 2014;24:2885–94.CrossRefPubMedGoogle Scholar
  50. 50.
    Appelbaum PS. Clarifying the ethics of clinical research: a path toward avoiding the therapeutic misconception. Am J Bioeth. 2002;2:22–3.CrossRefPubMedGoogle Scholar
  51. 51.
    Bambakidis NC, Cockroft K, Connolly ES, Amin-Hanjani S, Morcos J, Meyers PM, Alexander MJ, Friedlander RM. Preliminary results of the ARUBA study. Neurosurgery. 2013;73:E379–81.CrossRefPubMedGoogle Scholar
  52. 52.
    Bauer AM, Bain MD, Rasmussen PA. Chronic cerebral ischemia: where “evidence-based medicine” fails patients. World Neurosurg. 2015;84:714–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Esposito G, Amin-Hanjani S, Regli L. Role of and indications for bypass surgery after Carotid Occlusion Surgery Study (COSS)? Stroke. 2016;47:282–90.CrossRefPubMedGoogle Scholar
  54. 54.
    Lal BK, Beach KW, Roubin GS, Lutsep HL, Moore WS, Malas MB, Chiu D, Gonzales NR, Burke JL, Rinaldi M, Elmore JR, Weaver FA, Narins CR, Foster M, Hodgson KJ, Shepard AD, Meschia JF, Bergelin RO, Voeks JH, Howard G, Brott TG. Restenosis after carotid artery stenting and endarterectomy: a secondary analysis of CREST, a randomised controlled trial. Lancet Neurol. 2012;11:755–63.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Zapata-Arriaza E, Moniche F, Gonzalez A, Bustamante A, Escudero-Martinez I, De La Torre Laviana FJ, Prieto M, Mancha F, Montaner J. Predictors of restenosis following carotid angioplasty and stenting. Stroke. 2016;47:2144–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Chalouhi N, Bovenzi CD, Thakkar V, Dressler J, Jabbour P, Starke RM, Teufack S, Gonzalez LF, Dalyai R, Dumont AS, Rosenwasser R, Tjoumakaris S. Long-term catheter angiography after aneurysm coil therapy: results of 209 patients and predictors of delayed recurrence and retreatment. J Neurosurg. 2014;121:1102–6.CrossRefPubMedGoogle Scholar
  57. 57.
    Lecler A, Raymond J, Rodriguez-Regent C, Al Shareef F, Trystram D, Godon-Hardy S, Ben Hassen W, Meder JF, Oppenheim C, Naggara ON. Intracranial aneurysms: recurrences more than 10 years after endovascular treatment-a prospective cohort study, systematic review, and meta-analysis. Radiology. 2015;277:173–80.CrossRefPubMedGoogle Scholar
  58. 58.
    Klein GT, Lu Y, Wang MY. 3D printing and neurosurgery—ready for prime time? World Neurosurg. 2013;80:233–5.CrossRefPubMedGoogle Scholar
  59. 59.
    Wurm G, Lehner M, Tomancok B, Kleiser R, Nussbaumer K. Cerebrovascular biomodeling for aneurysm surgery: simulation-based training by means of rapid prototyping technologies. Surg Innov. 2011;18:294–306.CrossRefPubMedGoogle Scholar
  60. 60.
    Mashiko T, Otani K, Kawano R, Konno T, Kaneko N, Ito Y, Watanabe E. Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping. World Neurosurg. 2015;83:351–61.CrossRefPubMedGoogle Scholar
  61. 61.
    Rosseau G, Bailes J, Del Maestro R, Cabral A, Choudhury N, Comas O, Debergue P, De Luca G, Hovdebo J, Jiang D. The development of a virtual simulator for training neurosurgeons to perform and perfect endoscopic endonasal transsphenoidal surgery. Neurosurgery. 2013;73:S85–93.CrossRefGoogle Scholar
  62. 62.
    Zammar SG, Hamade YJ, Aoun RJN, El Tecle NE, El Ahmadieh TY, Adelson PD, Kurpad SN, Harrop JS, Hodge H, Mishra RC. The cognitive and technical skills impact of the congress of neurological surgeons simulation curriculum on neurosurgical trainees at the 2013 Neurological Society of India meeting. World Neurosurg. 2015;83:419–23.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mithun G. Sattur
    • 1
    • 2
    • 3
  • Chandan Krishna
    • 1
  • Aman Gupta
    • 1
    • 2
    • 3
  • Matthew E. Welz
    • 1
    • 2
    • 3
  • Rami James N. Aoun
    • 1
    • 2
    • 3
  • Patrick B. Bolton
    • 4
  • Brian W. Chong
    • 1
    • 5
  • Bart M. Demaerschalk
    • 6
  • Pelagia Kouloumberis
    • 1
  • Mark K. Lyons
    • 1
  • Jamal McclendonJr.
    • 1
  • Naresh Patel
    • 1
  • Ayan Sen
    • 7
  • Kristin Swanson
    • 1
    • 2
  • Richard S. Zimmerman
    • 1
  • Bernard R. Bendok
    • 1
    • 2
    • 3
    • 5
    • 8
    Email author
  1. 1.Department of Neurological SurgeryMayo ClinicPhoenixUSA
  2. 2.Precision Neuro-Theraputics Innovation LabMayo ClinicPhoenixUSA
  3. 3.Neurosurgery Simulation and Innovation LabMayo ClinicPhoenixUSA
  4. 4.Department of Anesthesia and Periop MedMayo ClinicPhoenixUSA
  5. 5.Department of RadiologyMayo ClinicPhoenixUSA
  6. 6.Department of NeurologyMayo ClinicPhoenixUSA
  7. 7.Department of Critical Care MedicineMayo ClinicPhoenixUSA
  8. 8.Department of OtolaryngologyMayo ClinicPhoenixUSA

Personalised recommendations