Skip to main content

Contemporary Challenges in Zooarchaeological Specimen Identification

  • Chapter
  • First Online:
Zooarchaeology in Practice

Abstract

Zooarchaeology is a field heavily integrated with many other disciplines, including zoology, biology, ecology, geology, history, and anthropology. The basis of the discipline lies in the zooarchaeologist’s ability to identify faunal remains based on analogy with known specimens, either from a comparative faunal collection or from experience. Yet, today many zooarchaeologists work in regions of the world without adequate comparative materials or in diverse settings with different research demands, such as contract archaeology or forensic laboratories. At the same time, advances in genetic research are restructuring the phylogenetic classification schemes of many taxa, calling into question the foundation of zooarchaeological analogy. In this chapter we argue that zooarchaeologists, who have never had specific disciplinary-wide “research standards”, should seek epistemological flexibility regarding specimen identification, evaluation, and correction to continue the scientific advancement of the discipline. We review past zooarchaeologists’ concerns regarding the nature of specimen identification and data sharing, discuss the dynamic nature of species reclassification in phylogenetics and its effect on zooarchaeology, and provide case studies of challenges zooarchaeologists face while trying to make identifications in diverse settings and with less-than-adequate resources. Finally, we discuss the importance of maintaining epistemological flexibility in the age of “big data”, where shared datasets of identifications cannot and should not be seen as immutable entities, but rather observations that are subject to reanalysis, change, and improvement as zooarchaeologists keep abreast of ongoing discoveries in their own field as well as those of related disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In addition to analogical factors, there are also practical issues such as the preservation conditions of a given archaeological context as well as the methods used to recover faunal remains. Although not the focus of this chapter, these are also important factors impacting the efficacy of zooarchaeological research and are implicated in zooarchaeological epistemology.

References

  • Albarella, U. (Ed.). (2001). Environmental archaeology: Meaning and purpose. Boston: Kluwer Academic.

    Google Scholar 

  • Alström, P., Ericson, P. G. P., Olsson, U., & Sundberg, P. (2006). Phylogeny and classification of the avian superfamily Sylvioidea. Molecular Phylogenetics and Evolution, 38(2), 381–397.

    Article  Google Scholar 

  • Asher, R. (1961). Analogy in archaeological interpretation. Southwestern Journal of Anthropology, 17, 317–325.

    Article  Google Scholar 

  • Atici, L., Kansa, S. W., Lev-Tov, J., & Kansa, E. C. (2013). Other people’s data: A demonstration of the imperative of publishing primary data. Journal of Archaeological Method and Theory, 20(4), 663–681.

    Article  Google Scholar 

  • Baker, P. & Worley, F. (2014). Animal bones and archaeology: Guidelines for best practice. Swindon: English Heritage. Retrieved February 10, 2017 from https://content.historicengland.org.uk/images-books/publications/animal-bones-and-archaeology/animal-bones-and-archaeology.pdf.

  • Bartosiewicz, L. (2008). Taphonomy and palaeopathology in archaeozoology. Geobios, 41(1), 69–77.

    Article  Google Scholar 

  • Behrensmeyer, A. K., Gordon, K. D., & Yanagi, G. T. (1986). Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature, 319(6056), 768–771.

    Article  Google Scholar 

  • Betancur, R. R., Broughton, R. E., Wiley, E. O., Carpenter, K., Andrés López, J., Li, C., et al. (2013). The tree of life and a new classification of bony fishes. PLOS Currents Tree of Life. doi:10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288.

    Google Scholar 

  • Betts, M. W., Maschner, H. D. G., Schou, C. D., Schlader, R., Holmes, J., Clement, N., et al. (2011). Virtual zooarchaeology: Building a web-based reference collection of northern vertebrates for archaeofaunal research and education. Journal of Archaeological Science, 38, 755–762.

    Article  Google Scholar 

  • Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., et al. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22(3), 148–155.

    Article  Google Scholar 

  • Binford, L. R. (1967). Smudge pits and hide smoking: The use of analogy in archaeological reasoning. American Antiquity, 32(1), 1–12.

    Article  Google Scholar 

  • Binford, L. R. (1977). For theory building. New York, NY: Academic.

    Google Scholar 

  • Binford, L. R. (1981). Bones: Ancient men and modern myths. New York: Academic.

    Google Scholar 

  • Bochenski, Z. M. (2008). Identification of skeletal remains of closely related species: The pitfalls and solutions. Journal of Archaeological Science, 35, 1247–1250.

    Article  Google Scholar 

  • Bovy, K. M. (2011). Comments on “Identification, Classification, & Zooarchaeology”. Ethnobiology Letters, 2, 30.

    Google Scholar 

  • Bovy, K. M. (2012). Zooarchaeological evidence for Sandhill Crane (Grus Canadensis) breeding in Northwestern Washington State. In S. Wolverton & R. L. Lyman (Eds.), Conservation biology and applied zooarchaeology (pp. 23–41). Tuscon: The University of Arizona Press.

    Google Scholar 

  • Branch, N. P., Black, S., Maggi, R., & Marini, N. A. F. (2014). The Neolithisation of Liguria (NW Italy): An environmental archaeological and palaeoenvironmental perspective. Environmental Archaeology, 19(3), 196–213.

    Article  Google Scholar 

  • Bucklin, A., Steinke, D., & Blanco-Bercial, L. (2011). DNA barcoding of marine metazoa. Annual Review of Marine Science, 3(1), 471–508.

    Article  Google Scholar 

  • Butler, V. L., & Lyman, R. L. (1996). Taxonomic identifications and faunal summaries: What should we be including in our faunal reports? Society for American Archaeology Bulletin, 14(1), 1–22.

    Google Scholar 

  • Campbell, M. (2016). Body part representation and the extended analysis of New Zealand fishbone. Archaeology in Oceania, 51(1), 18–30.

    Article  Google Scholar 

  • Cannon, M. D. (1999). A mathematical model of the effects of screen size on zooarchaeological relative abundance measures. Journal of Archaeological Science, 26, 205–214.

    Article  Google Scholar 

  • Cannon, M. D. (2001). Archaeofaunal relative abundance, sample size, and statistical methods. Journal of Archaeological Science, 28, 185–195.

    Article  Google Scholar 

  • Cannon, M. D. (2013). NISP, bone fragmentation, and the measurement of taxonomic abundance. Journal of Archaeological Method and Theory, 20(3), 397–419.

    Article  Google Scholar 

  • Claassen, C. (2000). Quantifying shell: Comments on Mason, Peterson, and Tiffany. American Antiquity, 65(2), 415–418.

    Article  Google Scholar 

  • Cooper, A., & Green, C. (2016). Embracing the complexities of “big data” in archaeology: The case of the English Landscape and Identities Project. Journal of Archaeological Method and Theory, 23(1), 271–304.

    Article  Google Scholar 

  • Crabtree, P. J. (1990). Zooarchaeology and complex societies: Some uses of faunal analysis for the study of trade, social status, and ethnicity. Archaeological Method and Theory, 2, 155–199.

    Google Scholar 

  • Crabtree, P. J. (2016). Zooarchaeology in Oceania: An overview. Archaeology in Oceania, 51(1), 1–6.

    Article  Google Scholar 

  • Crouch, J., McNiven, I. J., David, B., Rowe, C., & Weisler, M. (2007). Berberass: Marine resource specialisation and environmental change in Torres Strait during the past 4000 years. Archaeology in Oceania, 42(2), 49–64.

    Article  Google Scholar 

  • Davidson, J. M., Fraser, K., Leach, B. F., & Sinoto, Y. H. (1999). Prehistoric fishing at Hane, Ua Huka, Marquesas Islands, French Polynesia. New Zealand Journal of Archaeology, 21, 5–28.

    Google Scholar 

  • deFrance, S. D. (2009). Zooarchaeology in complex societies: Political economy, status, and ideology. Journal of Archaeological Research, 17, 105–168.

    Article  Google Scholar 

  • Dincauze, D. F. (2000). Environmental archaeology: Principles and practice. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Domínguez-Rodrigo, M. (2012). Critical review of the MNI (minimum number of individuals) as a zooarchaeological unit of quantification. Archaeological and Anthropological Sciences, 4(1), 47–59.

    Article  Google Scholar 

  • Doolittle, W. F. (1999). Phylogenetic classification and the universal tree. Science, 284(5423), 2124–2128.

    Article  Google Scholar 

  • Driver, J. C. (1992). Identification, classification and zooarchaeology. Circaea, 9(1), 35–47.

    Google Scholar 

  • Driver, J. C. (2011a). Identification, classification and zooarchaeology. Ethnobiology Letters, 2, 19–29.

    Google Scholar 

  • Driver, J. C. (2011b). Twenty years after “Identification, classification and zooarchaeology”. Ethnobiology Letters, 2, 36–39.

    Google Scholar 

  • Emery, K. F. (2004). In search of the “Maya Diet”: Is regional comparison possible in the Maya tropics? Archaeofauna, 13, 37–56.

    Google Scholar 

  • Emery, K. F. (2010). Dietary, environmental, and societal implications of ancient Maya animal use in the Petexbatum: A zooarchaeological perspective on the collapse.Vanderbilt Institute of Mesoamerican Archaeology 5. Nashville: Vanderbilt University Press.

    Google Scholar 

  • Evans, J. G. (2003). Environmental archaeology and the social order. London: Routledge.

    Google Scholar 

  • Faniel, I., Kansa, W., Kansa, S. W., Barrera-Gomez, J., & Yakel, E. (2013). The challenges of digging data: A study of context in archaeological data reuse. In Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries (pp. 295–304). New York: ACM Digital Library.

    Chapter  Google Scholar 

  • Feder, K. L. (1990). Frauds, myths, and mysteries: Science and pseudoscience in archaeology. Palo Alto, CA: Mayfield.

    Google Scholar 

  • Fiorillo, A. R. (1989). An experimental study of trampling: Implications for the fossil record. In R. Bonnichsen & M. H. Sorg (Eds.), Bone modification (pp. 61–71). Orono, ME: Center for the Study of the First Americans, University of Maine.

    Google Scholar 

  • Gattiglia, G. (2015). Think big about data: Archaeology and the big data challenge. Archäologische Informationen, 38(1), 113–124.

    Google Scholar 

  • Gentry, A., Clutton-Brock, J., & Groves, C. P. (2004). The naming of wild animal species and their domestic derivatives. Journal of Archaeological Science, 31, 645–651.

    Article  Google Scholar 

  • Gifford, D. P. (1981). Taphonomy and paleoecology: A critical review of archaeology’s sister disciplines. Advances in Archaeological Method and Theory, 4, 365–438.

    Article  Google Scholar 

  • Gifford-Gonzalez, D. (1991). Bones are not enough: Analogues, knowledge, and interpretive strategies in zooarchaeology. Journal of Anthropological Archaeology, 10, 215–245.

    Article  Google Scholar 

  • Gilbert, A. S., & Singer, B. H. (1982). Reassessing zooarchaeological quantification. World Archaeology, 14, 21–40.

    Article  Google Scholar 

  • Giovas, C. M. (2009). The shell game: Analytic problems in archaeological mollusc quantification. Journal of Archaeological Science, 26, 1557–1564.

    Article  Google Scholar 

  • Giovas, C. M., Lambrides, A. B. J., Fitzpatrick, S. M., & Kataoka, O. (2017). Reconstructing prehistoric fishing zones in Palau, Micronesia using fish remains: A blind test of inter-analyst correspondence. Archaeology in Oceania, 52(1), 45–61.

    Article  Google Scholar 

  • Glassow, M. A. (2000). Weighing vs. counting shellfish remains: A comment on Mason, Peterson, and Tiffany. American Antiquity, 65(2), 407–414.

    Article  Google Scholar 

  • Gobalet, K. W. (2001). A critique of faunal analysis: Inconsistency among experts in blind tests. Journal of Archaeological Science, 28, 377–386.

    Article  Google Scholar 

  • Gobalet, K. W. (2005). Comment on “Size matters: 3-mm sieves do not increase richness in a fishbone assemblage from Arrawarra I, an Aboriginal Australian shell midden on the mid-north coast of New South Wales, Australia” by Vale and Gargett. Journal of Archaeological Science, 32(4), 643–645.

    Article  Google Scholar 

  • Grayson, D. K. (1984). Quantitative zooarchaeology: Topics in the analysis of archaeological faunas. New York: Academic.

    Google Scholar 

  • Grayson, D. K. (1989). Bone transport, bone destruction, and reverse utility curves. Journal of Archaeological Science, 16(6), 643–652.

    Article  Google Scholar 

  • Grouard, S. (2003). Pre-Columbian fishing strategies in Guadeloupe Archipelago (FWI). In A. F. Guzman, O. J. Polaco, & F. J. Aguilar (Eds.), Presence of the Archaeoichthyology in México: Proceedings of the 12th Meeting of the Fish Remains Working Group of the International Council of Archaeozoology (pp. 53–64). Guadalajara: International Council of Arcaheozoology.

    Google Scholar 

  • Halstead, P., Collins, P., & Isaakidou, V. (2002). Sorting the sheep from the goats: Morphological distinctions between the mandibles and mandibular teeth of adult Ovis and Capra. Journal of Archaeological Science, 29(5), 545–553.

    Article  Google Scholar 

  • Helfman, G. S., Collette, B. B., Facey, D. E., & Bowen, B. W. (2009). The diversity of fishes biology, evolution, and ecology (2nd ed.). Oxford: Wiley-Blackwell.

    Google Scholar 

  • Hodder, I. (1982). Symbols in action. Cambridge: Cambridge University Press.

    Google Scholar 

  • James, S. R. (1997). Methodological issues concerning screen size recovery rates and their effects on archaeofaunal interpretations. Journal of Archaeological Science, 24, 385–397.

    Article  Google Scholar 

  • Kansa, E. (2005). A community approach to data integration: Authorship and building meaningful links across diverse archaeological data sets. Geosphere, 1(2), 97–109.

    Article  Google Scholar 

  • Kansa, E. C., & Kansa, S. W. (2013). We all know that a 14 is a sheep: Data publication and professionalism in archaeological communication. Journal of Eastern Mediterranean Archaeology & Heritage Studies, 1(1), 88–97.

    Article  Google Scholar 

  • Keegan, W. F. (2009). The synergism of biology and culture. Journal of Island and Coastal Archaeology, 4, 240–248.

    Article  Google Scholar 

  • Knowlton, N. (2000). Molecular genetic analyses of species boundaries in the sea. Hydrobiologia, 420(1), 73–90.

    Article  Google Scholar 

  • Larson, G., Karlsson, E. K., Perri, A., Webster, M. T., Ho, S. Y. W., Peters, J., et al. (2012). Rethinking dog domestication by integrating genetics, archeology, and biogeography. Proceedings of the National Academy of Sciences, 109(23), 8878–8883.

    Article  Google Scholar 

  • Layton, K. K. S., Martel, A. L., & Hebert, P. D. N. (2014). Patterns of DNA barcode variation in Canadian marine molluscs. PLOS ONE, 9(4), e95003.

    Google Scholar 

  • Leach, F. (1986). A method for the analysis of Pacific Island fishbone assemblages and an associated database management system. Journal of Archaeological Science, 13(2), 147–159.

    Google Scholar 

  • Lyman, R. L. (1985). Bone frequencies: Differential transport, in situ destruction, and the MGUI. Journal of Archaeological Science, 12(3), 221–236.

    Article  Google Scholar 

  • Lyman, R. L. (1986). On the analysis and interpretation of species list data in zooarchaeology. Journal of Ethnobiology, 6(1), 67–81.

    Google Scholar 

  • Lyman, R. L. (1987). Archaeofaunas and butchery studies: A taphonomic perspective. Advances in Archaeological Method and Theory, 10, 249–337.

    Article  Google Scholar 

  • Lyman, R. L. (1994a). Quantitative units and terminology in zooarchaeology. American Antiquity, 59(1), 36–71.

    Article  Google Scholar 

  • Lyman, R. L. (1994b). Vertebrate taphonomy. Cambridge manuals in archaeology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lyman, R. L. (2002). Taxonomic identification of zooarchaeological remains. The Review of Archaeology, 23(2), 13–20.

    Google Scholar 

  • Lyman, R. L. (2008). Quantitative paleozoology. Cambridge manuals in archaeology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lyman, R. L. (2010). Paleozoology’s dependence on natural history collections. Journal of Ethnobiology, 30(1), 126–136.

    Article  Google Scholar 

  • Lyman, R. L. (2011). Comment on identification, classification, and zooarchaeology. Ethnobiology Letters, 2, 33–34.

    Google Scholar 

  • Lyman, R. L. (2012). Applied zooarchaeology: History, value, and use. In S. Wolverton & R. L. Lyman (Eds.), Conservation biology and applied zooarchaeology (pp. 208–232). Tuscon: The University of Arizona Press.

    Google Scholar 

  • Lyman, R. L., & Cannon, K. P. (Eds.). (2004). Zooarchaeology and conservation biology. Salt Lake City: University of Utah Press.

    Google Scholar 

  • Lyman, R. L., & O’Brien, M. J. (2001). The direct historical approach, analogical reasoning, and theory in Americanist archaeology. Journal of Archaeological Method and Theory, 8(4), 303–342.

    Article  Google Scholar 

  • Lyman, R. L., & VanPool, T. L. (2009). Metric data in archaeology: A study of intra-analyst and inter-analyst variation. American Antiquity, 74(3), 485–504.

    Article  Google Scholar 

  • Marciniak, A. (1999). Faunal materials and interpretive archaeology—Epistemology reconsidered. Journal of Archaeological Method and Theory, 6(4), 293–320.

    Article  Google Scholar 

  • Marciniak, A. (2011). Folk taxonomies and human-animal relations: The early Neolithic in the Polish lowlands. In U. Albarella & A. Trentacoste (Eds.), Ethnozooarchaeology: The present and past of human-animal relationships (pp. 29–38). Oxford: Oxbow Books.

    Google Scholar 

  • Marshall, F., & Pilgram, T. (1993). NISP vs. MNI in quantification of body-part representation. American Antiquity, 58(2), 261–269.

    Article  Google Scholar 

  • Mason, R. D., Peterson, M. L., & Tiffany, J. A. (1998). Weighing vs. counting: Measurement reliability and the California School of Midden Analysis. American Antiquity, 63, 303–324.

    Google Scholar 

  • Mason, R. D., Peterson, M. L., & Tiffany, J. A. (2000). Weighing and counting shell: A response to Glassow and Claassen. American Antiquity, 65(4), 757–761.

    Article  Google Scholar 

  • Nagaoka, L. (1994). Differential recovery of Pacific Island fish remains: Evidence from the Moturakau Rockshelter, Aitutaki, Cook Islands. Asian Perspectives, 33(1), 1–17.

    Google Scholar 

  • O’Connor, T. (2008). The archaeology of animal bones. College Station, TX: A&M University Press.

    Google Scholar 

  • Oliver, J. S. (1989). Analogues and site context: Bone damages from Shield Trap Cave (24CB91), Carbon County, Montana, USA. In R. Bonnichsen & M. H. Sorg (Eds.), Bone modification (pp. 73–98). Orono, ME: Center for the Study of the First Americans, University of Maine.

    Google Scholar 

  • Olmo, R. K. (2013). New flesh for old bones: Using modern reef fish to understand midden remains from Guam, Mariana Islands. In R. Ono, A. Morrison, & D. Addison (Eds.), Prehistoric marine resource use in the Indo-Pacific regions (pp. 1–31). Canberra: Australian National University Press.

    Google Scholar 

  • Ono, R., & Clark, G. (2012). A 2500-year record of marine resource use on Ulong Island, Republic of Palau. International Journal of Osteoarchaeology, 22(6), 637–654.

    Article  Google Scholar 

  • Orton, D. C. (2012). Taphonomy and interpretation: An analytical framework for social zooarchaeology. International Journal of Osteoarchaeology, 22(3), 320–337.

    Article  Google Scholar 

  • Payne, S. B. (1972). Partial recovery and sample bias: The results of some sieving experiments. In E. S. Higgs (Ed.), Papers in economic prehistory (pp. 49–64). Cambridge: Cambridge University Press.

    Google Scholar 

  • Payne, S. (1985). Morphological distinctions between the mandibular teeth of young sheep, Ovis, and goats, Capra. Journal of Archaeological Science, 12(2), 139–147.

    Article  Google Scholar 

  • Peres, T. M. (2010). Methodological issues in zooarchaeology. In A. M. Van Derwarker & T. M. Peres (Eds.), Integrating zooarchaeology and paleoethnobotany: A consideration of issues, methods, and cases (pp. 15–36). New York: Springer.

    Chapter  Google Scholar 

  • Pfeiffer, J., Sharpe, A., Johnson, N., Emery, K., & Page, L. (2017). Molecular phylogeny of the Nearctic and Mesoamerican freshwater mussel genus Megalonaias. Hydrobiologia, In Review.

    Google Scholar 

  • Plug, C., & Plug, I. (1990). MNI counts as estimates of species abundance. The South African Archaeological Bulletin, 45(151), 53–57.

    Article  Google Scholar 

  • Pyron, R. A., & Wiens, J. J. (2011). A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics, 61, 543–583.

    Article  Google Scholar 

  • Rea, A. M. (1986). Verification and reverification: Problems in archaeofaunal studies. Journal of Ethnobiology, 6(1), 9–18.

    Google Scholar 

  • Reitz, E. J., & Shackley, M. (Eds.). (2012). Introduction to environmental archaeology. Manuals in archaeological method, theory and technique (pp. 1–39). New York: Springer.

    Google Scholar 

  • Reitz, E. J., & Wing, E. S. (1999). Zooarchaeology. Cambridge manuals in archaeology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Reitz, E. J., & Wing, E. S. (2008). Zooarchaeology. Cambridge Manuals in Archaeology (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Reitz, E. J., Newsom, L. A., & Scudder, S. J. (Eds.). (1996). Case studies in environmental archaeology. New York: Plenum.

    Google Scholar 

  • Reitz, E. J., Newsom, L. A., Scudder, S. J., & Scarry, C. M. (Eds.). (2008). Introduction to environmental archaeology.In Case studies in environmental archaeology (2nd ed., pp. 3–21). New York: Springer.

    Google Scholar 

  • Rick, T. C., & Lockwood, R. (2013). Integrating paleobiology, archeology, and history to informbiological conservation. Conservation Biology, 27(1), 45–54.

    Article  Google Scholar 

  • Ringrose, T. J. (1993). Bone counts and statistics: A critique. Journal of Archaeological Science, 20, 121–157.

    Article  Google Scholar 

  • Russell, N. (2012). Social Zooarchaeology: Humans and animals in prehistory. Cambridge: Cambridge University Press.

    Google Scholar 

  • Schmitt, D. N., & Lupo, K. D. (1995). Archaeology on mammalian taphonomy, taxonomic diversity, and measuring subsistence data in zooarchaeology. American Antiquity, 60(3), 496–514.

    Article  Google Scholar 

  • Shaffer, B. S. (1992). Quarter-inch screening: Understanding biases in recovery of vertebrate faunal remains. American Antiquity, 57, 129–136.

    Article  Google Scholar 

  • Shaffer, B. S., & Sanchez, J. L. J. (1994). Comparison of 1/8” and 1/4” mesh recovery of controlled samples of small-to-medium-sized mammals. American Antiquity, 59(3), 525–530.

    Google Scholar 

  • Stahl, P. W. (2008). The contributions of zooarchaeology to historical ecology in the Neotropics. Quaternary International, 180, 5–16.

    Article  Google Scholar 

  • Thornton, E. K. (2011). Animal resources in ancient maya economy and exchange: Zooarchaeological and isotopic perspectives. Unpublished Ph.D. dissertation, University of Florida, Gainesville.

    Google Scholar 

  • Vale, D., & Gargett, R. H. (2002). Size matters: 3-mm sieves do not increase richness in a fishbone assemblage from Arrawarra 1, an Aboriginal Australian shell midden on the mid-north coast of New South Wales, Australia. Journal of Archaeological Science, 29, 57–63.

    Article  Google Scholar 

  • Wake, T. A. (2004). On the paramount importance of adequate comparative collections and recovery techniques in the identification and interpretation of vertebrate archaeofaunas: A reply to Vale and Gargett (2002). Archaeofauna, 13, 173–182.

    Google Scholar 

  • Wilkinson, K., & Stevens, C. (2003). Environmental archaeology: Approaches, techniques, and applications. Stroud: Tempus.

    Google Scholar 

  • Wing, E. S., & Quitmyer, I. R. (1992). A modern midden experiment. In W. H. Marquardt (Ed.), Culture and environment in the domain of the Calusa (pp. 367–373). Monograph Number 1. Gainesville: Institute of Archaeology and Paleoenvironmental Studies.

    Google Scholar 

  • Wolverton, S. (2002). NISP:MNE and %Whole in analysis of prehistoric carcass exploitation. North American Archaeologist, 23(2), 85–100.

    Article  Google Scholar 

  • Wolverton, S. (2013). Data quality in zooarchaeological faunal identification. Journal of Archaeological Method and Theory, 20, 381–396.

    Article  Google Scholar 

  • Wolverton, S., & Lyman, R. L. (Eds.). (2012). Conservation biology and applied zooarchaeology. Tucson: University of Arizona Press.

    Google Scholar 

  • Wylie, A. (1982). An analogy by any other name is just as analogical. Journal of Anthropological Archaeology, 1, 382–401.

    Article  Google Scholar 

  • Wylie, A. (1985). The reaction against analogy. Advances in Archaeological Method and Theory, 8, 63–111.

    Article  Google Scholar 

  • Wylie, A. (2002). Thinking of things: Essays in the philosophy of archaeology. Berkeley: University of California.

    Google Scholar 

  • Zeder, M. A., & Lapham, H. A. (2010). Assessing the reliability of criteria used to identify postcranial bones in sheep, Ovis, and goats, Capra. Journal of Archaeological Science, 37(11), 2887–2905.

    Article  Google Scholar 

  • Zeder, M. A., & Pilaar, S. E. (2010). Assessing the reliability of criteria used to identify mandibles and mandibular teeth in sheep, Ovis, and goats, Capra. Journal of Archaeological Science, 37, 225–242.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Christina Giovas as well as two anonymous peer reviewers for their comments and suggestions. We also wish to acknowledge the many colleagues and friends in zooarchaeological practice that we have had the privilege of working with in both field and laboratory settings. We have and continue to benefit enormously from face-to-face as well as virtual consultations—many thanks to you all.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle J. LeFebvre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

LeFebvre, M.J., Sharpe, A.E. (2018). Contemporary Challenges in Zooarchaeological Specimen Identification. In: Giovas, C., LeFebvre, M. (eds) Zooarchaeology in Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-64763-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64763-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64761-6

  • Online ISBN: 978-3-319-64763-0

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics