Advertisement

Splice Variants and Phosphorylated Isoforms of Cyclin D1 in Tumorigenesis

  • J. Alan DiehlEmail author
  • Karen E. Knudsen
Chapter
  • 346 Downloads
Part of the Current Cancer Research book series (CUCR)

Abstract

Mammalian cells encode three highly homologous D-type cyclins (D1, D2, D3) that associate in a tissue-specific manner with either CDK4 or CDK6 to form an active protein kinase. The D-type cyclin/CDK kinase coordinates G1 progression in response to growth factor signaling. The cyclin D/CDK4 or CDK6 kinase is the first cyclin/CDK complex to be activated in mammalian cells during G1/S transition. While the three D-type cyclins are almost indistinguishable biochemically, cyclin D1 is the most frequently overexpressed or dysregulated in human cancer. The nature of this selectivity remains to be fully understood. While overexpression of cyclin D1 and its ensuing accumulation in tumor cell nuclei frequently result from chromosomal translocations or gene amplification events, such events do not represent the sole source of cyclin D1 dysregulation in human cancer. In this chapter, we discuss the role of posttranscriptional regulation of cyclin D1, the contribution of dysregulation of such regulatory events to human cancer, and the potential therapeutic opportunities this knowledge may afford.

Keywords

Cyclin D1 Cyclin D1b GSK3β Phosphorylation Alternative splicing CDK4 

References

  1. 1.
    Matsushime H, Roussel MF, Ashmun RA, Sherr CJ. Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell. 1991;65(4):701–13. PubMed PMID: 1827757.CrossRefPubMedGoogle Scholar
  2. 2.
    Xiong Y, Connolly T, Futcher B, Beach D. Human D-type cyclin. Cell. 1991;65(4):691–9. PubMed PMID: 1827756.CrossRefPubMedGoogle Scholar
  3. 3.
    Rosenberg CL, Wong E, Petty EM, Bale AE, Tsujimoto Y, Harris NL, et al. PRAD1, a candidate BCL1 oncogene: mapping and expression in centrocytic lymphoma. Proc Natl Acad Sci U S A. 1991;88(21):9638–42. PubMed PMID: 1682919.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Aggarwal P, Lessie MD, Lin DI, Pontano L, Gladden AB, Nuskey B, et al. Nuclear accumulation of cyclin D1 during S phase inhibits Cul4-dependent Cdt1 proteolysis and triggers p53-dependent DNA rereplication. Genes Dev. 2007;21(22):2908–22. doi: 10.1101/gad.1586007. Epub 2007/11/17. PubMed PMID: 18006686; PubMed Central PMCID: PMC2049193.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Aggarwal P, Vaites LP, Kim JK, Mellert H, Gurung B, Nakagawa H, et al. Nuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase. Cancer Cell. 2010;18(4):329–40. doi: 10.1016/j.ccr.2010.08.012. Epub 2010/10/19.PubMed PMID: 20951943; PubMed Central PMCID: PMC2957477.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Casimiro MC, Crosariol M, Loro E, Ertel A, Yu Z, Dampier W, et al. ChIP sequencing of cyclin D1 reveals a transcriptional role in chromosomal instability in mice. J Clin Invest. 2012;122(3):833–43. doi: 10.1172/JCI60256. Epub 2012/02/07. PubMed PMID: 22307325; PubMed Central PMCID: PMC3287228.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jirawatnotai S, Hu Y, Livingston DM, Sicinski P. Proteomic identification of a direct role for cyclin d1 in DNA damage repair. Cancer Res. 2012;72(17):4289–93. doi: 10.1158/0008-5472.CAN-11-3549. PubMed PMID: 22915759; PubMed Central PMCID: PMC3432743.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Diehl JA. Cycling to cancer with cyclin Dl. Cancer Biol Ther. 2002;1(3):226–31. PubMed PMID: 12432268.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang Y, Dean JL, Millar EK, Tran TH, McNeil CM, Burd CJ, et al. Cyclin D1b is aberrantly regulated in response to therapeutic challenge and promotes resistance to estrogen antagonists. Cancer Res. 2008;68(14):5628–38. doi:68/14/5628 [pii]  10.1158/0008-5472.CAN-07-3170. Epub 2008/07/18. PubMed PMID: 18632615.
  10. 10.
    Motokura T, Bloom T, Kim HG, Juppner H, Ruderman JV, Kronenberg HM, et al. A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature. 1991;350(6318):512–5. PubMed PMID: 1826542.CrossRefPubMedGoogle Scholar
  11. 11.
    Abramson VG, Troxel AB, Feldman M, Mies C, Wang Y, Sherman L, et al. Cyclin D1b in human breast carcinoma and coexpression with cyclin D1a is associated with poor outcome. Anticancer Res. 2010;30(4):1279–85. doi:30/4/1279 [pii]. Epub 2010/06/10. PubMed PMID: 20530440; PubMed Central PMCID: PMC3874215.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Kim CJ, Tambe Y, Mukaisho K, Sugihara H, Isono T, Sonoda H, et al. Female-specific rectal carcinogenesis in cyclin D1b transgenic mice. Carcinogenesis. 2013;35(1):227–36. doi:bgt293 [pii]  10.1093/carcin/bgt293. Epub 2013/08/27. PubMed PMID: 23975835.
  13. 13.
    Burd CJ, Petre CE, Morey LM, Wang Y, Revelo MP, Haiman CA, et al. Cyclin D1b variant influences prostate cancer growth through aberrant androgen receptor regulation. Proc Natl Acad Sci U S A. 2006;103(7):2190–5. doi:0506281103 [pii]  10.1073/pnas.0506281103. Epub 2006/02/08. PubMed PMID: 16461912; PubMed Central PMCID: PMC1413684.
  14. 14.
    Knudsen KE, Scher HI. Starving the addiction: new opportunities for durable suppression of AR signaling in prostate cancer. Clin Cancer Res. 2009;15(15):4792–8. doi:1078–0432.CCR-08-2660 [pii]  10.1158/1078-0432.CCR-08-2660. Epub 2009/07/30. PubMed PMID: 19638458; PubMed Central PMCID: PMC2842118.
  15. 15.
    Kim CJ, Nishi K, Isono T, Okuyama Y, Tambe Y, Okada Y, et al. Cyclin D1b variant promotes cell invasiveness independent of binding to CDK4 in human bladder cancer cells. Mol Carcinog. 2009;48(10):953–64. doi: 10.1002/mc.20547. Epub 2009/05/06. PubMed PMID: 19415719.CrossRefPubMedGoogle Scholar
  16. 16.
    Wu FH, Luo LQ, Liu Y, Zhan QX, Luo C, Luo J, et al. Cyclin D1b splice variant promotes alphavbeta3-mediated adhesion and invasive migration of breast cancer cells. Cancer Lett. 2014;355(1):159–67. doi:S0304–3835(14)00497–2 [pii]  10.1016/j.canlet.2014.08.044. Epub 2014/09/07. PubMed PMID: 25193465.
  17. 17.
    Sanchez G, Bittencourt D, Laud K, Barbier J, Delattre O, Auboeuf D, et al. Alteration of cyclin D1 transcript elongation by a mutated transcription factor up-regulates the oncogenic D1b splice isoform in cancer. Proc Natl Acad Sci U S A. 2008;105(16):6004–9. doi:0710748105 [pii]  10.1073/pnas.0710748105. Epub 2008/04/17. PubMed PMID: 18413612; PubMed Central PMCID: PMC2329709.
  18. 18.
    Okano J, Snyder L, Rustgi AK. Genetic alterations in esophageal cancer. Methods Mol Biol. 2003;222:131–45. doi: 10.1385/1-59259-328-3:131. Epub 2003/04/25.PubMed PMID: 12710684.PubMedGoogle Scholar
  19. 19.
    Carrere N, Belaud-Rotureau MA, Dubus P, Parrens M, de Mascarel A, Merlio JP. The relative levels of cyclin D1a and D1b alternative transcripts in mantle cell lymphoma may depend more on sample origin than on CCND1 polymorphism. Haematologica. 2005;90(6):854–6. Epub 2005/06/14. PubMed PMID: 15951302.PubMedGoogle Scholar
  20. 20.
    Krieger S, Gauduchon J, Roussel M, Troussard X, Sola B. Relevance of cyclin D1b expression and CCND1 polymorphism in the pathogenesis of multiple myeloma and mantle cell lymphoma. BMC Cancer. 2006;6:238. doi:1471–2407–6-238 [pii]  10.1186/1471-2407-6-238. Epub 2006/10/07. PubMed PMID: 17022831; PubMed Central PMCID: PMC1609182.
  21. 21.
    Marzec M, Kasprzycka M, Lai R, Gladden AB, Wlodarski P, Tomczak E, et al. Mantle cell lymphoma cells express predominantly cyclin D1a isoform and are highly sensitive to selective inhibition of CDK4 kinase activity. Blood. 2006;108(5):1744–50. doi: 10.1182/blood-2006-04-016634. Epub 2006/05/13. PubMed PMID: 16690963; PubMed Central PMCID: PMC1895502.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Myklebust MP, Li Z, Tran TH, Rui H, Knudsen ES, Elsaleh H, et al. Expression of cyclin D1a and D1b as predictive factors for treatment response in colorectal cancer. Br J Cancer. 2012;107(10):1684–91. doi:bjc2012463 [pii]  10.1038/bjc.2012.463. Epub 2012/10/27. PubMed PMID: 23099809; PubMed Central PMCID: PMC3493874.
  23. 23.
    Leveque C, Marsaud V, Renoir JM, Sola B. Alternative cyclin D1 forms a and b have different biological functions in the cell cycle of B lymphocytes. Exp Cell Res. 2007;313(12):2719–29. doi:S0014–4827(07)00198-X [pii]  10.1016/j.yexcr.2007.04.018. Epub 2007/05/15. PubMed PMID: 17499716.
  24. 24.
    Denicourt C, Kozak CA, Rassart E. Gris1, a new common integration site in Graffi murine leukemia virus-induced leukemias: overexpression of a truncated cyclin D2 due to alternative splicing. J Virol. 2003;77(1):37–44. Epub 2002/12/13. PubMed PMID: 12477808; PubMed Central PMCID: PMC140601.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sherr CJ. Cancer cell cycles. Science. 1996;274(5293):1672–7. PMID: 8939849CrossRefPubMedGoogle Scholar
  26. 26.
    Diehl JA, Zindy F, Sherr CJ. Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev. 1997;11(8):957–72. PubMed PMID: 9136925.CrossRefPubMedGoogle Scholar
  27. 27.
    Wilk S, Orlowski M. Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex. J Neurochem. 1983;40(3):842–9. PubMed PMID: 6338156.CrossRefPubMedGoogle Scholar
  28. 28.
    Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998;12(22):3499–511. PubMed PMID: 9832503.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ma YFQ, Sekula D, Diehl JA, Freemantle S, Dmitrovsky E. Retinoid targeting of different D-type cyclins through distinct chemopreventative mechanisms. Cancer Res. 2005;65:6467–83.Google Scholar
  30. 30.
    Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell. 1997;91(2):209–19. PubMed PMID: 9346238.CrossRefPubMedGoogle Scholar
  31. 31.
    Lin DI, Barbash O, Kumar KG, Weber JD, Harper JW, Klein-Szanto AJ, et al. Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex. Mol Cell. 2006;24(3):355–66. doi: 10.1016/j.molcel.2006.09.007. Epub 2006/11/04. PubMed PMID: 17081987; PubMed Central PMCID: PMC1702390.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Barbash O, Zamfirova P, Lin DI, Chen X, Yang K, Nakagawa H, et al. Mutations in Fbx4 inhibit dimerization of the SCF(Fbx4) ligase and contribute to cyclin D1 overexpression in human cancer. Cancer Cell. 2008;14(1):68–78. doi:S1535–6108(08)00190–6 [pii]  10.1016/j.ccr.2008.05.017. Epub 2008/07/05. PubMed PMID: 18598945; PubMed Central PMCID: PMC2597358.
  33. 33.
    Welcker M, Clurman BE. Fbw7/hCDC4 dimerization regulates its substrate interactions. Cell Div. 2007;2:7. PubMed PMID: 17298674.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Alt JR, Cleveland JL, Hannink M, Diehl JA. Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev. 2000;14(24):3102–14. PubMed PMID: 11124803.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gladden AB, Diehl JA. The cyclin D1-dependent kinase associates with the pre-replication complex and modulates RB.MCM7 binding. J Biol Chem. 2003;278(11):9754–60. PubMed PMID: 12519773.CrossRefPubMedGoogle Scholar
  36. 36.
    Moreno-Bueno G, Rodriguez-Perales S, Sanchez-Estevez C, Hardisson D, Sarrio D, Prat J, et al. Cyclin D1 gene (CCND1) mutations in endometrial cancer. Oncogene. 2003;22(38):6115–8. PubMed PMID: 12955092.CrossRefPubMedGoogle Scholar
  37. 37.
    Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol. 2007;14(3):185–93. doi:nsmb1209 [pii]  10.1038/nsmb1209. Epub 2007/02/21. PubMed PMID: 17310252.
  38. 38.
    Paronetto MP, Cappellari M, Busa R, Pedrotti S, Vitali R, Comstock C, et al. Alternative splicing of the cyclin D1 proto-oncogene is regulated by the RNA-binding protein Sam68. Cancer Res. 2009;70(1):229–39. doi:0008–5472.CAN-09-2788 [pii]  10.1158/0008-5472.CAN-09-2788. Epub 2009/12/24. PubMed PMID: 20028857; PubMed Central PMCID: PMC2884274.
  39. 39.
    Lukong KE, Richard S. Sam68, the KH domain-containing superSTAR. Biochim Biophys Acta. 2003;1653(2):73–86. doi:S0304419X03000337 [pii]. Epub 2003/12/04. PubMed PMID: 14643926.PubMedGoogle Scholar
  40. 40.
    Augello MA, Burd CJ, Birbe R, McNair C, Ertel A, Magee MS, et al. Convergence of oncogenic and hormone receptor pathways promotes metastatic phenotypes. J Clin Invest. 123(1):493–508. doi:64750 [pii]  10.1172/JCI64750. Epub 2012/12/22. PubMed PMID: 23257359; PubMed Central PMCID: PMC3533295.
  41. 41.
    Millar EK, Dean JL, McNeil CM, O'Toole SA, Henshall SM, Tran T, et al. Cyclin D1b protein expression in breast cancer is independent of cyclin D1a and associated with poor disease outcome. Oncogene. 2009;28 (15):1812–20. doi:onc200913 [pii]  10.1038/onc.2009.13. Epub 2009/03/17. PubMed PMID: 19287456; PubMed Central PMCID: PMC3073345.
  42. 42.
    Kim JK, Diehl JA. Nuclear cyclin D1: an oncogenic driver in human cancer. J Cell Physiol. 2009;220(2):292–6. doi: 10.1002/jcp.21791. Epub 2009/05/06. PubMed PMID: 19415697; PubMed Central PMCID: PMC2874239.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Aggarwal P, Vaites LP, Kim JK, Mellert H, Gurung B, Nakagawa H, et al. Nuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase. Cancer Cell. 2010;18(4):329–40. doi:S1535–6108(10)00309–0 [pii]  10.1016/j.ccr.2010.08.012. Epub 2010/10/19. PubMed PMID: 20951943; PubMed Central PMCID: PMC2957477.
  44. 44.
    Vaites LP, Lian Z, Lee EK, Yin B, DeMicco A, Bassing CH, et al. ATM deficiency augments constitutively nuclear cyclin D1-driven genomic instability and lymphomagenesis. Oncogene. 2014;33(1):129–33. doi:onc2012577 [pii]  10.1038/onc.2012.577. Epub 2013/01/16. PubMed PMID: 23318439; PubMed Central PMCID: PMC4112739.
  45. 45.
    Bienvenu F, Jirawatnotai S, Elias JE, Meyer CA, Mizeracka K, Marson A, et al. Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen. Nature. 2010;463(7279):374–8. doi:nature08684 [pii]  10.1038/nature08684. Epub 2010/01/22. PubMed PMID: 20090754; PubMed Central PMCID: PMC2943587.
  46. 46.
    Neuman E, Ladha MH, Lin N, Upton TM, Miller SJ, DiRenzo J, et al. Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol Cell Biol. 1997;17(9):5338–47. PubMed PMID: 9271411.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ. CDK-independent activation of estrogen receptor by cyclin D1. Cell. 1997;88(3):405–15. PubMed PMID: 9039267.CrossRefPubMedGoogle Scholar
  48. 48.
    Olshavsky NA, Comstock CE, Schiewer MJ, Augello MA, Hyslop T, Sette C, et al. Identification of ASF/SF2 as a critical, allele-specific effector of the cyclin D1b oncogene. Cancer Res. 2010;70(10):3975–84. doi:0008–5472.CAN-09-3468 [pii]  10.1158/0008-5472.CAN-09-3468. Epub 2010/05/13. PubMed PMID: 20460515; PubMed Central PMCID: PMC2873684.
  49. 49.
    Wafa K, MacLean J, Zhang F, Pasumarthi KB. Characterization of growth suppressive functions of a splice variant of cyclin D2. PLoS One. 8(1):e53503. doi: 10.1371/journal.pone.0053503 PONE-D-12-30355 [pii]. Epub 2013/01/18. PubMed PMID: 23326442; PubMed Central PMCID: PMC3542336.
  50. 50.
    Holley SL, Parkes G, Matthias C, Bockmuhl U, Jahnke V, Leder K, et al. Cyclin D1 polymorphism and expression in patients with squamous cell carcinoma of the head and neck. Am J Pathol. 2001;159(5):1917–24. doi:S0002–9440(10)63038–6 [pii]  10.1016/S0002-9440(10)63038-6. Epub 2001/11/07. PubMed PMID: 11696452; PubMed Central PMCID: PMC1867042.
  51. 51.
    Knudsen KE. The cyclin D1b splice variant: an old oncogene learns new tricks. Cell Div. 2006;1:15. doi:1747–1028–1-15 [pii]  10.1186/1747-1028-1-15. Epub 2006/07/26. PubMed PMID: 16863592; PubMed Central PMCID: PMC1559605.
  52. 52.
    Howe D, Lynas C. The cyclin D1 alternative transcripts [a] and [b] are expressed in normal and malignant lymphocytes and their relative levels are influenced by the polymorphism at codon 241. Haematologica. 2001;86(6):563–9. PubMed PMID: 11418364.PubMedGoogle Scholar
  53. 53.
    Mayr C, Bartel DP. Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138(4):673–84. doi:S0092–8674(09)00716–8 [pii]  10.1016/j.cell.2009.06.016. Epub 2009/08/26. PubMed PMID: 19703394; PubMed Central PMCID: PMC2819821.
  54. 54.
    Sun Q, Zhang F, Wafa K, Baptist T, Pasumarthi KB. A splice variant of cyclin D2 regulates cardiomyocyte cell cycle through a novel protein aggregation pathway. J Cell Sci. 2009;122(Pt 10):1563–73. doi: jcs.047738 [pii]  10.1242/jcs.047738. Epub 2009/04/30. PubMed PMID: 19401331.
  55. 55.
    Benzeno S, Lu F, Guo M, Barbash O, Zhang F, Herman JG, et al. Identification of mutations that disrupt phosphorylation-dependent nuclear export of cyclin D1. Oncogene. 2006;25(47):6291–303. PubMed PMID: 16732330.CrossRefPubMedGoogle Scholar
  56. 56.
    Betticher DC, Thatcher N, Altermatt HJ, Hoban P, Ryder WD, Heighway J. Alternate splicing produces a novel cyclin D1 transcript. Oncogene. 1995;11(5):1005–11. PubMed PMID: 7675441.PubMedGoogle Scholar
  57. 57.
    Lu F, Gladden AB, Diehl JA. An alternatively spliced cyclin D1 isoform, cyclin D1b, is a nuclear oncogene. Cancer Res. 2003;63(21):7056–61. PubMed PMID: 14612495.PubMedGoogle Scholar
  58. 58.
    Solomon DA, Wang Y, Fox SR, Lambeck TC, Giesting S, Lan Z, et al. Cyclin D1 splice variants. Differential effects on localization, RB phosphorylation, and cellular transformation. J Biol Chem. 2003;278(32):30339–47. doi: 10.1074/jbc.M303969200 M303969200 [pii]. Epub 2003/05/15. PubMed PMID: 12746453.
  59. 59.
    Comstock CE, Augello MA, Benito RP, Karch J, Tran TH, Utama FE, et al. Cyclin D1 splice variants: polymorphism, risk, and isoform-specific regulation in prostate cancer. Clin Cancer Res. 2009;15(17):5338–49. doi:1078–0432.CCR-08-2865 [pii]  10.1158/1078-0432.CCR-08-2865. Epub 2009/08/27. PubMed PMID: 19706803; PubMed Central PMCID: PMC2849314.
  60. 60.
    Gupta VK, Feber A, Xi L, Pennathur A, Wu M, Luketich JD, et al. Association between CCND1 G/A870 polymorphism, allele-specific amplification, cyclin D1 expression, and survival in esophageal and lung carcinoma. Clin Cancer Res. 2008;14(23):7804–12. doi:14/23/7804 [pii]  10.1158/1078-0432.CCR-08-0744. Epub 2008/12/03. PubMed PMID: 19047108; PubMed Central PMCID: PMC2723959.
  61. 61.
    Izzo JG, Wu TT, Wu X, Ensor J, Luthra R, Pan J, et al. Cyclin D1 guanine/adenine 870 polymorphism with altered protein expression is associated with genomic instability and aggressive clinical biology of esophageal adenocarcinoma. J Clin Oncol. 2007;25(6):698–707. doi:25/6/698 [pii]  10.1200/JCO.2006.08.0283. Epub 2007/02/20. PubMed PMID: 17308274.
  62. 62.
    Denicourt C, Legault P, McNabb FA, Rassart E. Human and mouse cyclin D2 splice variants: transforming activity and subcellular localization. Oncogene. 2008;27(9):1253–62. doi:1210750 [pii]  10.1038/sj.onc.1210750. Epub 2007/09/18. PubMed PMID: 17873913.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, Hollings Cancer CenterMedical University of South CarolinaCharlestonUSA
  2. 2.Departments of Cancer Biology, Urology, Radiation Oncology, and Medical Oncology, Sidney Kimmel Cancer CenterThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations