Skip to main content

Homeostatic Robot Control Using Simple Neuromodulatory Techniques

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10454))

Included in the following conference series:

  • 3023 Accesses

Abstract

The UESMANN (Uniform Excitatory Switching Multifunction Artificial Neural Network) architecture has been shown to produce interesting transitions between multiple behaviours using an extremely simple neuromodulatory regime. Previous work has concentrated on discrete classification tasks. In this work, three different simple neuromodulatory architectures including UESMANN are used to control a robot in a homeostatic task.

The experiments show that UESMANN produces interesting and useful transitional behaviour in an embodied system, learning the two tasks in the same number of parameters (i.e. network weights) as networks which learned each individual task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Finnis, J.C., Neal, M.: UESMANN: a feed-forward network capable of learning multiple functions. In: Tuci, E., Giagkos, A., Wilson, M., Hallam, J. (eds.) SAB 2016. LNCS, vol. 9825, pp. 101–112. Springer, Cham (2016). doi:10.1007/978-3-319-43488-9_10

    Chapter  Google Scholar 

  2. Funahashi, K., Nakamura, Y.: Approximation of dynamical systems by continuous time recurrent neural networks. Neural Netw. 6(6), 801–806 (1993)

    Article  Google Scholar 

  3. Husbands, P., Philippides, A., Smith, T., O’Shea, M.: Volume signalling in real and robot nervous systems. Theory Biosci. 120(3–4), 253–269 (2001)

    Article  MATH  Google Scholar 

  4. Kaczmarek, L.K., Levitan, I.B.: Neuromodulation: The Biochemical Control of Neuronal Excitability. Oxford University Press, New York (1987)

    Google Scholar 

  5. Magg, S., Philippides, A.: GasNets and CTRNNs – a comparison in terms of evolvability. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS, vol. 4095, pp. 461–472. Springer, Heidelberg (2006). doi:10.1007/11840541_38

    Chapter  Google Scholar 

  6. Moioli, R.C., Vargas, P.A., Von Zuben, F.J., Husbands, P.: Towards the evolution of an artificial homeostatic system. In: IEEE Congress on Evolutionary Computation, pp. 4023–4030. IEEE (2008)

    Google Scholar 

  7. Neal, M.: Once more unto the breach: towards artificial homeostasis. In: De Castro, L.N., Von Zuben, F.J. (eds.) Recent Developments in Biologically Inspired Computing, pp. 340–365. Idea Group (2005)

    Google Scholar 

  8. Neal, M., Timmis, J.: Timidity: a useful emotional mechanism for robot control? Informatica (Slovenia) 27(2), 197–204 (2003)

    MATH  Google Scholar 

  9. Rodriguez, G., Weisbin, C.R.: A new method to evaluate human-robot system performance. Auton. Robots 14(2–3), 165–178 (2003)

    Article  MATH  Google Scholar 

  10. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  Google Scholar 

  11. Sauze, C., Neal, M.: Artificial endocrine controller for power management in robotic systems. IEEE Trans. Neural Netw. Learn. Syst. 24(12), 1973–1985 (2013)

    Article  Google Scholar 

  12. Tunstel, E.: Operational performance metrics for Mars exploration rovers. J. Field Robot. 24(8–9), 651–670 (2007)

    Article  Google Scholar 

  13. Vargas, P.A., Paolo, E.A., Husbands, P.: Preliminary investigations on the evolvability of a non spatial GasNet model. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS, vol. 4648, pp. 966–975. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74913-4_97

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Finnis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Finnis, J.C. (2017). Homeostatic Robot Control Using Simple Neuromodulatory Techniques. In: Gao, Y., Fallah, S., Jin, Y., Lekakou, C. (eds) Towards Autonomous Robotic Systems. TAROS 2017. Lecture Notes in Computer Science(), vol 10454. Springer, Cham. https://doi.org/10.1007/978-3-319-64107-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64107-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64106-5

  • Online ISBN: 978-3-319-64107-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics