Skip to main content

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

  • 878 Accesses

Abstract

We interpret certain results on the singular limits of the Navier-Stokes-Fourier system in terms of the acoustic analogies. An acoustic analogy is represented by a non-homogeneous wave equation supplemented with source terms obtained simply by regrouping the original (primitive) system. In the low Mach number regime, the source terms may be evaluated on the basis of the limit (incompressible) system. This is the principal idea of the so-called hybrid method used in numerical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. R.A. Adams, Sobolev Spaces (Academic, New York, 1975)

    MATH  Google Scholar 

  2. S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MATH  Google Scholar 

  3. T. Alazard, Low Mach number flows and combustion. SIAM J. Math. Anal. 38(4), 1186–1213 (electronic) (2006)

    Google Scholar 

  4. T. Alazard, Low Mach number limit of the full Navier-Stokes equations. Arch. Ration. Mech. Anal. 180, 1–73 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Alexandre, C. Villani, On the Boltzmann equation for long-range interactions. Comm. Pure Appl. Math. 55, 30–70 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 1482–1518 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis (Friedrichroda, 1992). Teubner-Texte zur Mathematik, vol. 133 (Teubner, Stuttgart, 1993), pp. 9–126

    Google Scholar 

  8. H. Amann, Linear and Quasilinear Parabolic Problems, I (Birkhäuser, Basel, 1995)

    Book  MATH  Google Scholar 

  9. A.A. Amirat, D. Bresch, J. Lemoine, J. Simon, Effect of rugosity on a flow governed by stationary Navier-Stokes equations. Q. Appl. Math. 59, 768–785 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. A.A. Amirat, E. Climent, E. Fernández-Cara, J. Simon, The Stokes equations with Fourier boundary conditions on a wall with asperities. Math. Models Methods Appl. 24, 255–276 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. S.N. Antontsev, A.V. Kazhikhov, V.N. Monakhov, Krajevyje Zadaci Mechaniki Neodnorodnych Zidkostej (Nauka, Novosibirsk, 1983)

    Google Scholar 

  12. D. Azé, Elements d’analyse Fonctionnelle et Variationnelle (Elipses, Paris, 1997)

    MATH  Google Scholar 

  13. H. Babovsky, M. Padula, A new contribution to nonlinear stability of a discrete velocity model. Commun. Math. Phys. 144(1), 87–106 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Bahouri, J.-Y. Chemin, Équations d’ondes quasilinéaires et effet dispersif. Int. Math. Res. Not. 21, 1141–1178 (1999)

    Article  MATH  Google Scholar 

  15. E.J. Balder, On weak convergence implying strong convergence in l 1 spaces. Bull. Aust. Math. Soc. 33, 363–368 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Bardos, S. Ukai, The classical incompressible Navier-Stokes limit of the Boltzmann equation. Math. Models Methods Appl. Sci. 1(2), 235–257 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Bardos, F. Golse, C.D. Levermore, Fluid dynamical limits of kinetic equations, I: formal derivation. J. Stat. Phys. 63, 323–344 (1991)

    MATH  Google Scholar 

  18. C. Bardos, F. Golse, C.D. Levermore, Fluid dynamical limits of kinetic equations, II: convergence proofs for the Boltzman equation. Commun. Pure Appl. Math. 46, 667–753 (1993)

    MATH  Google Scholar 

  19. C. Bardos, F. Golse, C.D. Levermore, The acoustic limit for the Boltzmann equation. Arch. Ration. Mech. Anal. 153, 177–204 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967)

    MATH  Google Scholar 

  21. A. Battaner, Astrophysical Fluid Dynamics (Cambridge University Press, Cambridge, 1996)

    Book  Google Scholar 

  22. E. Becker, Gasdynamik (Teubner-Verlag, Stuttgart, 1966)

    MATH  Google Scholar 

  23. H. Beirao da Veiga, An L p theory for the n-dimensional, stationary, compressible Navier-Stokes equations, and incompressible limit for compressible fluids. Commun. Math. Phys. 109, 229–248 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Bella, E. Feireisl, A. Novotny, Dimension reduction for compressible viscous fluids. Acta Appl. Math. 134, 111–121 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Bella, E. Feireisl, M. Lewicka, A. Novotny, A rigorous justification of the Euler and Navier-Stokes equations with geometric effects. SIAM J. Math. Anal. 48(6) 3907–3930 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Benzoni-Gavage, D. Serre, Multidimensional Hyperbolic Partial Differential Equations, First Order Systems and Applications. Oxford Mathematical Monographs (The Clarendon Press/Oxford University Press, Oxford, 2007)

    MATH  Google Scholar 

  27. J. Bergh, J. Löfström, Interpolation Spaces. An Introduction (Springer, Berlin, 1976). Grundlehren der Mathematischen Wissenschaften, No. 223

    Google Scholar 

  28. M.E. Bogovskii, Solution of some vector analysis problems connected with operators div and grad (in Russian). Trudy Sem. S.L. Sobolev 80(1), 5–40 (1980)

    Google Scholar 

  29. J. Bolik, W. von Wahl, Estimating ∇u in terms of divu, curlu, either (ν, u) or ν ×u and the topology. Math. Meth. Appl. Sci. 20, 737–744 (1997)

    Google Scholar 

  30. R.E. Bolz, G.L. Tuve (eds.), Handbook of Tables for Applied Engineering Science (CRC Press, Cleveland, 1973)

    Google Scholar 

  31. T.R. Bose, High Temperature Gas Dynamics (Springer, Berlin, 2004)

    Book  Google Scholar 

  32. L. Brandolese, M.E. Schonbek, Large time decay and growth for solutions of a viscous Boussinesq system. Trans. Am. Math. Soc. 364(10), 5057–5090 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Brenner, Navier-Stokes revisited. Phys. A 349(1–2), 60–132 (2005)

    Article  MathSciNet  Google Scholar 

  34. D. Bresch, B. Desjardins, Stabilité de solutions faibles globales pour les équations de Navier-Stokes compressibles avec température. C.R. Acad. Sci. Paris 343, 219–224 (2006)

    Google Scholar 

  35. D. Bresch, B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids. J. Math. Pures Appl. 87, 57–90 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Bresch, P.-E. Jabin, Global existence of weak solutions for compressible Navier-Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor (2015), arxiv preprint No. 1507.04629v1

    Google Scholar 

  37. D. Bresch, B. Desjardins, E. Grenier, C.-K. Lin, Low Mach number limit of viscous polytropic flows: formal asymptotic in the periodic case. Stud. Appl. Math. 109, 125–149 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Bressan, Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem (Oxford University Press, Oxford, 2000)

    Google Scholar 

  39. J. Březina, A. Novotný, On weak solutions of steady Navier-Stokes equations for monatomic gas. Comment. Math. Univ. Carol. 49, 611–632 (2008)

    MathSciNet  MATH  Google Scholar 

  40. H. Brezis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions Dans Les Espaces de Hilbert (North-Holland, Amsterdam, 1973)

    MATH  Google Scholar 

  41. H. Brezis, Analyse Fonctionnelle (Masson, Paris, 1987)

    MATH  Google Scholar 

  42. D. Bucur, E. Feireisl, The incompressible limit of the full Navier-Stokes-Fourier system on domains with rough boundaries. Nonlinear Anal. Real World Appl. 10, 3203–3229 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. N. Burq, Global Strichartz estimates for nontrapping geometries: about an article by H.F. Smith and C. D. Sogge: “Global Strichartz estimates for nontrapping perturbations of the Laplacian”. Commun. Partial Differ. Equ. 28(9–10), 1675–1683 (2003)

    Google Scholar 

  44. N. Burq, F. Planchon, J.G. Stalker, A.S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay. Indiana Univ. Math. J. 53(6), 1665–1680 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. L. Caffarelli, R.V. Kohn, L. Nirenberg, On the regularity of the solutions of the Navier-Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)

    Article  MATH  Google Scholar 

  46. A.P. Calderón, A. Zygmund, On singular integrals. Am. J. Math. 78, 289–309 (1956)

    Article  MATH  Google Scholar 

  47. A.P. Calderón, A. Zygmund, Singular integral operators and differential equations. Am. J. Math. 79, 901–921 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  48. H. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985)

    MATH  Google Scholar 

  49. R.W. Carroll, Abstract Methods in Partial Differential Equations. Harper’s Series in Modern Mathematics (Harper and Row Publishers, New York, 1969)

    Google Scholar 

  50. J. Casado-Díaz, I. Gayte, The two-scale convergence method applied to generalized Besicovitch spaces. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 458(2028), 2925–2946 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  51. J. Casado-Díaz, E. Fernández-Cara, J. Simon, Why viscous fluids adhere to rugose walls: a mathematical explanation. J. Differ. Equ. 189, 526–537 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  52. J. Casado-Díaz, M. Luna-Laynez, F.J. Suárez-Grau, Asymptotic behavior of a viscous fluid with slip boundary conditions on a slightly rough wall. Math. Models Methods Appl. Sci. 20, 121–156 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. S. Chandrasekhar, Hydrodynamic and Hydrodynamic Stability (Clarendon Press, Oxford, 1961)

    MATH  Google Scholar 

  54. T. Chang, B.J. Jin, A. Novotny, Compressible Navier-Stokes system with general inflow-outflow boundary data Preprint (2017)

    Google Scholar 

  55. J.-Y. Chemin, Perfect Incompressible Fluids. Oxford Lecture Series in Mathematics and its Applications, vol. 14 (The Clarendon Press/Oxford University Press, New York, 1998). Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie

    Google Scholar 

  56. J.-Y. Chemin, B. Desjardins, I. Gallagher, E. Grenier, Mathematical Geophysics. Oxford Lecture Series in Mathematics and its Applications, vol. 32 (The Clarendon Press/Oxford University Press, Oxford, 2006)

    Google Scholar 

  57. G.-Q. Chen, M. Torres, Divergence-measure fields, sets of finite perimeter, and conservation laws. Arch. Ration. Mech. Anal. 175(2), 245–267 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  58. C.-Q. Chen, D. Wang, The Cauchy problem for the Euler equations for compressible fluids. Handb. Math. Fluid Dyn. 1, 421–543 (2001). North-Holland, Amsterdam

    Google Scholar 

  59. Y. Cho, H.J. Choe, H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures Appl. 83, 243–275 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  60. A.J. Chorin, J.E. Marsden, A Mathematical Introduction to Fluid Mechanics (Springer, New York, 1979)

    Book  MATH  Google Scholar 

  61. D. Christodoulou, S. Klainerman, Asymptotic properties of linear field equations in Minkowski space. Commun. Pure Appl. Math. 43(2), 137–199 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  62. R. Coifman, Y. Meyer, On commutators of singular integrals and bilinear singular integrals. Trans. Am. Math. Soc. 212, 315–331 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  63. T. Colonius, S.K. Lele, P. Moin, Sound generation in mixing layer. J. Fluid Mech. 330, 375–409 (1997)

    Article  MATH  Google Scholar 

  64. P. Constantin, A. Debussche, G.P. Galdi, M. Røcircužička, G. Seregin, Topics in Mathematical Fluid Mechanics. Lecture Notes in Mathematics, vol. 2073 (Springer, Heidelberg; Fondazione C.I.M.E., Florence, 2013). Lectures from the CIME Summer School held in Cetraro, September 2010, Edited by Hugo Beirão da Veiga and Franco Flandoli, Fondazione CIME/CIME Foundation Subseries

    Google Scholar 

  65. W.D. Curtis, J.D. Logan, W.A. Parker, Dimensional analysis and the pi theorem. Linear Algebra Appl. 47, 117–126 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  66. H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon, Schrödinger Operators: With Applications to Quantum Mechanics and Global Geometry. Texts and Monographs in Physics (Springer, Berlin/Heidelberg, 1987)

    Google Scholar 

  67. C.M. Dafermos, The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70, 167–179 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  68. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics (Springer, Berlin, 2000)

    Book  MATH  Google Scholar 

  69. S. Dain, Generalized Korn’s inequality and conformal Killing vectors. Calc. Var. 25, 535–540 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  70. R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math. 141, 579–614 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  71. R. Danchin, Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Ration. Mech. Anal. 160(1), 1–39 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  72. R. Danchin, Low Mach number limit for viscous compressible flows. M2AN Math. Model Numer. Anal. 39, 459–475 (2005)

    Google Scholar 

  73. R. Danchin, The inviscid limit for density-dependent incompressible fluids. Ann. Fac. Sci. Toulouse Math. (6) 15(4), 637–688 (2006)

    Google Scholar 

  74. R. Danchin, M. Paicu, Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces. Phys. D 237(10–12), 1444–1460 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  75. R. Danchin, M. Paicu, Global well-posedness issues for the inviscid Boussinesq system with Yudovich’s type data. Commun. Math. Phys. 290(1), 1–14 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  76. R. Danchin, M. Paicu, Global existence results for the anisotropic Boussinesq system in dimension two. Math. Models Methods Appl. Sci. 21(3), 421–457 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  77. R. Denk, M. Hieber, J. Prüss, R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166(788), 3 (2003)

    Google Scholar 

  78. R. Denk, M. Hieber, J. Prüss, Optimal L pL q-estimates for parabolic boundary value problems with inhomogeneous data. Math. Z. 257, 193–224 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  79. B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations. Commun. Partial Differ. Equ. 22, 977–1008 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  80. B. Desjardins, E. Grenier, Low Mach number limit of viscous compressible flows in the whole space. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 455(1986), 2271–2279 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  81. B. Desjardins, E. Grenier, P.-L. Lions, N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78, 461–471 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  82. J. Diestel, Sequences and Series in Banach Spaces (Springer, New-York, 1984)

    Book  MATH  Google Scholar 

  83. R.J. DiPerna, Measure-valued solutions to conservation laws. Arch. Ration. Mech. Anal. 88, 223–270 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  84. R.J. DiPerna, P.-L. Lions, On the Fokker-Planck-Boltzmann equation. Commun. Math. Phys. 120, 1–23 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  85. R.J. DiPerna, P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  86. R.J. DiPerna, A. Majda, Reduced Hausdorff dimension and concentration cancellation for two-dimensional incompressible flow. J. Am. Math. Soc. 1, 59–95 (1988)

    MathSciNet  MATH  Google Scholar 

  87. B. Ducomet, E. Feireisl, A regularizing effect of radiation in the equations of fluid dynamics. Math. Methods Appl. Sci. 28, 661–685 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  88. W. E, Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation. Acta Math. Sinica (Engl. Ser.) 16, 207–218 (2000)

    Google Scholar 

  89. D.B. Ebin, The motion of slightly compressible fluids viewed as a motion with strong constraining force. Ann. Math. 105, 141–200 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  90. R.E. Edwards, Functional Analysis (Holt-Rinehart-Winston, New York, 1965)

    MATH  Google Scholar 

  91. D.M. Eidus, Limiting amplitude principle (in Russian). Usp. Mat. Nauk 24(3), 91–156 (1969)

    Google Scholar 

  92. I. Ekeland, R. Temam, Convex Analysis and Variational Problems (North-Holland, Amsterdam, 1976)

    MATH  Google Scholar 

  93. S. Eliezer, A. Ghatak, H. Hora, An Introduction to Equations of States, Theory and Applications (Cambridge University Press, Cambridge, 1986)

    MATH  Google Scholar 

  94. B.O. Enflo, C.M. Hedberg, Theory of Nonlinear Acoustics in Fluids (Kluwer Academic Publishers, Dordrecht, 2002)

    MATH  Google Scholar 

  95. L.C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations (American Mathematical Society, Providence, 1990)

    Book  Google Scholar 

  96. L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, vol. 19 (American Mathematical Society, Providence, 1998)

    Google Scholar 

  97. L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions (CRC Press, Boca Raton, 1992)

    MATH  Google Scholar 

  98. R. Eymard, T. Gallouet, R. herbin, J.C. Latché, A convergent finite element- finite volume scheme for compressible Stokes equations. The isentropic case. Math. Comput. 79, 649–675 (2010)

    Google Scholar 

  99. R. Farwig, H. Kozono, H. Sohr, An L q-approach to Stokes and Navier-Stokes equations in general domains. Acta Math. 195, 21–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  100. C.L. Fefferman, Existence and smoothness of the Navier-Stokes equation, in The Millennium Prize Problems (Clay Mathematics Institute, Cambridge, 2006), pp. 57–67

    MATH  Google Scholar 

  101. E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carol. 42(1), 83–98 (2001)

    MathSciNet  MATH  Google Scholar 

  102. E. Feireisl, Dynamics of Viscous Compressible Fluids (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  103. E. Feireisl, On the motion of a viscous, compressible, and heat conducting fluid. Indiana Univ. Math. J. 53, 1707–1740 (2004)

    Article  MathSciNet  Google Scholar 

  104. E. Feireisl, Mathematics of viscous, compressible, and heat conducting fluids, in Contemporary Mathematics, ed. by G.-Q. Chen, G. Gasper, J. Jerome, vol. 371 (American Mathematical Society, Providence, 2005), pp. 133–151

    Google Scholar 

  105. E. Feireisl, Stability of flows of real monatomic gases. Commun. Partial Differ. Equ. 31, 325–348 (2006)

    Article  MATH  Google Scholar 

  106. E. Feireisl, Relative entropies in thermodynamics of complete fluid systems. Discrete Contin. Dyn. Syst. 32(9), 3059–3080 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  107. E. Feireisl, A. Novotný, On a simple model of reacting compressible flows arising in astrophysics. Proc. R. Soc. Edinb. A 135, 1169–1194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  108. E. Feireisl, A. Novotný, The Oberbeck-Boussinesq approximation as a singular limit of the full Navier-Stokes-Fourier system. J. Math. Fluid Mech. 11(2), 274–302 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  109. E. Feireisl, A. Novotný, On the low Mach number limit for the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 186, 77–107 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  110. E. Feireisl, A. Novotný, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 204, 683–706 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  111. E. Feireisl, A. Novotný, Inviscid incompressible limits of the full Navier-Stokes-Fourier system. Commun. Math. Phys. 321, 605–628 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  112. E. Feireisl, A. Novotný, Inviscid incompressible limits under mild stratification: a rigorous derivation of the Euler-Boussinesq system. Appl. Math. Optim. 70, 279–307 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  113. E. Feireisl, A. Novotny, Multiple scales and singular limits for compressible rotating fluids with general initial data. Commun. Partial Differ. Equ. 39, 1104–1127 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  114. E. Feireisl, A. Novotny, Scale interactions in compressible rotating fluids. Ann. Mat. Pura Appl. 193(6), 111–121 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  115. E. Feireisl, A. Novotný, Stationary Solutions to the Compressible Navier-Stokes System with General Boundary Conditions. Preprint Nečas Center for Mathematical Modeling (Charles University, Prague, 2017)

    Google Scholar 

  116. E. Feireisl, Š. Matuš˚u Nečasová, H. Petzeltová, I. Straškraba, On the motion of a viscous compressible fluid driven by a time-periodic external force. Arch Ration. Mech. Anal. 149, 69–96 (1999)

    Google Scholar 

  117. E. Feireisl, A. Novotný, H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids. J. Math. Fluid Mech. 3, 358–392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  118. E. Feireisl, J. Málek, A. Novotný, Navier’s slip and incompressible limits in domains with variable bottoms. Discrete Contin. Dyn. Syst. Ser. S 1, 427–460 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  119. E. Feireisl, A. Novotný, Y. Sun, Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids. Indiana Univ. Math. J. 60, 611–632 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  120. E. Feireisl, B.J. Jin, A. Novotný, Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid Mech. 14(4), 717–730 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  121. E. Feireisl, P. Mucha, A. Novotny, M. Pokorný, Time-periodic solutions to the full Navier-Stokes-Fourier system Arch. Ration. Mech. Anal. 204(3), 745–786 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  122. E. Feireisl, T. Karper, O. Kreml, J. Stebel, Stability with respect to domain of the low Mach number limit of compressible viscous fluids. Math. Models Methods Appl. Sci. 23(13), 2465–2493 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  123. E. Feireisl, A. Novotný, Y. Sun, Dissipative solutions and the incompressible inviscid limits of the compressible magnetohydrodynamics system in unbounded domains. Discrete Contin. Dyn. Syst. 34, 121–143 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  124. E. Feireisl, T. Karper, A. Novotny, A convergent mixed numerical method for the Navier-Stokes-Fourier system. IMA J. Numer. Anal. 36, 1477–1535 (2016)

    Article  MathSciNet  Google Scholar 

  125. E. Feireisl, T. Karper, M. Pokorny, Mathematical Theory of Compressible Viscous Fluids – Analysis and Numerics (Birkhauser, Boston, 2016)

    Book  MATH  Google Scholar 

  126. E. Feireisl, A. Novotny, Y. Sun, On the motion of viscous, compressible and heat-conducting liquids. J. Math. Phys. 57(08) (2016). http://dx.doi.org/10.1063/1.4959772

  127. R.L. Foote, Regularity of the distance function. Proc. Am. Math. Soc. 92, 153–155 (1984)

    MathSciNet  MATH  Google Scholar 

  128. J. Frehse, S. Goj, M. Steinhauer, L p – estimates for the Navier-Stokes equations for steady compressible flow. Manuscripta Math. 116, 265–275 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  129. J.B. Freud, S.K. Lele, M. Wang, Computational prediction of flow-generated sound. Ann. Rev. Fluid Mech. 38, 483–512 (2006)

    Article  MathSciNet  Google Scholar 

  130. H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. (Akademie, Berlin, 1974)

    Google Scholar 

  131. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier – Stokes Equations, I (Springer, New York, 1994)

    MATH  Google Scholar 

  132. G. Gallavotti, Statistical Mechanics: A Short Treatise (Springer, Heidelberg, 1999)

    Book  MATH  Google Scholar 

  133. T. Gallouët, R. Herbin, D. Maltese, A. Novotny, Error estimates for a numerical approximation to the compressible barotropic navier–stokes equations. IMA J. Numer. Anal. 36(2), 543–592 (2016)

    Article  MathSciNet  Google Scholar 

  134. M. Geißert, H. Heck, M. Hieber, On the equation div u = g and Bogovskiĭ’s operator in Sobolev spaces of negative order, in Partial Differential Equations and Functional Analysis. Operator Theory: Advances and Applications, vol. 168 (Birkhäuser, Basel, 2006), pp. 113–121

    Google Scholar 

  135. G. Geymonat, P. Grisvard, Alcuni risultati di teoria spettrale per i problemi ai limiti lineari ellittici. Rend. Sem. Mat. Univ. Padova 38, 121–173 (1967)

    MathSciNet  MATH  Google Scholar 

  136. D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, Berlin, 1983)

    Book  MATH  Google Scholar 

  137. A.E. Gill, Atmosphere-Ocean Dynamics (Academic, San Diego, 1982)

    Google Scholar 

  138. P.A. Gilman, G.A. Glatzmaier, Compressible convection in a rotating spherical shell. I. Anelastic equations. Astrophys. J. Suppl. 45(2), 335–349 (1981)

    Article  MathSciNet  Google Scholar 

  139. V. Girinon, Navier-Stokes equations with nonhomogeneous boundary conditions in a bounded three-dimensional domain. J. Math. Fluid Mech. 13, 309–339 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  140. G.A. Glatzmaier, P.A. Gilman, Compressible convection in a rotating spherical shell. II. A linear anelastic model. Astrophys. J. Suppl. 45(2), 351–380 (1981)

    MathSciNet  Google Scholar 

  141. F. Golanski, V. Fortuné, E. Lamballais, Noise radiated by a non-isothermal temporal mixing layer, II. Prediction using DNS in the framework of low Mach number approximation. Theor. Comput. Fluid Dyn. 19, 391–416 (2005)

    MATH  Google Scholar 

  142. F. Golanski, C. Moser, L. Nadai, C. Pras, E. Lamballais, Numerical methodology for the computation of the sound generated by a non-isothermal mixing layer at low Mach number, in Direct and Large Eddy Simulation, VI, ed. by E. Lamballais, R. Freidrichs, R. Geurts, B.J. Métais (Springer, Heidelberg, 2006)

    Google Scholar 

  143. F. Golse, C.D. Levermore, The Stokes-Fourier and acoustic limits for the Boltzmann equation. Commun. Pure Appl. Math. 55, 336–393 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  144. F. Golse, L. Saint-Raymond, The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155, 81–161 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  145. D. Gough, The anelastic approximation for thermal convection. J. Atmos. Sci. 26, 448–456 (1969)

    Article  Google Scholar 

  146. E. Grenier, Y. Guo, T.T. Nguyen, Spectral stability of Prandtl boundary layers: an overview. Analysis (Berlin) 35(4), 343–355 (2015)

    Google Scholar 

  147. T. Hagstrom, J. Lorenz, On the stability of approximate solutions of hyperbolic-parabolic systems and all-time existence of smooth, slightly compressible flows. Indiana Univ. Math. J. 51, 1339–1387 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  148. M. Hieber, J. Prüss, Heat kernels and maximal L p-L q estimates for parabolic evolution equations. Commun. Partial Differ. Equ. 22(9,10), 1647–1669 (1997)

    Google Scholar 

  149. D. Hoff, Global existence for 1D compressible, isentropic Navier-Stokes equations with large initial data. Trans. Am. Math. Soc. 303, 169–181 (1987)

    MATH  Google Scholar 

  150. D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data. Indiana Univ. Math. J. 41, 1225–1302 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  151. D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differ. Equ. 120, 215–254 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  152. D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data. Arch. Ration. Mech. Anal. 132, 1–14 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  153. D. Hoff, Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of heat conducting fluids. Arch. Ration. Mech. Anal. 139, 303–354 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  154. D. Hoff, Dynamics of singularity surfaces for compressible viscous flows in two space dimensions. Commun. Pure Appl. Math. 55, 1365–1407 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  155. D. Hoff, D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow. SIAM J. Appl. Math. 51, 887–898 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  156. E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  157. C.O. Horgan, Korn’s inequalities and their applications in continuum fluid mechanics. SIAM Rev. 37, 491–511 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  158. W. Jaeger, A. Mikelić, On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170, 96–122 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  159. S. Jiang, Global solutions of the Cauchy problem for a viscous, polytropic ideal gas. Ann. Sc. Norm. Super. Pisa 26, 47–74 (1998)

    MathSciNet  MATH  Google Scholar 

  160. S. Jiang, C. Zhou, Existence of weak solutions to the three dimensional steady compressible Navier–Stokes equations. Ann. IHP: Anal. Nonlinéaire 28, 485–498 (2011)

    MathSciNet  MATH  Google Scholar 

  161. S. Jiang, Q. Ju, F. Li, Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions. Commun. Math. Phys. 297(2), 371–400 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  162. F. John, Nonlinear Wave Equations, Formation of Singularities. University Lecture Series, vol. 2 (American Mathematical Society, Providence, 1990). Seventh Annual Pitcher Lectures delivered at Lehigh University, Bethlehem, Pennsylvania, April 1989

    Google Scholar 

  163. T.K. Karper, A convergent FEM-DG method for the compressible Navier–Stokes equations. Numer. Math. 125(3), 441–510 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  164. T. Kato, On classical solutions of the two-dimensional nonstationary Euler equation. Arch. Ration. Mech. Anal. 25, 188–200 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  165. T. Kato, Nonstationary flows of viscous and ideal fluids in r 3. J. Funct. Anal. 9, 296–305 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  166. T. Kato, Remarks on the zero viscosity limit for nonstationary Navier–Stokes flows with boundary, in Seminar on PDE’s, ed. by S.S. Chern (Springer, New York, 1984)

    Google Scholar 

  167. T. Kato, C.Y. Lai, Nonlinear evolution equations and the Euler flow. J. Funct. Anal. 56, 15–28 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  168. M. Keel, T. Tao, Endpoint Strichartz estimates. Am. J. Math. 120(5), 955–980 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  169. J.L. Kelley, General Topology (Van Nostrand, Inc., Princeton, 1957)

    MATH  Google Scholar 

  170. S. Klainerman, A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  171. R. Klein, Asymptotic analyses for atmospheric flows and the construction of asymptotically adaptive numerical methods. Z. Angw. Math. Mech. 80, 765–777 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  172. R. Klein, Multiple spatial scales in engineering and atmospheric low Mach number flows. ESAIM: Math. Mod. Numer. Anal. 39, 537–559 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  173. R. Klein, N. Botta, T. Schneider, C.D. Munz, S. Roller, A. Meister, L. Hoffmann, T. Sonar, Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Eng. Math. 39, 261–343 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  174. G. Kothe, Topological Vector Spaces I (Springer, Heidelberg, 1969)

    MATH  Google Scholar 

  175. A. Kufner, O. John, S. Fučík, Function Spaces (Noordhoff International Publishing, Leyden, 1977). Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis

    Google Scholar 

  176. P. Kukučka, On the existence of finite energy weak solutions to the Navier-Stokes equations in irregular domains. Math. Methods Appl. Sci. 32(11), 1428–1451 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  177. O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow (Gordon and Breach, New York, 1969)

    MATH  Google Scholar 

  178. O.A. Ladyzhenskaya, N.N. Uralceva, Equations aux dérivées partielles de type elliptique (Dunod, Paris, 1968)

    MATH  Google Scholar 

  179. O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Uralceva, Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs, vol. 23 (American Mathematical Society, Providence, 1968)

    Google Scholar 

  180. H. Lamb, Hydrodynamics (Cambridge University Press, Cambridge, 1932)

    MATH  Google Scholar 

  181. Y. Last, Quantum dynamics and decomposition of singular continuous spectra. J. Funct. Anal. 142, 406–445 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  182. H. Leinfelder, A geometric proof of the spectral theorem for unbounded selfadjoint operators. Math. Ann. 242(1), 85–96 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  183. R. Leis, Initial-Boundary Value Problems in Mathematical Physics (B.G. Teubner, Stuttgart, 1986)

    Book  MATH  Google Scholar 

  184. J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  185. J. Li, Z. Xin, Global existence of weak solutions to the barotropic compressible Navier-Stokes flows with degenerate viscosities, Preprint, http://arxiv.org/pdf/1504.06826.pdf

  186. J. Lighthill, On sound generated aerodynamically I. General theory. Proc. R. Soc. Lond. A 211, 564–587 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  187. J. Lighthill, On sound generated aerodynamically II. General theory. Proc. R. Soc. Lond. A 222, 1–32 (1954)

    Article  MATH  Google Scholar 

  188. J. Lighthill, Waves in Fluids (Cambridge University Press, Cambridge, 1978)

    MATH  Google Scholar 

  189. F. Lignières, The small-Péclet-number approximation in stellar radiative zones. Astron. Astrophys. 348, 933–939 (1999)

    Google Scholar 

  190. J.-L. Lions, Quelques remarques sur les problèmes de Dirichlet et de Neumann. Séminaire Jean Leray 6, 1–18 (1961/1962)

    Google Scholar 

  191. P.-L. Lions, Mathematical Topics in Fluid Dynamics, Vol. 1, Incompressible Models (Oxford Science Publication, Oxford, 1996)

    Google Scholar 

  192. P.-L. Lions, Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models (Oxford Science Publication, Oxford, 1998)

    Google Scholar 

  193. J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, I. - III. (Dunod/Gautthier, Villars/Paris, 1968)

    Google Scholar 

  194. P.-L. Lions, N. Masmoudi, Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77, 585–627 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  195. P.-L. Lions, N. Masmoudi, On a free boundary barotropic model. Ann. Inst. Henri Poincaré 16, 373–410 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  196. P.-L. Lions, N. Masmoudi, From Boltzmann equations to incompressible fluid mechanics equations, I. Arch. Ration. Mech. Anal. 158, 173–193 (2001)

    Article  MATH  Google Scholar 

  197. P.-L. Lions, N. Masmoudi, From Boltzmann equations to incompressible fluid mechanics equations, II. Arch. Ration. Mech. Anal. 158, 195–211 (2001)

    Article  MATH  Google Scholar 

  198. F.B. Lipps, R.S. Hemler, A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci. 39, 2192–2210 (1982)

    Article  Google Scholar 

  199. A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems (Birkhäuser, Berlin, 1995)

    Book  MATH  Google Scholar 

  200. A. Majda, Introduction to PDE’s and Waves for the Atmosphere and Ocean. Courant Lecture Notes in Mathematics, vol. 9 (Courant Institute, New York, 2003)

    Google Scholar 

  201. J. Málek, J. Nečas, M. Rokyta, M. R˚užička, Weak and Measure-Valued Solutions to Evolutionary PDE’s (Chapman and Hall, London, 1996)

    Google Scholar 

  202. D. Maltese, A. Novotny, Compressible Navier-Stokes equations on thin domains. J. Math. Fluid Mech. 16, 571–594 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  203. N. Masmoudi, Incompressible inviscid limit of the compressible Navier–Stokes system. Ann. Inst. Henri Poincaré, Anal. Nonlinéaire 18, 199–224 (2001)

    Google Scholar 

  204. N. Masmoudi, Examples of singular limits in hydrodynamics, in Handbook of Differential Equations, III, ed. by C. Dafermos, E. Feireisl (Elsevier, Amsterdam, 2006)

    Google Scholar 

  205. N. Masmoudi, Rigorous derivation of the anelastic approximation. J. Math. Pures Appl. 88, 230–240 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  206. A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  207. A. Matsumura, T. Nishida, The initial value problem for the equations of motion of compressible and heat conductive fluids. Commun. Math. Phys. 89, 445–464 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  208. A. Matsumura, M. Padula, Stability of stationary flow of compressible fluids subject to large external potential forces. Stab. Appl. Anal. Continuous Media 2, 183–202 (1992)

    Google Scholar 

  209. V.G. Maz’ya, Sobolev Spaces (Springer, Berlin, 1985)

    Book  MATH  Google Scholar 

  210. J. Metcalfe, D. Tataru, Global parametrices and dispersive estimates for variable coefficient wave equations. Math. Ann. 353(4), 1183–1237 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  211. G. Métivier, Small Viscosity and Boundary Layer Methods (Birkhäuser, Basel, 2004)

    Book  MATH  Google Scholar 

  212. G. Métivier, S. Schochet, The incompressible limit of the non-isentropic Euler equations. Arch. Ration. Mech. Anal. 158, 61–90 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  213. B. Mihalas, B. Weibel-Mihalas, Foundations of Radiation Hydrodynamics (Dover Publications, Dover, 1984)

    MATH  Google Scholar 

  214. B.E. Mitchell, S.K. Lele, P. Moin, Direct computation of the sound generated by vortex pairing in an axisymmetric jet. J. Fluid Mech. 383, 113–142 (1999)

    Article  MATH  Google Scholar 

  215. B. Mohammadi, O. Pironneau, F. Valentin, Rough boundaries and wall laws. Int. J. Numer. Meth. Fluids 27, 169–177 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  216. C.B. Morrey, L. Nirenberg, On the analyticity of the solutions of linear elliptic systems of partial differential equations. Commun. Pure Appl. Math. 10, 271–290 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  217. I. Müller, T. Ruggeri, Rational Extended Thermodynamics. Springer Tracts in Natural Philosophy, vol. 37 (Springer, Heidelberg, 1998)

    Google Scholar 

  218. F. Murat, Compacité par compensation. Ann. Sc. Norm. Sup. Pisa Cl. Sci. Ser. 5 IV, 489–507 (1978)

    Google Scholar 

  219. J. Nečas, Les méthodes directes en théorie des équations elliptiques (Academia, Praha, 1967)

    MATH  Google Scholar 

  220. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20, 608–623 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  221. A. Novotný, M. Padula, L p approach to steady flows of viscous compressible fluids in exterior domains. Arch. Ration. Mech. Anal. 126, 243–297 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  222. A. Novotný, K. Pileckas, Steady compressible Navier-Stokes equations with large potential forces via a method of decomposition. Math. Meth. Appl. Sci. 21, 665–684 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  223. A. Novotný, M. Pokorný, Steady compressible Navier–Stokes–Fourier system for monoatomic gas and its generalizations. J. Differ. Equ. 251, 270–315 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  224. A. Novotný, I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  225. Y. Ogura, M. Phillips, Scale analysis for deep and shallow convection in the atmosphere. J. Atmos. Sci. 19, 173–179 (1962)

    Article  Google Scholar 

  226. C. Olech, The characterization of the weak* closure of certain sets of integrable functions. SIAM J. Control 12, 311–318 (1974). Collection of articles dedicated to the memory of Lucien W. Neustadt

    Google Scholar 

  227. H.C. Öttinger, Beyond Equilibrium Thermodynamics (Wiley, New Jersey, 2005)

    Book  Google Scholar 

  228. J. Oxenius, Kinetic Theory of Particles and Photons (Springer, Berlin, 1986)

    Book  Google Scholar 

  229. M. Padula, M. Pokorný, Stability and decay to zero of the L 2-norms of perturbations to a viscous compressible heat conductive fluid motion exterior to a ball. J. Math. Fluid Mech. 3(4), 342–357 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  230. J. Pedlosky, Geophysical Fluid Dynamics (Springer, New York, 1987)

    Book  MATH  Google Scholar 

  231. P. Pedregal, Parametrized Measures and Variational Principles (Birkhäuser, Basel, 1997)

    Book  MATH  Google Scholar 

  232. P.I. Plotnikov, J. Sokolowski, Concentrations of stationary solutions to compressible Navier-Stokes equations. Commun. Math. Phys. 258, 567–608 (2005)

    Article  MATH  Google Scholar 

  233. P.I. Plotnikov, J. Sokolowski, Stationary solutions of Navier-Stokes equations for diatomic gases. Russ. Math. Surv. 62, 3 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  234. P.I. Plotnikov, W. Weigant, Isothermal Navier-Stokes equations and Radon transform. SIAM J. Math. Anal. 47(1), 626–653 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  235. N.V. Priezjev, S.M. Troian, Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular versus continuum predictions. J. Fluid Mech. 554, 25–46 (2006)

    Article  MATH  Google Scholar 

  236. T. Qian, X.-P. Wang, P. Sheng, Hydrodynamic slip boundary condition at chemically patterned surfaces: a continuum deduction from molecular dynamics. Phys. Rev. E 72, 022501 (2005)

    Article  Google Scholar 

  237. M. Reed, B. Simon, Methods of Modern Mathematical Physics. III. Analysis of Operators (Academic/Harcourt Brace Jovanovich Publishers, New York, 1978)

    Google Scholar 

  238. M. Reed, B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators (Academic/Harcourt Brace Jovanovich Publishers, New York, 1978)

    Google Scholar 

  239. W. Rudin, Real and Complex Analysis (McGraw-Hill, Singapore, 1987)

    MATH  Google Scholar 

  240. L. Saint-Raymond, Hydrodynamic limits: some improvements of the relative entropy method. Ann. Inst. Henri Poincaré, Anal. Nonlinéaire 26, 705–744 (2009)

    Google Scholar 

  241. R. Salvi, I. Straškraba, Global existence for viscous compressible fluids and their behaviour as t. J. Fac. Sci. Univ. Tokyo 40(1), 17–52 (1993)

    Google Scholar 

  242. M. Schechter, On L p estimates and regularity. I. Am. J. Math. 85, 1–13 (1963)

    Article  MATH  Google Scholar 

  243. M.E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations. Commun. Partial Differ. Equ. 11(7), 733–763 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  244. M.E. Schonbek, Lower bounds of rates of decay for solutions to the Navier-Stokes equations. J. Am. Math. Soc. 4(3), 423–449 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  245. M.E. Schonbek, Asymptotic behavior of solutions to the three-dimensional Navier-Stokes equations. Indiana Univ. Math. J. 41(3), 809–823 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  246. D. Serre, Variation de grande amplitude pour la densité d’un fluid viscueux compressible. Phys. D 48, 113–128 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  247. D. Serre, Systems of Conservations Laws (Cambridge university Press, Cambridge, 1999)

    Book  Google Scholar 

  248. C. Simader, H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in Lq-spaces for bounded and exterior domains, in Mathematical Problems Relating to the Navier-Stokes Equations, Series: Advanced in Mathematics for Applied Sciences, ed. by G.P. Galdi (World Scientific, Singapore, 1992), pp. 1–35

    Google Scholar 

  249. H.F. Smith, C.D. Sogge, Global Strichartz estimates for nontrapping perturbations of the Laplacian. Comm. Partial Differ. Equ. 25(11–12), 2171–2183 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  250. H.F. Smith, D. Tataru, Sharp local well-posedness results for the nonlinear wave equation. Ann. Math. (2) 162(1), 291–366 (2005)

    Google Scholar 

  251. E.M. Stein, Singular Integrals and Differential Properties of Functions (Princeton University Press, Princeton, 1970)

    MATH  Google Scholar 

  252. R.S. Strichartz, A priori estimates for the wave equation and some applications. J. Funct. Anal. 5, 218–235 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  253. F. Sueur, On the inviscid limit for the compressible Navier-Stokes system in an impermeable bounded domain. J. Math. Fluid Mech. 16(1), 163–178 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  254. L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, ed. by L.J. Knopps. Research Notes in Mathematics, vol. 39 (Pitman, Boston, 1975), pp. 136–211

    Google Scholar 

  255. R. Temam, Navier-Stokes Equations (North-Holland, Amsterdam, 1977)

    MATH  Google Scholar 

  256. R. Temam, Problèmes mathématiques en plasticité (Dunod, Paris, 1986)

    MATH  Google Scholar 

  257. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (VEB Deutscher Verlag der Wissenschaften, Berlin, 1978)

    MATH  Google Scholar 

  258. H. Triebel, Theory of Function Spaces (Geest and Portig K.G., Leipzig, 1983)

    Book  MATH  Google Scholar 

  259. C. Truesdell, W. Noll, The Non-linear Field Theories of Mechanics (Springer, Heidelberg, 2004)

    Book  MATH  Google Scholar 

  260. C. Truesdell, K.R. Rajagopal, An introduction to the Mechanics of Fluids (Birkhäuser, Boston, 2000)

    Book  MATH  Google Scholar 

  261. V.A. Vaigant, An example of the nonexistence with respect to time of the global solutions of Navier-Stokes equations for a compressible viscous barotropic fluid (in Russian). Dokl. Akad. Nauk 339(2), 155–156 (1994)

    MathSciNet  MATH  Google Scholar 

  262. V.A. Vaigant, A.V. Kazhikhov, On the existence of global solutions to two-dimensional Navier-Stokes equations of a compressible viscous fluid (in Russian). Sibirskij Mat. Z. 36(6), 1283–1316 (1995)

    MATH  Google Scholar 

  263. B.R. Vaĭnberg, Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki (Moskov Gos University, Moscow, 1982)

    MATH  Google Scholar 

  264. A. Valli, M. Zajaczkowski, Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103, 259–296 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  265. A. Vasseur, C. Yu, Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations. Invent. Math. 206, 935–974 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  266. C. Villani, Limites hydrodynamiques de l’équation de Boltzmann. Astérisque, SMF 282, 365–405 (2002)

    MATH  Google Scholar 

  267. M.I. Vishik, L.A. Ljusternik, Regular perturbations and a boundary layer for linear differential equations with a small parameter (in Russian). Usp. Mat. Nauk 12, 3–122 (1957)

    Google Scholar 

  268. A. Visintin, Strong convergence results related to strict convexity. Commun. Partial Differ. Equ. 9, 439–466 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  269. A. Visintin, Towards a two-scale calculus. ESAIM Control Optim. Calc. Var. 12(3), 371–397 (electronic) (2006)

    Google Scholar 

  270. W. von Wahl, Estimating ∇u by divu and curlu. Math. Methods Appl. Sci. 15, 123–143 (1992)

    Google Scholar 

  271. S. Wang, S. Jiang, The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations. Commun. Partial Differ. Equ. 31(4–6), 571–591 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  272. C.H. Wilcox, Sound Propagation in Stratified Fluids. Applied Mathematical Sciences, vol. 50 (Springer, Berlin, 1984)

    Google Scholar 

  273. S.A. Williams, Analyticity of the boundary for Lipschitz domains without Pompeiu property. Indiana Univ. Math. J. 30(3), 357–369 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  274. R.Kh. Zeytounian, Asymptotic Modeling of Atmospheric Flows (Springer, Berlin, 1990)

    Book  MATH  Google Scholar 

  275. R.Kh. Zeytounian, Joseph Boussinesq and his approximation: a contemporary view. C.R. Mec. 331, 575–586 (2003)

    Google Scholar 

  276. R.Kh. Zeytounian, Theory and Applications of Viscous Fluid Flows (Springer, Berlin, 2004)

    Book  MATH  Google Scholar 

  277. W.P. Ziemer, Weakly Differentiable Functions (Springer, New York, 1989)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Feireisl, E., Novotný, A. (2017). Acoustic Analogies. In: Singular Limits in Thermodynamics of Viscous Fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-63781-5_10

Download citation

Publish with us

Policies and ethics