Skip to main content
Log in

Compressible Navier–Stokes Equations on Thin Domains

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider the barotropic Navier–Stokes system describing the motion of a compressible viscous fluid confined to a straight layer \({\Omega_\varepsilon = \omega\times (0, \varepsilon)}\) , where ω is a particular 2-D domain (a periodic cell, bounded domain or the whole 2-D space). We show that the weak solutions in the 3D domain converge to a (strong) solutions of the 2-D Navier–Stokes system on ω as \({\varepsilon \to 0}\) on the maximal life time of the strong solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A.: Sobolev spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Bella, P., Feireisl, E., Novotny, A.: Dimensional reduction for compressible viscous fluids. Preprint IM-2013-21. http://www.math.cas.cz

  3. Dafermos C.M.: The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70, 167–179 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dain S.: Generalized Korn’s inequality and conformal killing vectors. Calc. Var. Part. Differ. Equ. 25, 535–540 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Feireisl E.: Dynamics of viscous compressible fluids. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  6. Feireisl E., Jin B., Novotný A.: Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier–Stokes system. J. Math. Fluid Mech. 14, 712–730 (2012)

    Google Scholar 

  7. Feireisl E., Novotny A.: Singular limits in thermodynamics of viscous fluids. Birkhauser, Basel (2009)

    Book  MATH  Google Scholar 

  8. Feireisl E., Novotný A., Sun Y.: Suitable weak solutions to the Navier–Stokes equations of compressible viscous fluids. Indiana Univ. Math. J. 60, 611–631 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Germain P.: Weak-strong uniqueness for the isentropic compressible Navier–Stokes system. J. Math. Fluid Mech. 13(1), 137–146 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Iftimie D., Raugel G., Sell G.R.: Navier–Stokes equations in thin 3D domains with Navier boundary conditions. Indiana Univ. Math. J. 56, 1083–1156 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jesslé, D., Jin, B.J., Novotny, A.: Navier–Stokes–Fourier system on unbounded domains: weak solutions, relative entropies, weak-strong uniqueness. SIAM J. Math. Anal. 45(3), 1003–1026 (2013)

  12. Kazhikhov A.V.: Correctness “in the large” of mixed boundary value problems for a model of equations of a viscous gas (in Russian). Din. Sphlosn. Sredy 21, 18–47 (1975)

    Google Scholar 

  13. Lewicka M., Müller S.: The uniform Korn Poincaré inequality in thin domains. Ann. I. H. Poincaré 28, 443–469 (2011)

    Article  MATH  ADS  Google Scholar 

  14. Lions P.-L.: Mathematical topics in fluid dynamics, vol. 1, Incompressible models. Oxford Science Publication, Oxford (1996)

    Google Scholar 

  15. Lions P.-L.: Mathematical topics in fluid dynamics, vol. 2, Compressible models. Oxford Science Publication, Oxford (1998)

    Google Scholar 

  16. Mellet A., Vasseur A.: Existence and uniqueness of global strong solutions for one-dimensional compressible Navier–Stokes equations. SIAM J. Math. Anal. 39(4), 1344–1365 (2007/08)

    Article  MathSciNet  Google Scholar 

  17. Novotny A., Straskraba I.: Introduction to the mathematical theory of compressible fluids. Oxford Science Publication, Oxford (2004)

    Google Scholar 

  18. Rajagopal, K. R.: A new development and interpretation of the Navier–Stokes fluid which reveals why the “Stokes assumption” is inapt. Int. J. Non-Linear Mech. 50, 141–151 (2013)

  19. Raugel G., Sell G.R.: Navier–Stokes equations on thin 3D domains. I: Global attractors and global regularity of solutions. J. Am. Math. Soc. 6, 503–568 (1993)

    MATH  MathSciNet  Google Scholar 

  20. Reshetnyak Yu. G.: Stability theorems in geometry and analysis, vol. 304 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1994). Translated from the 1982 Russian original by N. S. Dairbekov and V. N. Dyatlov, and revised by the author, Translation edited and with a foreword by S. S. Kutateladze.

  21. Valli A., Zajaczkowski W.: Navier–Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103, 259–296 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Vodák R.: Asymptotic analysis of steady and nonsteady Navier–Stokes equations for barotropic compressible flow. Acta Appl. Math. 110, 991–1009 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Maltese.

Additional information

Communicated by E. Feireisl

A. Novotný work was supported by the MODTERCOM project within the APEX programme of the region Provence-Alpe-Côte d’Azur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maltese, D., Novotný, A. Compressible Navier–Stokes Equations on Thin Domains. J. Math. Fluid Mech. 16, 571–594 (2014). https://doi.org/10.1007/s00021-014-0177-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-014-0177-2

Keywords

Navigation