Skip to main content

Describing Robotic Bat Flight with Stable Periodic Orbits

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10384))

Included in the following conference series:

Abstract

From a dynamic system point of view, bat locomotion stands out among other forms of flight. During a large part of bat wingbeat cycle the moving body is not in a static equilibrium. This is in sharp contrast to what we observe in other simpler forms of flight such as insects, which stay at their static equilibrium. Encouraged by biological examinations that have revealed bats exhibit periodic and stable limit cycles, this work demonstrates that one effective approach to stabilize articulated flying robots with bat morphology is locating feasible limit cycles for these robots; then, designing controllers that retain the closed-loop system trajectories within a bounded neighborhood of the designed periodic orbits. This control design paradigm has been evaluated in practice on a recently developed bio-inspired robot called Bat Bot (B2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \({\mathcal {U}}\) is a smooth embedded submanifold of \({\mathbb {R}}^n\).

References

  1. Aldridge, H.: Kinematics and aerodynamics of the greater horseshoe bat, rhinolophus ferrumequinum, in horizontal flight at various flight speeds. J. Exp. Biol. 126(1), 479–497 (1986)

    Google Scholar 

  2. Aldridge, H.: Body accelerations during the wingbeat in six bat species: the function of the upstroke in thrust generation. J. Exp. Biol. 130(1), 275–293 (1987)

    Google Scholar 

  3. Bahlman, J.W., Swartz, S.M., Breuer, K.S.: Design and characterization of a multi-articulated robotic bat wing. Bioinspiration Biomim. 8(1), 016009 (2013)

    Article  Google Scholar 

  4. Burridge, R.R., Rizzi, A.A., Koditschek, D.E.: Sequential composition of dynamically dexterous robot behaviors. Int. J. Rob. Res. 18(6), 534–555 (1999)

    Article  Google Scholar 

  5. Byrnes, C.I., Isidori, A.: A frequency domain philosophy for nonlinear systems, with applications to stabilization and to adaptive control. In: IEEE Conference on Decision and Control, pp. 1569–1573. IEEE (1984)

    Google Scholar 

  6. Chung, S.-J., Dorothy, M.: Neurobiologically inspired control of engineered flapping flight. J. Guidance Control Dyn. 33(2), 440–453 (2010)

    Article  Google Scholar 

  7. Deng, X., Schenato, L., Sastry, S.S.: Flapping flight for biomimetic robotic insects: Part II-flight control design. IEEE Trans. Rob. 22(4), 789–803 (2006)

    Article  Google Scholar 

  8. Deng, X., Schenato, L., Wu, W.C., Sastry, S.S.: Flapping flight for biomimetic robotic insects: Part I-system modeling. IEEE Trans. Rob. 22(4), 776–788 (2006)

    Article  Google Scholar 

  9. Dingwell, J.B., Cusumano, J.P.: Nonlinear time series analysis of normal and pathological human walking. Chaos Interdisc. J. Nonlinear Sci. 10(4), 848–863 (2000)

    Article  MATH  Google Scholar 

  10. Dorothy, M., Chung, S.-J.: Methodological remarks on CPG-based control of flapping flight. In: AIAA Atmospheric Flight Mechanics Conference (2010)

    Google Scholar 

  11. Garcia, M.S.: Stability, scaling, and chaos in passive-dynamic gait models. Ph.D. thesis, Cornell University (1999)

    Google Scholar 

  12. Guckenheimer, J., Johnson, S.: Planar hybrid systems. In: Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1994. LNCS, vol. 999, pp. 202–225. Springer, Heidelberg (1995). doi:10.1007/3-540-60472-3_11

    Chapter  Google Scholar 

  13. Hoff, J., Ramezani, A., Chung, S.-J., Hutchinson, S.: Synergistic design of a bio-inspired micro aerial vehicle with articulated wings. In: The Robotics: Science and Systems (RSS) (2016)

    Google Scholar 

  14. Isidori, A., Moog, C.: On the nonlinear equivalent of the notion of transmission zeros. In: Byrnes, C.I., Kurzhanski, A.B. (eds.) Modelling and Adaptive Control. LNCIS, vol. 105, pp. 146–158. Springer, Heidelberg (1988). doi:10.1007/BFb0043181

    Chapter  Google Scholar 

  15. Khalil, H.K., Grizzle, J.: Nonlinear Systems, vol. 3. Prentice Hall, New Jersey (1996)

    Google Scholar 

  16. Meurant, G.: An Introduction to Differentiable Manifolds and Riemannian Geometry, vol. 120. Academic Press, Cambridge (1986)

    Google Scholar 

  17. Nayfeh, A.H.: Perturbation methods in nonlinear dynamics. In: Lecture Notes in Physics, vol. 247, pp. 238–314. Springer, Heidelberg (1986)

    Google Scholar 

  18. Norberg, U.M.: Some advanced flight manoeuvres of bats. J. Exp. Biol. 64(2), 489–495 (1976)

    MathSciNet  Google Scholar 

  19. Ramezani, A., Chung, S.-J., Hutchinson, S.: A biomimetic robotic platform to study flight specializations of bats. Sci. Rob. 2(3), eaal2505 (2017)

    Article  Google Scholar 

  20. Ramezani, A., Shi, X., Chung, S.-J., Hutchinson, S.: Bat Bot (B2), a biologically inspired flying machine. In: IEEE International Conference on Robotics and Automation (ICRA) (2016)

    Google Scholar 

  21. Ramezani, A., Shi, X., Chung, S.-J., Hutchinson, S.: Lagrangian modeling and flight control of articulated-winged bat robot. In: International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October (2015)

    Google Scholar 

  22. Riskin, D.K., Willis, D.J., Iriarte-Díaz, J., Hedrick, T.L., Kostandov, M., Chen, J., Laidlaw, D.H., Breuer, K.S., Swartz, S.M.: Quantifying the complexity of bat wing kinematics. J. Theor. Biol. 254(3), 604–615 (2008)

    Article  Google Scholar 

  23. Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion, vol. 28. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Ramezani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ramezani, A., Ahmed, S.U., Hoff, J., Chung, SJ., Hutchinson, S. (2017). Describing Robotic Bat Flight with Stable Periodic Orbits. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63537-8_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63536-1

  • Online ISBN: 978-3-319-63537-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics