Skip to main content

Hydrogen Sulfide as an O2 Sensor: A Critical Analysis

  • Chapter
  • First Online:
Pulmonary Vasculature Redox Signaling in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 967))

Abstract

There is increasing interest in the physiological actions and therapeutic potential of the gasotransmitter hydrogen sulfide (H2S). In addition to exerting antihypertensive, anti-inflammatory, antioxidant, and pro-angiogenic effects, H2S has been suggested to play a central and ubiquitous role in O2 sensing. According to this concept, because H2S is metabolized by oxidation, its cellular concentration varies inversely with the ambient pO2 such that hypoxia causes a rise in intracellular [H2S]; this then acts to induce appropriate cellular responses. In particular, it has been proposed that H2S underpins O2 sensing in the carotid body, which triggers increases in ventilation in response to hypoxemia, and also in pulmonary arteries, which constrict in response to local alveolar hypoxia. This process, termed hypoxic pulmonary vasoconstriction (HPV), acts to divert blood to better-oxygenated regions of the lung, thereby maintaining the ventilation–perfusion ratio and minimizing hypoxia-induced falls in blood O2 saturation. In this chapter, we present a critical review of the evidence supporting and questioning this model in both HPV and the carotid body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hosoki, R., Matsuki, N., & Kimura, H. (1997). The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochemical and Biophysical Research Communications, 237(3), 527–531. doi:10.1006/bbrc.1997.6878.

    Article  CAS  PubMed  Google Scholar 

  2. Brampton, J., & Aaronson, P. I. (2016). Role of hydrogen sulfide in systemic and pulmonary hypertension: Cellular mechanisms and therapeutic implications. Cardiovascular & Hematological Agents in Medicinal Chemistry, 14(1), 4–22.

    Article  CAS  Google Scholar 

  3. Olson, K. R., Dombkowski, R. A., Russell, M. J., Doellman, M. M., Head, S. K., Whitfield, N. L., & Madden, J. A. (2006). Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. The Journal of Experimental Biology, 209(Pt 20), 4011–4023. doi:10.1242/jeb.02480.

    Article  CAS  PubMed  Google Scholar 

  4. Sylvester, J. T., Shimoda, L. A., Aaronson, P. I., & Ward, J. P. (2012). Hypoxic pulmonary vasoconstriction. Physiological Reviews, 92(1), 367–520. doi:10.1152/physrev.00041.2010.

    Article  CAS  PubMed  Google Scholar 

  5. Olson, K. R., Healy, M. J., Qin, Z., Skovgaard, N., Vulesevic, B., Duff, D. W., Whitfield, N. L., Yang, G., Wang, R., & Perry, S. F. (2008). Hydrogen sulfide as an oxygen sensor in trout gill chemoreceptors. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 295(2), R669–R680. doi:10.1152/ajpregu.00807.2007.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, R. (2012). Physiological implications of hydrogen sulfide: A whiff exploration that blossomed. Physiological Reviews, 92(2), 791–896. doi:10.1152/physrev.00017.2011.

    Article  CAS  PubMed  Google Scholar 

  7. Olson, K. R., Deleon, E. R., Gao, Y., Hurley, K., Sadauskas, V., Batz, C., & Stoy, G. F. (2013). Thiosulfate: A readily accessible source of hydrogen sulfide in oxygen sensing. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 305(6), R592–R603. doi:10.1152/ajpregu.00421.2012.

    Article  CAS  PubMed  Google Scholar 

  8. Kimura, H. (2014). The physiological role of hydrogen sulfide and beyond. Nitric Oxide, 41, 4–10. doi:10.1016/j.niox.2014.01.002.

    Article  CAS  PubMed  Google Scholar 

  9. Bouillaud, F., & Blachier, F. (2011). Mitochondria and sulfide: A very old story of poisoning, feeding, and signaling? Antioxidants & Redox Signaling, 15(2), 379–391. doi:10.1089/ars.2010.3678.

    Article  CAS  Google Scholar 

  10. Szabo, C., Ransy, C., Modis, K., Andriamihaja, M., Murghes, B., Coletta, C., Olah, G., Yanagi, K., & Bouillaud, F. (2014). Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. British Journal of Pharmacology, 171(8), 2099–2122. doi:10.1111/bph.12369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang, G., Wu, L., Jiang, B., Yang, W., Qi, J., Cao, K., Meng, Q., Mustafa, A. K., Mu, W., Zhang, S., Snyder, S. H., & Wang, R. (2008). H2S as a physiologic vasorelaxant: Hypertension in mice with deletion of cystathionine gamma-lyase. Science, 322(5901), 587–590. doi:10.1126/science.1162667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mikami, Y., Shibuya, N., Ogasawara, Y., & Kimura, H. (2013). Hydrogen sulfide is produced by cystathionine gamma-lyase at the steady-state low intracellular Ca(2+) concentrations. Biochemical and Biophysical Research Communications, 431(2), 131–135. doi:10.1016/j.bbrc.2013.01.010.

    Article  CAS  PubMed  Google Scholar 

  13. Yuan, G., Vasavda, C., Peng, Y. J., Makarenko, V. V., Raghuraman, G., Nanduri, J., Gadalla, M. M., Semenza, G. L., Kumar, G. K., Snyder, S. H., & Prabhakar, N. R. (2015). Protein kinase G-regulated production of H2S governs oxygen sensing. Science Signaling, 8(373), ra37. doi:10.1126/scisignal.2005846.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kimura, Y., Toyofuku, Y., Koike, S., Shibuya, N., Nagahara, N., Lefer, D., Ogasawara, Y., & Kimura, H. (2015). Identification of H2S3 and H2S produced by 3-mercaptopyruvate sulfurtransferase in the brain. Scientific Reports, 5, 14774. doi:10.1038/srep14774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kimura, H. (2016). Hydrogen polysulfide (H2S n ) signaling along with hydrogen sulfide (H2S) and nitric oxide (NO). Journal of Neural Transmission, 123(11), 1235–1245. doi:10.1007/s00702-016-1600-z.

    Article  CAS  PubMed  Google Scholar 

  16. Cortese-Krott, M. M., Kuhnle, G. G., Dyson, A., Fernandez, B. O., Grman, M., DuMond, J. F., Barrow, M. P., McLeod, G., Nakagawa, H., Ondrias, K., Nagy, P., King, S. B., Saavedra, J. E., Keefer, L. K., Singer, M., Kelm, M., Butler, A. R., & Feelisch, M. (2015). Key bioactive reaction products of the NO/H2S interaction are S/N-hybrid species, polysulfides, and nitroxyl. Proceedings of the National Academy of Sciences of the United States of America, 112(34), E4651–E4660. doi:10.1073/pnas.1509277112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eberhardt, M., Dux, M., Namer, B., Miljkovic, J., Cordasic, N., Will, C., Kichko, T. I., de la Roche, J., Fischer, M., Suarez, S. A., Bikiel, D., Dorsch, K., Leffler, A., Babes, A., Lampert, A., Lennerz, J. K., Jacobi, J., Marti, M. A., Doctorovich, F., Hogestatt, E. D., Zygmunt, P. M., Ivanovic-Burmazovic, I., Messlinger, K., Reeh, P., & Filipovic, M. R. (2014). H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway. Nature Communications, 5, 4381. doi:10.1038/ncomms5381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pushpakumar, S., Kundu, S., & Sen, U. (2014). Endothelial dysfunction: The link between homocysteine and hydrogen sulfide. Current Medicinal Chemistry, 21(32), 3662–3672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peng, Y. J., Nanduri, J., Raghuraman, G., Souvannakitti, D., Gadalla, M. M., Kumar, G. K., Snyder, S. H., & Prabhakar, N. R. (2010). H2S mediates O2 sensing in the carotid body. Proceedings of the National Academy of Sciences of the United States of America, 107(23), 10719–10724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dombkowski, R. A., Russell, M. J., Schulman, A. A., Doellman, M. M., & Olson, K. R. (2005). Vertebrate phylogeny of hydrogen sulfide vasoactivity. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 288(1), R243–R252. doi:10.1152/ajpregu.00324.2004.

    Article  CAS  PubMed  Google Scholar 

  21. Russell, M. J., Dombkowski, R. A., & Olson, K. R. (2008). Effects of hypoxia on vertebrate blood vessels. Journal of Experimental Zoology. Part A, Ecological Genetics and Physiology, 309(2), 55–63. doi:10.1002/jez.427.

    Article  PubMed  Google Scholar 

  22. Madden, J. A., Ahlf, S. B., Dantuma, M. W., Olson, K. R., & Roerig, D. L. (2012). Precursors and inhibitors of hydrogen sulfide synthesis affect acute hypoxic pulmonary vasoconstriction in the intact lung. Journal of Applied Physiology, 112(3), 411–418. doi:10.1152/japplphysiol.01049.2011.

    Article  CAS  PubMed  Google Scholar 

  23. Olson, K. R., & Whitfield, N. L. (2010). Hydrogen sulfide and oxygen sensing in the cardiovascular system. Antioxidants & Redox Signaling, 12(10), 1219–1234. doi:10.1089/ars.2009.2921.

    Article  CAS  Google Scholar 

  24. Olson, K. R., Whitfield, N. L., Bearden, S. E., St Leger, J., Nilson, E., Gao, Y., & Madden, J. A. (2010). Hypoxic pulmonary vasodilation: A paradigm shift with a hydrogen sulfide mechanism. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 298(1), R51–R60. doi:10.1152/ajpregu.00576.2009.

    Article  CAS  PubMed  Google Scholar 

  25. Skovgaard, N., & Olson, K. R. (2012). Hydrogen sulfide mediates hypoxic vasoconstriction through a production of mitochondrial ROS in trout gills. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 303(5), R487–R494. doi:10.1152/ajpregu.00151.2012.

    Article  CAS  PubMed  Google Scholar 

  26. Chunyu, Z., Junbao, D., Dingfang, B., Hui, Y., Xiuying, T., & Chaoshu, T. (2003). The regulatory effect of hydrogen sulfide on hypoxic pulmonary hypertension in rats. Biochemical and Biophysical Research Communications, 302(4), 810–816.

    Article  PubMed  Google Scholar 

  27. Prieto-Lloret, J., Shaifta, Y., Ward, J. P., & Aaronson, P. I. (2015). Hypoxic pulmonary vasoconstriction in isolated rat pulmonary arteries is not inhibited by antagonists of H2 S-synthesizing pathways. The Journal of Physiology, 593(2), 385–401. doi:10.1113/jphysiol.2014.277046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiaohui, L., Junbao, D., Lin, S., Jian, L., Xiuying, T., Jianguang, Q., Bing, W., Hongfang, J., & Chaoshu, T. (2005). Down-regulation of endogenous hydrogen sulfide pathway in pulmonary hypertension and pulmonary vascular structural remodeling induced by high pulmonary blood flow in rats. Circulation Journal, 69(11), 1418–1424.

    Article  PubMed  Google Scholar 

  29. Krause, N. C., Kutsche, H. S., Santangelo, F., DeLeon, E. R., Dittrich, N. P., Olson, K. R., & Althaus, M. (2016). Hydrogen sulfide contributes to hypoxic inhibition of airway transepithelial sodium absorption. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 311(3), R607–R617. doi:10.1152/ajpregu.00177.2016.

    Article  PubMed  Google Scholar 

  30. Prieto-Lloret, J., & Aaronson, P. I. (2015). Potentiation of hypoxic pulmonary vasoconstriction by hydrogen sulfide precursors 3-mercaptopyruvate and D-cysteine is blocked by the cystathionine gamma lyase inhibitor propargylglycine. Advances in Experimental Medicine and Biology, 860, 81–87. doi:10.1007/978-3-319-18440-1_10.

    Article  CAS  PubMed  Google Scholar 

  31. Olson, K. R., Forgan, L. G., Dombkowski, R. A., & Forster, M. E. (2008). Oxygen dependency of hydrogen sulfide-mediated vasoconstriction in cyclostome aortas. The Journal of Experimental Biology, 211(Pt 14), 2205–2213. doi:10.1242/jeb.016766.

    Article  CAS  PubMed  Google Scholar 

  32. Asimakopoulou, A., Panopoulos, P., Chasapis, C. T., Coletta, C., Zhou, Z., Cirino, G., Giannis, A., Szabo, C., Spyroulias, G. A., & Papapetropoulos, A. (2013). Selectivity of commonly used pharmacological inhibitors for cystathionine beta synthase (CBS) and cystathionine gamma lyase (CSE). British Journal of Pharmacology, 169(4), 922–932. doi:10.1111/bph.12171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Waypa, G. B., Marks, J. D., Guzy, R., Mungai, P. T., Schriewer, J., Dokic, D., & Schumacker, P. T. (2010). Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circulation Research, 106(3), 526–535. doi:10.1161/CIRCRESAHA.109.206334.

    Article  CAS  PubMed  Google Scholar 

  34. Go, Y. M., & Jones, D. P. (2011). Cysteine/cystine redox signaling in cardiovascular disease. Free Radical Biology & Medicine, 50(4), 495–509. doi:10.1016/j.freeradbiomed.2010.11.029.

    Article  CAS  Google Scholar 

  35. Pourmahram, G. E., Snetkov, V. A., Shaifta, Y., Drndarski, S., Knock, G. A., Aaronson, P. I., & Ward, J. P. (2008). Constriction of pulmonary artery by peroxide: Role of Ca2+ release and PKC. Free Radical Biology & Medicine, 45(10), 1468–1476. doi:10.1016/j.freeradbiomed.2008.08.020.

    Article  CAS  Google Scholar 

  36. Liu, Y., & Gutterman, D. D. (2002). Oxidative stress and potassium channel function. Clinical and Experimental Pharmacology & Physiology, 29(4), 305–311.

    Article  CAS  Google Scholar 

  37. Prieto-Lloret, J., Snetkov, V., Connolly, M. J., Ward, J. P., & Aaronson, P. I. (2011). Mechanism of hydrogen sulfide mediated contraction in rat small pulmonary arteries. Proceedings of the Physiological Society, 23, C80.

    Google Scholar 

  38. Waypa, G. B., Smith, K. A., & Schumacker, P. T. (2016). O2 sensing, mitochondria and ROS signalling: The fog is lifting. Molecular Aspects of Medicine, 47–48, 76–89. doi:10.1016/j.mam.2016.01.002.

    Article  PubMed  Google Scholar 

  39. Robertson, T. P., Hague, D., Aaronson, P. I., & Ward, J. P. (2000). Voltage-independent calcium entry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the rat. The Journal of Physiology, 525(3), 669–680. doi:10.1111/j.1469-7793.2000.t01-1-00669.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gonzalez, C., Almaraz, L., Obeso, A., & Rigual, R. (1992). Oxygen and acid chemoreception in the carotid body chemoreceptors. Trends in Neurosciences, 15(4), 146–153.

    Article  CAS  PubMed  Google Scholar 

  41. Koyama, Y., Coker, R. H., Stone, E. E., Lacy, D. B., Jabbour, K., Williams, P. E., & Wasserman, D. H. (2000). Evidence that carotid bodies play an important role in glucoregulation in vivo. Diabetes, 49(9), 1434–1442.

    Article  CAS  PubMed  Google Scholar 

  42. Ribeiro, M. J., Sacramento, J. F., Gonzalez, C., Guarino, M. P., Monteiro, E. C., & Conde, S. V. (2013). Carotid body denervation prevents the development of insulin resistance and hypertension induced by hypercaloric diets. Diabetes, 62(8), 2905–2916. doi:10.2337/db12-1463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kemp, P. J., & Telezhkin, V. (2014). Oxygen sensing by the carotid body: Is it all just rotten eggs? Antioxidants & Redox Signaling, 20(5), 794–804. doi:10.1089/ars.2013.5377.

    Article  CAS  Google Scholar 

  44. Li, Q., Sun, B., Wang, X., Jin, Z., Zhou, Y., Dong, L., Jiang, L. H., & Rong, W. (2010). A crucial role for hydrogen sulfide in oxygen sensing via modulating large conductance calcium-activated potassium channels. Antioxidants & Redox Signaling, 12(10), 1179–1189. doi:10.1089/ars.2009.2926.

    Article  CAS  Google Scholar 

  45. Makarenko, V. V., Nanduri, J., Raghuraman, G., Fox, A. P., Gadalla, M. M., Kumar, G. K., Snyder, S. H., & Prabhakar, N. R. (2012). Endogenous H2S is required for hypoxic sensing by carotid body glomus cells. American Journal of Physiology. Cell Physiology, 303(9), C916–C923. doi:10.1152/ajpcell.00100.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Prabhakar, N. R., Dinerman, J. L., Agani, F. H., & Snyder, S. H. (1995). Carbon monoxide: A role in carotid body chemoreception. Proceedings of the National Academy of Sciences of the United States of America, 92(6), 1994–1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Telezhkin, V., Brazier, S. P., Cayzac, S., Muller, C. T., Riccardi, D., & Kemp, P. J. (2009). Hydrogen sulfide inhibits human BK(Ca) channels. Advances in Experimental Medicine and Biology, 648, 65–72. doi:10.1007/978-90-481-2259-2_7.

    Article  CAS  PubMed  Google Scholar 

  48. Jiao, Y., Li, Q., Sun, B., Zhang, G., & Rong, W. (2015). Hydrogen sulfide activates the carotid body chemoreceptors in cat, rabbit and rat ex vivo preparations. Respiratory Physiology & Neurobiology, 208, 15–20. doi:10.1016/j.resp.2015.01.002.

    Article  CAS  Google Scholar 

  49. Del Rio, R., Marcus, N. J., & Schultz, H. D. (2013). Inhibition of hydrogen sulfide restores normal breathing stability and improves autonomic control during experimental heart failure. Journal of Applied Physiology, 114(9), 1141–1150. doi:10.1152/japplphysiol.01503.2012.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tan, Z. Y., Lu, Y., Whiteis, C. A., Simms, A. E., Paton, J. F., Chapleau, M. W., & Abboud, F. M. (2010). Chemoreceptor hypersensitivity, sympathetic excitation, and overexpression of ASIC and TASK channels before the onset of hypertension in SHR. Circulation Research, 106(3), 536–545. doi:10.1161/CIRCRESAHA.109.206946.

    Article  CAS  PubMed  Google Scholar 

  51. Peng, Y. J., Makarenko, V. V., Nanduri, J., Vasavda, C., Raghuraman, G., Yuan, G., Gadalla, M. M., Kumar, G. K., Snyder, S. H., & Prabhakar, N. R. (2014). Inherent variations in CO-H2S-mediated carotid body O2 sensing mediate hypertension and pulmonary edema. Proceedings of the National Academy of Sciences of the United States of America, 111(3), 1174–1179. doi:10.1073/pnas.1322172111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fandrey, J. (2015). Rounding up the usual suspects in O2 sensing: CO, NO, and H2S! Science Signaling, 8(373), fs10. doi:10.1126/scisignal.aab1665.

    Article  PubMed  Google Scholar 

  53. Buckler, K. J. (2012). Effects of exogenous hydrogen sulphide on calcium signalling, background (TASK) K channel activity and mitochondrial function in chemoreceptor cells. Pflügers Archiv, 463(5), 743–754. doi:10.1007/s00424-012-1089-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Telezhkin, V., Brazier, S. P., Cayzac, S. H., Wilkinson, W. J., Riccardi, D., & Kemp, P. J. (2010). Mechanism of inhibition by hydrogen sulfide of native and recombinant BKCa channels. Respiratory Physiology & Neurobiology, 172(3), 169–178. doi:10.1016/j.resp.2010.05.01.

    Article  CAS  Google Scholar 

  55. Cai, B., Gong, D., Pan, Z., Liu, Y., Qian, H., Zhang, Y., Jiao, J., Lu, Y., & Yang, B. (2007). Large-conductance Ca2+−activated K+ currents blocked and impaired by homocysteine in human and rat mesenteric artery smooth muscle cells. Life Sciences, 80(22), 2060–2066. doi:10.1016/j.lfs.2007.03.003.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip I. Aaronson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Prieto-Lloret, J., Aaronson, P.I. (2017). Hydrogen Sulfide as an O2 Sensor: A Critical Analysis. In: Wang, YX. (eds) Pulmonary Vasculature Redox Signaling in Health and Disease. Advances in Experimental Medicine and Biology, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-319-63245-2_15

Download citation

Publish with us

Policies and ethics