Skip to main content
Log in

Hydrogen polysulfide (H2S n ) signaling along with hydrogen sulfide (H2S) and nitric oxide (NO)

  • High Impact Review in Neuroscience, Neurology or Psychiatry - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Hydrogen sulfide (H2S) is a physiological mediator with various roles, including neuro-modulation, vascular tone regulation, and cytoprotection against ischemia–reperfusion injury, angiogenesis, and oxygen sensing. Hydrogen polysulfide (H2S n ), which possesses a higher number of sulfur atoms than H2S, recently emerged as a potential signaling molecule that regulates the activity of ion channels, a tumor suppressor, transcription factors, and protein kinases. Some of the previously reported effects of H2S are now attributed to the more potent H2S n . H2S n is produced by 3-mercaptopyruvate sulfurtransferase (3MST) from 3-mercaptopyruvate (3MP) and is generated by the chemical interaction of H2S with nitric oxide (NO). H2S n sulfhydrates (sulfurates) cysteine residues of target proteins and modifies their activity, whereas H2S sulfurates oxidized cysteine residues as well as reduces cysteine disulfide bonds. This review focuses on the recent progress made in studies concerning the production and physiological roles of H2S n and H2S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AAT:

Aspartate aminotransferase

CAT:

Cysteine aminotransferase

CBS:

Cystathionine β-synthase

CO:

Carbon monoxide

CSE:

Cystathionine γ-lyase

DAO:

d-Amino acid oxidase

DTT:

Dithiothreitol

eNOS:

Endothelial nitric oxide synthetase

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GSH:

Glutathione

GSSH:

Glutathione persulfide

GSSSG:

Glutathione trisulfide

HNO:

Nitroxyl

H2S:

Hydrogen sulfide

H2S n :

Hydrogen polysulfide

HSSNO:

Nitrosopersulfide

Keap1:

Kelch ECH associating protein 1

LTP:

Long-term potentiation

3MP:

3-Mercaptopyruvate

3MST:

3-Mercaptopyruvate sulfurtransferase

NF-κB:

Nuclear factor κB

NMDA:

N-methyl-d-aspartate

NO:

Nitric oxide

Nrf2:

Nuclear factor erythroid 2-related factor 2

PTEN:

Phosphatase and tensin homolog

SNAP:

S-nitroso-N-acetyl-d,l-penicillamine

–SNO:

S-nitrosothiol

SNP:

Sodium nitroprusside

SOD1:

Superoxide dismutase 1

–SOH:

Sulfenic acid

SQR:

Sulfur quinone oxidoreductase

TNFα:

Tumor necrosis factor α

TRPA1:

Transient receptor potential ankyrin 1

References

  • Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071

    CAS  PubMed  Google Scholar 

  • Aizenman E, Lipton DA, Loring RH (1989) Selective modulation of NMDA responses by reduction and oxidation. Neuron 2:1257–1263

    Article  CAS  PubMed  Google Scholar 

  • Braunstein AE, Goryachenkowa EV, Tolosa EA, Willhardt IH, Yefremova LL (1971) Specificity and some other properties of liver serine sulphhydrase: evidence for its identity with cystathionine β-synthase. Biochim Biophys Acta 242:247–260

    Article  CAS  PubMed  Google Scholar 

  • Bredt DA, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 87:682–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brigham MP, Stein W, Moore S (1960) The concentrations of cysteine and cystine in humanblood plasma. J Clin Invest 39:1633–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cacanviova, Kristek F, Misak A, Ondrias K (2012) Product(s) of H2S–NO interaction and relaxation of aortic rings. The first European conference on the biology of H2S, p 100

  • Cai WJ, Wang MJ, Moore PK, Jin HM, Yao T, Zhu YC (2007) The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res 76:29–40

    Article  CAS  PubMed  Google Scholar 

  • Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, Kevil CG, Lefer DJ (2009) Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res 105:365–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavallini D, Marco CD, Mondavi B, Mori BG (1960) The cleavage of cystine by cystathionase and the transulfuration of hypotaurine. Enzymologia 22:161–173

    CAS  PubMed  Google Scholar 

  • Cavallini D, Mondovi B, De Marco C, Scioscia-Santoro A (1962) The mechanism of desulphhydration of cysteine. Enzymologia 24:253–266

    CAS  PubMed  Google Scholar 

  • Chen X, Jhee KH, Kruger WD (2004) Production of the neuromodulator H2S by cystathionine beta-synthase via the condensation of cysteine and homocystein. J Biol Chem 279:52082–52086

    Article  CAS  PubMed  Google Scholar 

  • Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R (2009) H2S biogenesis by human cystathionine γ-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem 284:11601–11612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper AJL (1983) Biochemistry of sulfur-containing amino acids. Annu Rev Biochem 52:187–222

    Article  CAS  PubMed  Google Scholar 

  • Cortese-Krott MM, Kuhnle GGC, Dyson A, Fernandez BO, Grman M, DuMond JF, Barrow MP, McLeod G, Nakagawa H, Ondrias K, Nagy P, King SB, Saavedra JE, Keefer LK, Singer M, Kelm M, Butler AR, Feelisch M (2015) Key bioactive reaction products of the NO/H2S interaction are S/N-hybrid species, polysulfides, and nitroxyl. Proc Natl Acad Sci USA 112:E4651–E4660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czyzewski BK, Wang D-N (2012) Identification and characterization of a bacterial hydrosulphide ion channel. Nature 483:494–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberhardt M, Dux M, Namer B, Miljkovic J, Cordasic N, Will C, Kichko TI, Roche J, Fischer M, Suarez SA, Bikiel D, Dorsch K, Leffler A, Babes A, Lampert A, Lennerz JK, Jacobi J, Marti MA, Doctorovich F, Hogestatt ED, Ygmunt PM, Ivanovic-Burmazovic I, Messlinger K, Reeh P, Filipovic MR (2014) H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signaling pathway. Nat Commun 5:4381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, Jiao X, Scalia R, Kiss L, Szabo C, Kimura H, Chow CW, Lefer DJ (2007) Hydrogen sulfide attenuates myocardial ischemia–reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci USA 104:15560–15565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francoleon NE, Carrington SJ, Fukuto JM (2011) The reaction of H2S with oxidized thiols: generation of persulfides and implications to H2S biology. Arch Biochem Biophys 516:146–153

    Article  CAS  PubMed  Google Scholar 

  • Greiner R, Palinkas Z, Basell K, Becher D, Antelmann H, Nagy P, Dick TP (2013) Polysulfides link H2S to protein thiol oxidation. Antioxid Redox Signal 19:1749–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatakeyama Y, Takahashi K, Tominaga M, Kimura H, Ohta T (2015) Polysulfide evokes acute pain through the activation of nociceptive TRPA1 in mouse sensory neurons. Mol Pain 11:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Hildebrandt TM, Grieshaber MK (2008) Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J 275:3352–3361

    Article  CAS  PubMed  Google Scholar 

  • Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531

    Article  CAS  PubMed  Google Scholar 

  • Hylin JW, Wood JL (1959) Enzymatic formation of polysulfides from mercaptopyruvate. J Biol Chem 234:2141–2144

    CAS  PubMed  Google Scholar 

  • Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y, Suematsu M, Motohashi H, Fujii S, Matsunaga T, Yamamoto M, Ono K, Davarie-Baez NO, Xian M, Fukuto JM, Akaike T (2014) Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci USA 111:7606–7611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishigami M, Hiraki K, Umemura K, Ogasawara Y, Ishii K, Kimura H (2009) A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid Redox Signal 11:205–214

    Article  CAS  PubMed  Google Scholar 

  • Jarosz AP, Wei W, Gauld JW, Auld J, Ozcan F, Aslan M, Mutus B (2015) Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is inactivated by S-sulfuration in vitro. Free Radic Biol Med 89:512–521

    Article  CAS  PubMed  Google Scholar 

  • Jennings ML (2013) Transport of H2S and HS across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl/HS exchange. Am J Physiol Cell Physiol 305:C941–C950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabil O, Banerjee R (2010) Redox biochemistry of hydrogen sulfide. J Biol Chem 285:21903–21907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabil O, Banerjee R (2014) Enzymology of H2S biogenesis, decay and signaling. Antioxid Redox Signal 20:770–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura H (2015) Signaling molecules: hydrogen sulfide and polysulfides. Antioxid Redox Signal 22:362–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura Y, Kimura H (2004) Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18:1165–1167

    CAS  PubMed  Google Scholar 

  • Kimura Y, Mikami Y, Osumi K, Tsugane M, Oka J-I, Kimura H (2013) Polysulfides are possible H2S-derived signaling molecules in rat brain. FASEB J 27:2451–2457

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Toyofuku Y, Koike S, Shibuya N, Nagahara N, Lefer D, Ogasawara Y, Kimura H (2015) Identification of H2S3 and H2S produced by 3-mercaptopyruvate sulfurtransferase in the brain. Sci Rep 5:14774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King AL, Polhemus D, Bhushan S, Otsuka H, Kondo K, Nicholson CK, Bradley JM, Islam KN, Calvert JW, Tao Y-X, Dugas TR, Kelley EE, Elrod JW, Huang PL, Wang R, Lefer DJ (2014) Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc Natl Acad Sci USA 111:3182–3187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koike S, Ogasawara Y, Shibuya N, Kimura H, Ishii K (2013) Polysulfide exerts a protective effect against cytotoxicity cuased by t-buthylhydroperoxide through Nrf2 signaling in neuroblastoma cells. FEBS Lett 587:3548–3555

    Article  CAS  PubMed  Google Scholar 

  • Kuo SM, Lea TC, Stipanuk MH (1983) developmental pattern, tissue distribution, and subcellular distribution of cysteine:alpha-ketoglutarate aminotransferase and 3-mercaptopyruvate sulfurtransferase activities in the rat. Biol Neonate 43:23–32

    Article  CAS  PubMed  Google Scholar 

  • Massey V, Williams CH, Palmer G (1971) The presence of S0-containing impurities in commercial samples of oxidized glutathione and their catalytic effect in the reduction of cytochrome c. Biochem Biophys Res Commun 42:730–738

    Article  CAS  PubMed  Google Scholar 

  • Mathai JC, Missner A, Kugler P, Saparov SM, Zeidel ML, Lee JK, Pohl P (2009) No facilitator required for membrane transport of hydrogen sulfide. Proc Natl Acad Sci USA 106:16633–16638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meister A, Fraser PE, Tice SV (1954) Enzymatic desulfuration of β-mercaptopyruvate to pyruvate. J Biol Chem 206:561–575

    CAS  PubMed  Google Scholar 

  • Mikami Y, Shibuya N, Kimura Y, Nagahara N, Ogasawara Y, Kimura H (2011a) Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem J 439:479–485

    Article  CAS  PubMed  Google Scholar 

  • Mikami Y, Shibuya N, Kimura Y, Nagahara N, Yamada M, Kimura H (2011b) Hydrogen sulfide protects the retina from light-induced degeneration by the modulation of Ca2+ influx. J Biol Chem 286:39379–39386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikami Y, Shibuya N, Ogasawara Y, Kimura H (2013) Hydrogen sulfide is produced by cystathionine γ-lyase at the steady-state low intracellular Ca2+ concentrations. Biochem Biophys Res Commun 431:131–135

    Article  CAS  PubMed  Google Scholar 

  • Miljkovic JL, Kenkel I, Ivanovic-Burmazovic I, Filipovic MR (2013) Generation of HNO and HSNO from nitrite by heme-iron-catalyzed metabolism with H2S. Angew Chem Int Ed 52:12061–12064

    Article  CAS  Google Scholar 

  • Minamishima S, Bougaki M, Sips PY, Yu JD, Minamishima YA, Elrod JW, Lefer DJ, Bloch KD, Ichinose F (2009) Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice. Circulation 120:888–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishanina TV, Libiad M, Banerjee R (2015) Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol 11:457–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morikawa T, Kajimura M, Nakamura T, Hishiki T, Nakanishi T, Yukutake Y, Nagahata Y, Ishikawa M, Hattori K, Takenouchi T, Takahashi T, Ishii I, Matsubara K, Kabe Y, Uchiyama S, Nagata E, Gadalla MM, Snyder SH, Suematsu M (2012) Hypoxic regulation of the cerebral microcirculation is mediated by a carbon monoxide-sensitive hydrogen sulfide pathway. Proc Natl Acad Sci USA 109:1293–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, Barrow RK, Yang G, Wang R, Snyder SH (2009) H2S signals through protein S-sulfhydration. Sci Signal 2:ra72

    PubMed  PubMed Central  Google Scholar 

  • Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R, Amzel LM, Berkowitz DE, Snyder SH (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109:1259–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagahara N, Okazaki Tl, Nishino T (1995) Cytosolic mercaptupyruvate sulfurtransferase is evolutionarily related to mitochondrial rhodanese. Striking similarity in active site amino acid sequence and the increase in the mercaptopyruvate sulfurtransferase activity or rhodanese by site-directed mutagenesis. J Biol Chem 270:16230–16235

    Article  CAS  PubMed  Google Scholar 

  • Nagahara N, Yoshii T, Abe Y, Matsumura T (2007) Thioredoxin-dependent enzymatic activation of mercaptopyruvate sulfurtransferase. An intersubunit disulfide bond serves as a redox switch for activation. J Biol Chem 282:1561–1569

    Article  CAS  PubMed  Google Scholar 

  • Nagai Y, Tsugane M, Oka J, Kimura H (2004) Hydrogen sulfide induces calcium waves in astrocytes. FASEB J 18:557–559

    CAS  PubMed  Google Scholar 

  • Nagai Y, Tsugane M, Oka J-I, Kimura H (2006) Polysulfides induce calcium waves in rat hippocampal astrocytes. J Pharmacol Sci 100:200

    Google Scholar 

  • Nagy P, Winterbourn CC (2010) Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides. Chem Res Toxicol 23:1541–1543

    Article  CAS  PubMed  Google Scholar 

  • Nielsen RW, Tchibana C, Hansen NE, Winther JR (2011) Trisulfides in proteins. Antioxid Redox Signal 15:67–75

    Article  CAS  PubMed  Google Scholar 

  • Niu WN, Yadav PK, Adamec J, Banerjee R (2015) S-Glutathionylation enhances human cystathionine β-synthase activity under oxidative stress conditions. Antioxid Redox Signal 22:350–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogasawara Y, Ishii K, Togawa T, Tanabe S (1993) Determination of bound sulfur in serum by gas dialysis/high-performance liquid chromatography. Anal Biochem 215:73–81

    Article  CAS  PubMed  Google Scholar 

  • Olson KR, Dombkowski RA, Russell MJ, Doellman MM, Head SK, Whitfield NL, Madden JA (2006) Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J Exp Biol 209:4011–4023

    Article  CAS  PubMed  Google Scholar 

  • Oosumi K, Tsugane M, Ishigami M, Nagai Y, Iwai T, Oka J-I, Kimura H (2010) Polysulfide activates TRP channels and increases intracellular Ca2+ in astrocytes. Neurosci Res 685:e109–e222

    Article  Google Scholar 

  • Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabo C (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci USA 106:21972–21977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng YJ, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla MM, Kumar GK, Snyder SH, Prabhakar NR (2010) H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci USA 107:10719–10724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, Kim S, Snyder SH (2012) Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol Cell 45:13–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H (2009a) Vascular endothelium exresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem 146:623–626

    Article  CAS  PubMed  Google Scholar 

  • Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2009b) 3-Mercaptopyruvate sulfurtransferease produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11:703–714

    Article  CAS  PubMed  Google Scholar 

  • Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, Fukui K, Nagahara N, Kimura H (2013) A novel pathway for the production of hydrogen sulfide from d-cysteine in mammalian cells. Nat Commun 4:1366

    Article  PubMed  Google Scholar 

  • Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R (2009) Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem 284:22457–22466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stipanuk MH (1986) Metabolism of sulfur-containing amino acids. Ann Rev Nutr 6:179–209

    Article  CAS  Google Scholar 

  • Stipanuk MH, Beck PW (1982) Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J 206:267–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stubbert D, Prysyazhna O, Rudyk O, Scotcher J, Burgoyne JR, Eaton P (2014) Protein kinase G Iα oxidation paradoxically underlies blood pressure lowering by the reductant hydrogen sulfide. Hypertension 64:1344–1351

    Article  CAS  PubMed  Google Scholar 

  • Taoka S, Banerjee R (2001) Characterization of NO binding to human cystathionine beta-synthase: possible implications of the effects of CO and NO binding to the human enzyme. J Inorg Biochem 87:245–251

    Article  CAS  PubMed  Google Scholar 

  • Teague B, Asiedu S, Moore PK (2002) The smooth muscle relaxant effect of hydrogen sulphide in vitro: evidence for a physiological role to control intestinal contractility. Br J Pharmacol 137:139–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toohey JI (2011) Sulfur signaling: is the agent sulfide or sulfane? Anal Biochem 413:1–7

    Article  CAS  PubMed  Google Scholar 

  • Tripatara P, Patel NSA, Collino M, Gallicchio M, Kieswich J, Castiglia S, Benetti E, Stewart KN, Brown PAJ, Yaqoob MM, Fantozzi R, Thiemermann C (2008) Generation of endogenous hydrogen sulfide by cystathionine γ-lyase limits renal ischemia/reperfusion injury and dysfunction. Lab Invest 88:1038–1048

    Article  CAS  PubMed  Google Scholar 

  • Vasas A, Doka E, Fabian I, Nagy P (2015) Kinetic and thermodynamic studies on the disulfide-bond reducing potential of hydrogen sulfide. Nitric Oxide 46:93–101

    Article  CAS  PubMed  Google Scholar 

  • Whiteman M, Li L, Kostetski I, Chu SH, Siau JL, Bhatia M, Moore PK (2006) Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem Biophys Res Commun 343:303–310

    Article  CAS  PubMed  Google Scholar 

  • Yadav PK, Yamada K, Chiku T, Koutmos M, Banerjee R (2013) Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase. J Biol Chem 288:20002–20013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav PK, Martinov M, Vitvitsky V, Seravalli J, Wedmann R, Filipovic MR, Banerjee R (2016) Biosynthesis and reactivity of cysteine persulfides in signaling. J Am Chem Soc 138:289–299

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Zhao K, Ju Y, Mani S, Cao Q, Puukila S, Khaper N, Wu L, Wang R (2013) Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal 18:1906–1919

    Article  CAS  PubMed  Google Scholar 

  • Zanardo RCO, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL (2006) Hydrogen sulphide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J 20:2118–2120

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J 20:6008–6016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Institute of Neuroscience, a KAKENHI (26460115) Grant-in-Aid for Scientific Research, grants from Yamazaki Spice Promotion Foundation, grants from The Uehara Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Kimura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, H. Hydrogen polysulfide (H2S n ) signaling along with hydrogen sulfide (H2S) and nitric oxide (NO). J Neural Transm 123, 1235–1245 (2016). https://doi.org/10.1007/s00702-016-1600-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-016-1600-z

Keywords

Navigation