Skip to main content

Nanotechnology in Urology: History of Development and Applications in Urology

  • Chapter
  • First Online:
The History of Technologic Advancements in Urology

Abstract

In 1959, future Nobel Laureate (1965) Dr. Richard Feynman presented a landmark lecture entitled “There’s Plenty of Room at the Bottom” to the American Physical Society where he postulated the miniaturization of science and challenged the audience: “How small can you make machinery?” Dr. Feynman’s early visions and conceptual thoughts of shrinking down our understanding of the physical realm and examining the elemental parts on a small scale was the earliest invitation for our exploration into the realm of nanotechnology [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Feynman RP. There's plenty of room at the bottom (data storage). J Microelectromech Syst. 1992;1(1):60–6.

    Article  Google Scholar 

  2. Taniguchi N. On the basic concept of ‘Nano Technology’. Proceedings of the International Conference on Production Engineering, Tokyo, Part II (Japan Society of Precision Engineering). 1974.

    Google Scholar 

  3. Maddox MM, Liu J, Mandava SH, et al. Nanotechnology applications in urology: a review. Br J Urol. 2014;114:653–60.

    Article  Google Scholar 

  4. Gommersall L, Shergill IS, Ahmed HU, et al. Nanotechnology and its relevance to the urologist. Eur Urol. 2007;52:368–75.

    Article  CAS  PubMed  Google Scholar 

  5. Chow EK, Ho D. Cancer nanomedicine: from drug delivery to imaging. Sci Transl Med. 2013;5:216.

    Google Scholar 

  6. Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348:2491–9.

    Article  PubMed  Google Scholar 

  7. Feldman AS, McDougal WS, Harisinghani MG. The potential of nanoparticle-enhanced imaging. Urol Oncol. 2008;26:65–73.

    Article  CAS  PubMed  Google Scholar 

  8. Mirzaei M, Mehravi B, Ardestani MS, et al. In vitro evaluation of Gd(3+)−anionic linear globular dendrimer-monoclonal antibody: potential magnetic resonance imaging contrast agents for prostate cancer cell imaging. Mol Imaging Biol. 2015;17(6):770.

    Article  CAS  PubMed  Google Scholar 

  9. Shi C, Zhu Y, Cerwinka WH, et al. Quantum dots: emerging applications in urologic oncology. Urol Oncol. 2008;26:86–92.

    Article  CAS  PubMed  Google Scholar 

  10. Ma Q, Lin ZH, Yang N, et al. A novel carboxymethyl chitosan-quantum dot-based intracellular probe for ZN (2+) ion sensing in prostate cancer cells. Acta Biomater. 2014;10:868–74.

    Article  CAS  PubMed  Google Scholar 

  11. Fortier C, Dorucher Y, De Crecenzo G. Surface modification of nonviral nanocarriers for enhanced gene delivery. Nanomedicine. 2014;1:135–51.

    Article  Google Scholar 

  12. Larchian WA, Horiguchi Y, Nair SK, et al. Effectiveness of combined interleukin 2 and B7.1 vaccination strategy is dependent on the sequence and order: a liposome-mediated gene therapy treatment for bladder cancer. Clin Can Res. 2000;6:2913–20.

    CAS  Google Scholar 

  13. Hattori Y, Maitani Y. Enhanced in vitro DNA transfection efficiency by novel folate-linked nanoparticles in human prostate cancer and oral cancer. J Control Release. 2004;97:173–83.

    Article  CAS  PubMed  Google Scholar 

  14. Mofatt S, Papasakelariou C, et al. Successful in vivo tumor targeting of prostate-specific membrane antigen with a highly efficient J591/PEI/DNA molecular conjugate. Gene Ther. 2006;13:761–72.

    Article  Google Scholar 

  15. Mukherjee A, Darlington T, Baldwin R, et al. Development and screening of a series of antibody-conjugated and silica-coated iron oxide nanoparticles for targeting the prostate-specific membrane antigen. ChemMedChem. 2014;19:1356–60.

    Article  Google Scholar 

  16. Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol. 2008;26:57–64.

    Article  CAS  PubMed  Google Scholar 

  17. Barenholz Y. Doxil- the first FDA approved nano-drug: lessons learned. J Control Release. 2012;160:117–34.

    Article  CAS  PubMed  Google Scholar 

  18. Okada H, Doken Y, Ogawa Y, et al. Preparation of three-month depot injectable microspheres of leuprorelin acetate using biodegradable polymers. Pharm Res. 1994;11:1143–7.

    Article  CAS  PubMed  Google Scholar 

  19. Sahoo SK, Ma W, Labhasetwar V. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer. 2004;112:335–40.

    Article  CAS  PubMed  Google Scholar 

  20. Winquist E, Ernst DS, Jonker D, et al. Phase II trial of pegylated-liposomal doxorubicin in the treatment of advanced unresectable or metastatic transitional cell carcinoma of the urothelial tract. Eur J Cancer. 2003;39:1866–71.

    Article  CAS  PubMed  Google Scholar 

  21. Sumitomo M, Koizumi F, Asano T, et al. Novel SN-38-incorporated polymeric micelle, NK012, strongly suppresses renal cancer progression. Cancer Res. 2008;68:1631–5.

    Article  CAS  PubMed  Google Scholar 

  22. Liu J, Boonkaew B, Arora J, et al. Comparison of Sorafenib-loaded poly (lactic/glycolic) acid and DPPC liposome nanoparticle in the in vitro treatment of renal cell carcinoma. J Pharm Sci. 2014;104:1187–96.

    Article  Google Scholar 

  23. Kiyokawa H, Igawa Y, Mursahi O, et al. Distribution of doxorubicin in the bladder wall and regional lymph nodes after bladder submucosal injection of liposome doxorubicin in the dog. Urology. 1999;161:665–7.

    Article  CAS  Google Scholar 

  24. Lu Z, Yeh TK, Tsai M, et al. Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy. Clin Can Res. 2004;10:7677–84.

    Article  CAS  Google Scholar 

  25. Chen G, He Y, Wu X, et al. In vitro and in vivo studies of pirarubicin-loaded SWNT for the treatment of bladder cancer. Braz J Med Biol Res. 2012;45:771–6.

    Article  PubMed  PubMed Central  Google Scholar 

  26. McKiernan JM, Holder DD, Ghandour RA, et al. Phase II trial of intravesical nanoparticle albumin bound paclitaxel for the treatment of nonmuscle invasive urothelial carcinoma of the bladder after bacillus Calmette-Guerin treatment failure. J Urol. 2014;192:1633–8.

    Article  CAS  PubMed  Google Scholar 

  27. Stern JM, Stanfield J, Lotan Y, et al. Efficacy of laser-activated gold nanoshells in ablating prostate cancer cells in vitro. J Endourol. 2007;8:939–43.

    Article  Google Scholar 

  28. Stern JM, Stanfield J, Kabbani W, et al. Selective prostate cancer thermal ablation with laser activated gold nanoshells. J Urol. 2008;179:748–53.

    Article  PubMed  Google Scholar 

  29. Lee BR, Callaghan C, Mandava SH, et al. Nanotechnology combination therapy for renal cell carcinoma: gold nanorods bound with tyrosine kinase inhibitor produce synergistic treatment response when combined with laser thermal ablation in a renal cell carcinoma animal model. MP1–5, J Endo. 2015.

    Google Scholar 

  30. Kawai N, Ito A, Nakahara Y, et al. Anticancer effect of hyperthermia on prostate cancer mediated by magnetite cationic liposomes and immune-response induction in transplanted syngeneic rats. Prostate. 2005;64:373–81.

    Article  CAS  PubMed  Google Scholar 

  31. Patil US, Adireddy S, Jaiswal A, et al. In vitro/in vivo toxicity evaluation and quantification of iron oxide nanoparticles. Int J Mol Sci. 2015;16:24417–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fisher JW, Sarkar S, Buchanan CF, et al. Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res. 2010;70:9855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Burke A, Ding X, Singh R, et al. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc Natl Acad Sci U S A. 2009;106:12897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Humes HD. Bioartificial kidney for full renal replacement therapy. Semin Nephrol. 2000;20:71–82.

    CAS  PubMed  Google Scholar 

  35. Nissenson AR, Ronco C, Pergamit G, et al. Continuously functioning artificial nephron system: the promise of nanotechnology. Hemodial Int. 2005;9:210–7.

    Article  PubMed  Google Scholar 

  36. Pattison MA, Wurster S, Webster TJ, et al. Three-dimensional, nanostructured PLGA scaffolds for bladder tissue replacement applications. Biomaterials. 2005;26:2491–500.

    Article  CAS  PubMed  Google Scholar 

  37. Roth CC. Urologic tissue engineering in pediatrics: from nanostructures to bladders. Pediatr Res. 2010;67:509–13.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin R. Lee M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Liu, J., Lee, B.R. (2018). Nanotechnology in Urology: History of Development and Applications in Urology. In: Patel, S., Moran, M., Nakada, S. (eds) The History of Technologic Advancements in Urology. Springer, Cham. https://doi.org/10.1007/978-3-319-61691-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61691-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61689-6

  • Online ISBN: 978-3-319-61691-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics