Skip to main content

What Can Nanomedicine Learn from the Current Developments of Nanotechnology?

  • Chapter
  • First Online:
Nanomedicine

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1716 Accesses

Abstract

Nanomedicine is the applications of nanotechnology in medicine, ranging from diagnostics and therapeutics. The changes and evolution made in nanotechnology could thus greatly influence the developments of nanomedicine. In recent years, the research and development in nanomedicine have received enormous attentions and interests from industry, academia, government and society, due to its enormous capability to provide unique benefits and great advantages, such as target specificity and less invasive treatments. However, several concerns have also been raised, particularly with respect to nanotoxicity and safety issues. Alongside the development in nanotechnology, lessons could be learnt to better make recommendations in order to drive nanomedicine further in the right direction, heading towards the new and powerful era of medicine with confidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Logothetidis S (ed) (2012) Nanomedicine and nanobiotechnology. Nanoscience and nanotechnology. Springer, Heidelberg

    Google Scholar 

  2. Boisseau P, Loubaton N (2011) Nanomedicine, nanotechnology in medicine. C R Phys 12:620–636

    Article  CAS  Google Scholar 

  3. Fattal E, Tsapis N (2014) Nanomedicine technology: current achievements and new trends. Clin Transl Imaging 2(1):77–87

    Article  Google Scholar 

  4. Tong S, Fine E, Lin Y et al (2014) Nanomedicine: tiny particles and machines give huge gains. Ann Biomed Eng 42(2):243–259

    Article  Google Scholar 

  5. Jain K (2008) The handbook of nanomedicine, 1st edn. Humana Press, Totowa

    Google Scholar 

  6. Kalangutkar P (2014) The evolution of nanomedicine with the re-evolution of nanotechnology. Int J Eng Sci Invent 3(5):12–16

    Google Scholar 

  7. Zarzycki A (2014) Editorial: at source of nanotechnology. Tecno Lógicas 17(32):9–10

    Google Scholar 

  8. Vogel V (ed) (2009) Volume 5: Nanomedicine. Nanotechnology. Wiley, Weinheim

    Google Scholar 

  9. European Technology Platform on Nanomedicine (2009) Roadmaps in nanomedicine towards 2020 (version 1.0). www.etp nanomedicine.eu/public/.../091022_ETPN_Report_2009.pdf. Accessed on 14 Jan 2014

  10. European Technology Platform on Nanomedicine (2013) Roadmaps in nanomedicine towards 2020 (version 1.0). www.etp-nanomedicine.eu/public/.../091022_ETPN_Report_2009.pdf Accessed on 14 Jan 2014

  11. Engstrom D, Savu V, Zhu X et al (2011) High throughput nanofabrication of silicon nanowire and carbon nanotube tips on AFM probes by stencil-deposited catalysts. NanoLett 11(4):1568–1574

    Article  CAS  Google Scholar 

  12. Lieber C (2011) Semiconductor nanowires: a platform for nanoscience and nanotechnology. MRS Bull 36(12):1052–1063

    Article  CAS  Google Scholar 

  13. Smith GB & Granqvist CGS (2010) Green Nanotechnology: Solutions for Sustainability and Energy in the Built Environment. CRC Press Print ISBN: 978-1-4200-8532-7. eBook ISBN: 978-1-4200-8533-4. http://www.crcnetbase.com/isbn/9781420085334

  14. Juliano R (2012) The future of nanomedicine: promises and limitations. Sci Public Policy 39(1):99–104

    Article  Google Scholar 

  15. Xu B, Yan X, Zhang J et al (2012) Glass etching to bridge micro- and nanofluidics. Lab Chip 12(2):381–386

    Article  CAS  Google Scholar 

  16. Saito T, Ohshima S, Xu W et al (2005) Size control of metal nanoparticle catalysts for the gas-phase synthesis of single-walled carbon nanotubes. J Phys Chem B 109(21):10649–10652

    Article  Google Scholar 

  17. França R, Zhang F, Veres T et al (2013) Core–shell nanoparticles as prodrugs: possible cytotoxicological and biomedical impacts of batch-to-batch inconsistencies. J Colloid Interface Sci 389(1):292–297

    Article  Google Scholar 

  18. Segerink L, Eijkel J (2014) Nanofluidics in point of care applications. Lab Chip. doi:10.1039/c4lc00298a

    Google Scholar 

  19. Stone H, Kim S (2001) Microfluidics: basic issues, applications and challenges. Am Inst Chem Eng J 47(6):1250–1254

    Article  CAS  Google Scholar 

  20. Wang L, Fan J (2010) Nanofluids research: key issues. Nanoscale Res Lett 5:1241–1252

    Article  Google Scholar 

  21. Liu L, Yoo S, Lee S et al (2011) Wet-chemical synthesis of palladium nanosprings. Nano Lett 11:3979–3982

    Article  CAS  Google Scholar 

  22. Choi C, Kim C (2006) Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control. Nanotechnology 17(21):5326–5333

    Article  CAS  Google Scholar 

  23. Huefner S (2006) Nanobiosensors. http://www.chem.usu.edu~tapaskar/Sara.ppt. Accessed on 1 July 2013

    Google Scholar 

  24. Topal C (2011) Nanobiosensor. http://bionanotech.uniss.it/wpcontent/uploads/2011/09/biosensori.ppt. Accessed 1 July 2013

  25. Saha K, Agast S, Kim C et al (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  Google Scholar 

  26. Cao X, Ye Y, Liu S (2011) Gold nanoparticle-based signal amplification for biosensing. Anal Chem 417(1):1–16

    CAS  Google Scholar 

  27. Pumera M, Sanchez S, Ichinose I et al (2007) Electrochemical nanobiosensors. Sens Actuators B 123:1195–1205

    Article  CAS  Google Scholar 

  28. Steffens C, Leite F, Bueno C et al (2012) Atomic force microscopy as a tool applied to nanobiosensors. Sensors 12:8278–8300

    Article  CAS  Google Scholar 

  29. Tang B, Cao L, Xu K et al (2008) A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles. Chem Eur J 24:3637–3644

    Article  Google Scholar 

  30. Lad A, Agrawal Y (2012) Optical nanobiosensor: a new analytical tool for monitoring carboplatin–DNA interaction in vitro. Talanta 97:218–221

    Article  CAS  Google Scholar 

  31. Elahi M, Bathaie S, Mousavi M et al (2012) A new DNA-nanobiosensor based on g-quadruplex immobilized on carbon nanotubes modified glassy carbon electrode. Electrochim Acta 82:143–151

    Article  CAS  Google Scholar 

  32. Parolo C, Merkoci A, Mousavi M et al (2013) Paper-based nanobiosensors for diagnostics. Chem Soc Rev 42:450–457

    Google Scholar 

  33. Hoshino Y, Takashi K, Yoshio O, & Kenneth JS (2008) Peptide imprinted polymer nanoparticles: a plastic antibody. J Amer Chem Soc 130(46):15242–15243

    Google Scholar 

  34. Foudeh A, Didar T, Veres T et al (2012) Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab Chip 12(18):3249–3266

    Article  CAS  Google Scholar 

  35. Medina-Sanchez M, Miserere S, Merkoci A (2012) Nanomaterials and lab-on-a-chip technologies. Lab Chip 12:1932–1943

    Article  CAS  Google Scholar 

  36. Schumacher, Soeren, Jörg Nestler, Thomas Otto, Michael Wegener, Eva Ehrentreich-Förster, Dirk Michel, Kai Wunderlich et al (2012) ‘Highly-integrated lab-on-chip system for point-of-care multiparameter analysis.” Lab Chip 12(3):464–473

    Google Scholar 

  37. Govindarajan A, Ramachandran S, Vigil G et al (2011) A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world: an example of microfluidic origami. Lab Chip 12(1):174–181

    Article  Google Scholar 

  38. Carmode D, Skajaa T, Fayad Z et al (2009) Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol 29:992–1000

    Google Scholar 

  39. Lee N, Choi S, Hyeon T (2013) Nano-sized CT contrast agents. Adv Mater 25(19):2641–2660

    Google Scholar 

  40. Chien C, Chen H, Lai S et al (2012) Gold nanoparticles as high-resolution X-ray imaging contrast agents for the analysis of tumor-related micro-vasculature. J Nanobiotechnol 10:10

    Article  CAS  Google Scholar 

  41. Bae H, Ahmad T, Rhee I, Chang Y, Jin SU, Hong S (2012) Carbon-coated iron oxide nanoparticles as contrast agents in magnetic resonance imaging. Nanoscale Res Lett 7:44

    Article  Google Scholar 

  42. Gupta A, Arora A, Menakshi A et al (2012) Nanotechnology and its applications in drug delivery: a review. WebmedCentral Med Educ 3(1):MC002867

    Google Scholar 

  43. Liu H, Liu T, Wang H et al (2013) Impact of PEGylation on the biological effects and light heat conversion efficiency of gold nanoshells on silica nanorattles. Biomaterials 34(28):6967–6975

    Article  CAS  Google Scholar 

  44. Wang M, Thanou M (2010) Targeting nanoparticles to cancer. Pharmacol Res 62:90–99

    Google Scholar 

  45. Hatakeyama H, Akita H, Ishida E et al (2007) Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Pharm Nanotechnol 342(1–2):194–200

    CAS  Google Scholar 

  46. Hammond P (2010) Thin films: particles release. Nat Mater 9:292–293

    Article  CAS  Google Scholar 

  47. Dubey V, Mishra D, Nahar M et al (2010) Enhanced transdermal delivery of an anti-HIV agent via ethanolic liposomes. Nanomed Nanotechnol Biol Med 6(4):590–596

    Article  CAS  Google Scholar 

  48. Mulik R, Mönkkönen J, Juvonen R et al (2010) Transferrin mediated solid lipid nanoparticles containing curcumin: enhanced in vitro anticancer activity by induction of apoptosis. Int J Pharm 398(1–2):190–203

    Article  CAS  Google Scholar 

  49. Goldberg D, Vijayalakshmi N, Swaan P et al (2011) G3.5 PAMAM dendrimers enhance transepithelial transport of SN38 while minimizing gastrointestinal toxicity. J Control Release 150(3):318–325

    Article  CAS  Google Scholar 

  50. Guo J, Gao X, Su L et al (2011) Aptamer-functionalized PEG–PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32(1):8010–8020

    Article  CAS  Google Scholar 

  51. Makadia H, Siegel S (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 3(3):1377–1397

    Google Scholar 

  52. Sahni J, Baboota S, Ali J (2011) Promising role of nanopharmaceuticals in drug delivery. Pharma Times 43(10):16–18

    Google Scholar 

  53. Savla R, Taratula O, Garbuzenko O et al (2011) Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J Control Release 153(1):16–22

    Article  CAS  Google Scholar 

  54. Taghdisi S, Lavaee P, Ramezani M et al (2011) Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. Eur J Pharm Biopharm 77(2):200–206

    Article  CAS  Google Scholar 

  55. Saad Z, Jahan R, Bagal U (2012) Nanopharmaceuticals: a new perspective of drug delivery system. Asian J Biomed Pharm Sci 2(14):11–20

    Google Scholar 

  56. McDowell G, Slevin M, Krupinski J (2011) Nanotechnology for the treatment of coronary in stent restenosis: a clinical perspective. Vasc Cell 3:8

    Article  Google Scholar 

  57. Tan A, Alavijeh M, Seifalian A (2012) Next generation stent coatings: convergence of biotechnology and nanotechnology. Trends Biotechnol 30(8):406–409

    Article  CAS  Google Scholar 

  58. American Cancer Society (2011) Hyperthermia. http://www.cancer.org/treatment/treatmentsandsideeffects/treatmenttypes/hyperthermia. Accessed 29 June 2013

  59. Baronzio G, Parmar G, Ballerini M et al (2014) A brief overview of hyperthermia in cancer treatment. J Integr Oncol 3(1):1–10

    Article  Google Scholar 

  60. Di Corato R, Espinosa A, Lartigue L et al (2014) Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials 35(24):6400–6411

    Article  Google Scholar 

  61. Bhayani K, Rajawade J, Paknikar K (2013) Radio frequency induced hyperthermia mediated by dextran stabilized LSMO nanoparticles: in vitro evaluation of heat shock protein response. Nanotechnology 24(1):015102

    Article  CAS  Google Scholar 

  62. Sadhukha T, Wiedmann T, Panyam J (2013) Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 34(21):5163–5171

    Article  CAS  Google Scholar 

  63. Morales C, Valencia P, Thakkar A et al (2012) Recent developments in multifunctional hybrid nanoparticles: opportunities and challenges in cancer therapy. Front Biosci 4:529–545

    Article  Google Scholar 

  64. Lee D, Koo H, Sun I et al (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41:2656–2672

    Google Scholar 

  65. Cheng L, Yang K, Li Y et al (2012) Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials 33(7):2215–2222

    Article  CAS  Google Scholar 

  66. Lee S, Kim H, Ha Y et al (2013) Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano 7(1):50–57

    Google Scholar 

  67. Bean A, Tuan R (2013) Stem cells and nanotechnology in tissue engineering and regenerative medicine. In: Ranalingam M, Jabbari E, Ramakrishna S et al (eds) Micro and nanotechnologies in engineering stem cells and tissues, 1st edn. Wiley, Hoboken

    Google Scholar 

  68. Kingham E, Oreffo R (2013) Embryonic and induced pluripotent stem cells: understanding, creating, and exploiting the nano-niche for regenerative medicine. ACS Nano 7(3):1867–1881

    Google Scholar 

  69. Thierry B, Textor M (2012) Nanomedicine in focus: opportunities and challenges ahead. Biointerphases 7(19)

    Google Scholar 

  70. Human Genome Project Information (2011) Gene therapy. http://ornl.gov/sci/techresources/Human_Genome/medicine/genetherapy.shtml. Accessed 2 July 2013

  71. Genetics Home Reference (2013) What is gene therapy? http://ghr.nlm.nih.gov/handbook/therapy/genetherapy. Accessed 2 July 2013

  72. Labhasetwar V (2005) Nanotechnology for drug and gene therapy: the importance of understanding molecular mechanisms of delivery. Curr Opin Biotechnol 16(6):674–680

    Article  CAS  Google Scholar 

  73. Gascón A, Pozo-Rodríguez A, Solinís M (2013) Non-viral delivery systems in gene therapy, gene therapy – tools and potential applications, Dr. Francisco Martin (Ed.), ISBN: 978-953-51-1014-9, InTech, DOI: 10.5772/52704. Available from: http://www.intechopen.com/books/gene-therapy-tools-and-potential-applications/non-viral-delivery-systems-in-gene-therapy

  74. Labhasetwar V, Panyam J (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347

    Article  Google Scholar 

  75. Yamashita S, Fukushima H, Akiyama Y et al (2011) Controlled-release system of single-stranded DNA triggered by the photothermal effect of gold nanorods and its in vivo application. Bioorg Med Chem 19:2130–2135

    Article  CAS  Google Scholar 

  76. Bhattara S, Muthuswamy E, Wani A et al (2010) Enhanced gene and siRNA delivery by polycation-modified mesoporous silica nanoparticles loaded with chloroquine. Pharm Res 27(12):2556–2568

    Article  Google Scholar 

  77. Chen M, Gao S, Dong M et al (2012) Chitosan/siRNA nanoparticles encapsulated in PLGA nanofibers for siRNA delivery. ACS Nano 6(6):4835–4844

    Article  CAS  Google Scholar 

  78. Kwon S, Nam H, Nam T et al (2008) In vivo time-dependent gene expression of cationic lipid-based emulsion as a stable and biocompatible non-viral gene carrier. J Control Release 128(1):89–97

    Article  CAS  Google Scholar 

  79. Nystrom A, Fadeel B (2012) Safety assessment of nanomaterials: implications for nanomedicine. J Control Release 161:403–408

    Article  Google Scholar 

  80. Han DW, Woo YI, Lee MH, Lee JH, Lee J, Park JC (2012) In-vivo and in-vitro biocompatibility evaluations of silver nanoparticles with antimicrobial activity. J Nanosci Nanotechnol 12(7):5205–5209

    Article  CAS  Google Scholar 

  81. Zhao Y, Xing G, Chai Z (2008) Nanotoxicology: are carbon nanotubes safe? Nat Nanotechnol 3(4):191–192

    Article  CAS  Google Scholar 

  82. Marchant GE, Sylvester DJ, Abbott KW, Danforth TL (2010) International harmonization of regulation of nanomedicine. Stud Ethics Law Technol 3(3):1941–6008

    Article  Google Scholar 

  83. Shanna H (2009) The Regulation of Nanomedicine: Will the Exisiting Regulatory Scheme of the FDA Suffice?, XVI Rich. J.L. & Tech. 4 http://law.richmond.edu/ jolt/v16i2/article4.pdf

  84. Miller J (2003) Beyond biotechnology: FDA regulation of nanomedicine. Columbia Sci Technol Law Rev 4:E5

    Google Scholar 

  85. Bawa R (2011) Regulating nanomedicine – can the FDA handle it? Curr Drug Deliv 8(3):227–234

    Article  CAS  Google Scholar 

  86. Chowdhury N (2010) Regulation of nanomedicines in the EU: distilling lessons from the pediatric and the advanced therapy medicinal products approaches. Nanomedicine 5(1):135–142

    Article  Google Scholar 

  87. Resnik DB, Tinkle SS (2007) Ethics in nanomedicine. Nanomedicine 2(3):345–350

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chokaouychai, S., Fei, D., Ge, Y. (2014). What Can Nanomedicine Learn from the Current Developments of Nanotechnology?. In: Ge, Y., Li, S., Wang, S., Moore, R. (eds) Nanomedicine. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2140-5_15

Download citation

Publish with us

Policies and ethics