Skip to main content

Neuromuscular Junction Disorders

  • Chapter
  • First Online:
Pediatric Electromyography

Abstract

Pediatric neuromuscular junction disorders are less common in children compared to adults, but both autoimmune and inherited subtypes of this disease category occur in the pediatric age group. Neuroanatomically, these can either be classified into presynaptic, synaptic or postsynaptic disorders. Symptoms occur when there is a disruption in the normal synthesis, storage, or release of acetylcholine, the microanatomy of the synapse, the acetylcholinesterase enzyme, or the function of the acetylcholine receptor complex. The specific clinical manifestations are dependent on the pathophysiology and severity of the disorder. The hallmarks of neuromuscular junction disorders are weakness and fatiguability, especially with extraocular muscles and bulbar muscles. However, due to the rarity of the condition and the overlap of the major symptoms with other neuromuscular or metabolic disorders, making the diagnosis can be quite challenging, from first conception of the possibility to confirmatory testing, especially as several of the classic diagnostic tests have limitations with regard to sensitivity. It is also frequently difficult to differentiate these disorders from one another, especially in children. Electrodiagnostic studies can be a valuable tool in not only detecting the presence of a disorder involving the neuromuscular junction, but also differentiating the type of neuromuscular disorders using a combination of nerve conduction studies, repetitive stimulation studies, exercise testing and needle EMG. Single fiber EMG and stimulated single fiber EMG are techniques that are also valuable in these evaluations. The results can then aid the pediatric neurologist in selecting the appropriate serologies or genetic tests to help confirm a definitive diagnosis in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reichardt LF, Kelly RB. A molecular description of nerve terminal function. Annu Rev Biochem. 1983;52:871–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rutecki PA. Neuronal excitability: voltage-dependent currents and synaptic transmission. J Clin Neurophysiol. 1992;9(2):195–211.

    Article  CAS  PubMed  Google Scholar 

  3. Engel AG. The neuromuscular junction. Handb Clin Neurol. 2008;91:103–48.

    Article  PubMed  Google Scholar 

  4. Elmqvist D. Neuromuscular transmission with special reference to Myasthenia Gravis. Acta Physiol Scand Suppl. 1965;Suppl 249:1–34.

    Google Scholar 

  5. Pitt M. Paediatric electromyography in the modern world: a personal view. Dev Med Child Neurol. 2011;53(2):120–4.

    Article  PubMed  Google Scholar 

  6. Single fiber EMG reference values: a collaborative effort. Ad Hoc Committee of the AAEM special interest group on single fiber EMG. Muscle Nerve. 1992;15(2):151–61.

    Google Scholar 

  7. Kinali M, Beeson D, Pitt MC, Jungbluth H, Simonds AK, Aloysius A, et al. Congenital myasthenic syndromes in childhood: diagnostic and management challenges. J Neuroimmunol. 2008;201–202:6–12.

    Article  PubMed  Google Scholar 

  8. Engel AG. Congenital myasthenic syndromes in 2012. Curr Neurol Neurosci Rep. 2012;12(1):92–101.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nogajski JH, Kiernan MC, Ouvrier RA, Andrews PI. Congenital myasthenic syndromes. J Clin Neurosci. 2009;16(1):1–11.

    Article  PubMed  Google Scholar 

  10. Engel AG. The therapy of congenital myasthenic syndromes. Neurotherapeutics. 2007;4(2):252–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lorenzoni PJ, Scola RH, Kay CS, Werneck LC. Congenital myasthenic syndrome: a brief review. Pediatr Neurol. 2012;46(3):141–8.

    Article  PubMed  Google Scholar 

  12. Ohno K, Tsujino A, Brengman JM, Harper CM, Bajzer Z, Udd B, et al. Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc Natl Acad Sci U S A. 2001;98(4):2017–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mallory LA, Shaw JG, Burgess SL, Estrella E, Nurko S, Burpee TM, et al. Congenital myasthenic syndrome with episodic apnea. Pediatr Neurol. 2009;41(1):42–5.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Maselli RA, Chen D, Mo D, Bowe C, Fenton G, Wollmann RL. Choline acetyltransferase mutations in myasthenic syndrome due to deficient acetylcholine resynthesis. Muscle Nerve. 2003;27(2):180–7.

    Article  CAS  PubMed  Google Scholar 

  15. Bady B, Chauplannaz G, Carrier H. Congenital Lambert-Eaton myasthenic syndrome. J Neurol Neurosurg Psychiatry. 1987;50(4):476–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hajjar M, Markowitz J, Darras BT, Kissel JT, Srinivasan J, Jones HR. Lambert-Eaton syndrome, an unrecognized treatable pediatric neuromuscular disorder: three patients and literature review. Pediatr Neurol. 2014;50(1):11–7.

    Article  PubMed  Google Scholar 

  17. Donger C, Krejci E, Serradell AP, Eymard B, Bon S, Nicole S, et al. Mutation in the human acetylcholinesterase-associated collagen gene, COLQ, is responsible for congenital myasthenic syndrome with end-plate acetylcholinesterase deficiency (Type Ic). Am J Hum Genet. 1998;63(4):967–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ohno K, Brengman J, Tsujino A, Engel AG. Human endplate acetylcholinesterase deficiency caused by mutations in the collagen-like tail subunit (ColQ) of the asymmetric enzyme. Proc Natl Acad Sci U S A. 1998;95(16):9654–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Katz B, Thesleff S. A study of the desensitization produced by acetylcholine at the motor end-plate. J Physiol. 1957;138(1):63–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maselli RA, Ng JJ, Anderson JA, Cagney O, Arredondo J, Williams C, et al. Mutations in LAMB2 causing a severe form of synaptic congenital myasthenic syndrome. J Med Genet. 2009;46(3):203–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barisic N, Chaouch A, Muller JS, Lochmuller H. Genetic heterogeneity and pathophysiological mechanisms in congenital myasthenic syndromes. Eur J Paediatr Neurol. 2011;15(3):189–96.

    Article  PubMed  Google Scholar 

  22. Engel AG, Shen XM, Selcen D, Sine SM. What have we learned from the congenital myasthenic syndromes. J Mol Neurosci. 2010;40(1–2):143–53.

    Article  CAS  PubMed  Google Scholar 

  23. Tsujino A, Maertens C, Ohno K, Shen XM, Fukuda T, Harper CM, et al. Myasthenic syndrome caused by mutation of the SCN4A sodium channel. Proc Natl Acad Sci U S A. 2003;100(12):7377–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huze C, Bauche S, Richard P, Chevessier F, Goillot E, Gaudon K, et al. Identification of an agrin mutation that causes congenital myasthenia and affects synapse function. Am J Hum Genet. 2009;85(2):155–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hoffmann K, Muller JS, Stricker S, Megarbane A, Rajab A, Lindner TH, et al. Escobar syndrome is a prenatal myasthenia caused by disruption of the acetylcholine receptor fetal gamma subunit. Am J Hum Genet. 2006;79(2):303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oskoui M, Jacobson L, Chung WK, Haddad J, Vincent A, Kaufmann P, et al. Fetal acetylcholine receptor inactivation syndrome and maternal myasthenia gravis. Neurology. 2008;71(24):2010–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Forrest K, Mellerio JE, Robb S, Dopping-Hepenstal PJ, McGrath JA, Liu L, et al. Congenital muscular dystrophy, myasthenic symptoms and epidermolysis bullosa simplex (EBS) associated with mutations in the PLEC1 gene encoding plectin. Neuromuscul Disord. 2010;20(11):709–11.

    Article  PubMed  Google Scholar 

  28. Selcen D, Juel VC, Hobson-Webb LD, Smith EC, Stickler DE, Bite AV, et al. Myasthenic syndrome caused by plectinopathy. Neurology. 2011;76(4):327–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chaouch A, Muller JS, Guergueltcheva V, Dusl M, Schara U, Rakocevic-Stojanovic V, et al. A retrospective clinical study of the treatment of slow-channel congenital myasthenic syndrome. J Neurol. 2012;259(3):474–81.

    Article  PubMed  Google Scholar 

  30. Spillane J, Beeson DJ, Kullmann DM. Myasthenia and related disorders of the neuromuscular junction. J Neurol Neurosurg Psychiatry. 2010;81(8):850–7.

    Article  PubMed  Google Scholar 

  31. Engel AG, Ohno K, Sine SM. Congenital myasthenic syndromes: progress over the past decade. Muscle Nerve. 2003;27(1):4–25.

    Article  PubMed  Google Scholar 

  32. Lorenzoni PJ, Kay CS, Arruda WO, Scola RH, Werneck LC. Neurophysiological study in slow-channel congenital myasthenic syndrome: case report. Arq Neuropsiquiatr. 2006;64(2A):318–21.

    Article  PubMed  Google Scholar 

  33. Liew WK, Powell CA, Sloan SR, Shamberger RC, Weldon CB, Darras BT, et al. Comparison of plasmapheresis and intravenous immunoglobulin as maintenance therapies for juvenile myasthenia gravis. JAMA Neurol. 2014;71(5):575–80.

    Article  PubMed  Google Scholar 

  34. Lindstrom JM, Seybold ME, Lennon VA, Whittingham S, Duane DD. Antibody to acetylcholine receptor in myasthenia gravis: prevalence, clinical correlates, and diagnostic value. 1975. Neurology. 1998;51(4):933; and 6 pages following

    PubMed  Google Scholar 

  35. Chiang LM, Darras BT, Kang PB. Juvenile myasthenia gravis. Muscle Nerve. 2009;39(4):423–31.

    Article  CAS  PubMed  Google Scholar 

  36. McMillan HJ, Darras BT, Kang PB. Autoimmune neuromuscular disorders in childhood. Curr Treat Options Neurol. 2011;13(6):590–607.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Engel AG. Morphologic and immunopathologic findings in myasthenia gravis and in congenital myasthenic syndromes. J Neurol Neurosurg Psychiatry. 1980;43(7):577–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koul R, Al Futaisi A, Abdwani R. Rituximab in severe seronegative juvenile myasthenia gravis: review of the literature. Pediatr Neurol. 2012;47(3):209–12.

    Article  PubMed  Google Scholar 

  39. Zinman L, Ng E, Bril V. IV immunoglobulin in patients with myasthenia gravis: a randomized controlled trial. Neurology. 2007;68(11):837–41.

    Article  CAS  PubMed  Google Scholar 

  40. Snead OC 3rd, Benton JW, Dwyer D, Morley BJ, Kemp GE, Bradley RJ, et al. Juvenile myasthenia gravis. Neurology. 1980;30(7 Pt 1):732–9.

    Article  PubMed  Google Scholar 

  41. Mandawat A, Mandawat A, Kaminski HJ, Shaker ZA, Alawi AA, Alshekhlee A. Outcome of plasmapheresis in myasthenia gravis: delayed therapy is not favorable. Muscle Nerve. 2011;43(4):578–84.

    Article  PubMed  Google Scholar 

  42. Millichap JG, Dodge PR. Diagnosis and treatment of myasthenia gravis in infancy, childhood, and adolescence: a study of 51 patients. Neurology. 1960;10:1007–14.

    Article  CAS  PubMed  Google Scholar 

  43. Adams C, Theodorescu D, Murphy EG, Shandling B. Thymectomy in juvenile myasthenia gravis. J Child Neurol. 1990;5(3):215–8.

    Article  CAS  PubMed  Google Scholar 

  44. Gronseth GS, Barohn RJ. Practice parameter: thymectomy for autoimmune myasthenia gravis (an evidence-based review): report of the quality standards subcommittee of the American Academy of Neurology. Neurology. 2000;55(1):7–15.

    Article  CAS  PubMed  Google Scholar 

  45. Tracy MM, McRae W, Millichap JG. Graded response to thymectomy in children with myasthenia gravis. J Child Neurol. 2009;24(4):454–9.

    Article  PubMed  Google Scholar 

  46. Stalberg E. Clinical electrophysiology in myasthenia gravis. J Neurol Neurosurg Psychiatry. 1980;43(7):622–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fox CK, Keet CA, Strober JB. Recent advances in infant botulism. Pediatr Neurol. 2005;32(3):149–54.

    Article  PubMed  Google Scholar 

  48. Spika JS, Shaffer N, Hargrett-Bean N, Collin S, MacDonald KL, Blake PA. Risk factors for infant botulism in the United States. Am J Dis Child. 1989;143(7):828–32.

    CAS  PubMed  Google Scholar 

  49. Barash JR, Tang TW, Arnon SS. First case of infant botulism caused by Clostridium baratii type F in California. J Clin Microbiol. 2005;43(8):4280–2.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Eleopra R, Tugnoli V, Rossetto O, De Grandis D, Montecucco C. Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci Lett. 1998;256(3):135–8.

    Article  CAS  PubMed  Google Scholar 

  51. Mitchell WG, Tseng-Ong L. Catastrophic presentation of infant botulism may obscure or delay diagnosis. Pediatrics. 2005;116(3):e436–8.

    Article  PubMed  Google Scholar 

  52. Arnon SS, Schechter R, Maslanka SE, Jewell NP, Hatheway CL. Human botulism immune globulin for the treatment of infant botulism. N Engl J Med. 2006;354(5):462–71.

    Article  CAS  PubMed  Google Scholar 

  53. Cornblath DR, Sladky JT, Sumner AJ. Clinical electrophysiology of infantile botulism. Muscle Nerve. 1983;6(6):448–52.

    Article  CAS  PubMed  Google Scholar 

  54. Singh G, Mahajan R, Whig J. The importance of electrodiagnostic studies in acute organophosphate poisoning. J Neurol Sci. 1998;157(2):191–200.

    Article  CAS  PubMed  Google Scholar 

  55. Aiuto LA, Pavlakis SG, Boxer RA. Life-threatening organophosphate-induced delayed polyneuropathy in a child after accidental chlorpyrifos ingestion. J Pediatr. 1993;122(4):658–60.

    Article  CAS  PubMed  Google Scholar 

  56. Jokanovic M, Kosanovic M, Brkic D, Vukomanovic P. Organophosphate induced delayed polyneuropathy in man: an overview. Clin Neurol Neurosurg. 2011;113(1):7–10.

    Article  PubMed  Google Scholar 

  57. Gutmann L, Bodensteiner JB. Organophosphate-induced delayed polyneuropathy. J Pediatr. 1993;123(5):837.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy K. M. Liew M.B.Ch.B., M.R.C.P.C.H., F.A.M.S .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Liew, W.K.M. (2017). Neuromuscular Junction Disorders. In: McMillan, H., Kang, P. (eds) Pediatric Electromyography. Springer, Cham. https://doi.org/10.1007/978-3-319-61361-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61361-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61360-4

  • Online ISBN: 978-3-319-61361-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics