Skip to main content

Respiratory System Illness and Hypoxia

  • Chapter
  • First Online:
Alpine Skiing Injuries

Part of the book series: Sports and Traumatology ((SPORTS))

  • 522 Accesses

Abstract

Exposure to hypobaric hypoxia results in a reduction of the passage of O2 from the alveoli to the blood, reducing the amount of circulating oxygen and requires physical adaptations and physiological changes in every people.

The duration and degree of hypoxic exposure are critical to the metabolic response of skeletal muscle, with the response to acute hypoxia during exercise. Many changes in the pathways of oxygen delivery have been characterized in hypoxic humans at real or simulated altitude. In contrast, relatively little is understood about changes in tissue oxygen utilization in humans at altitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hill AB (1965) The environment and disease: association or causation? Proc R Soc Med 58:295–300

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Hackett PH, Roach RC (2001) High-altitude illness. N Engl J Med 345:107–114

    Article  CAS  PubMed  Google Scholar 

  3. Cymerman A, Reeves JT, Sutton JR, Rock PB, Groves BM, Malconian MK, Young PM, Wagner PD, Houston CS (1989) Operation Everest II: maximal oxygen uptake at extreme altitude. J Appl Physiol 66:2446–2453

    Article  CAS  PubMed  Google Scholar 

  4. Howald H, Hoppeler H (2003) Performing at extreme altitude: muscle cellular and subcellular adaptations. Eur J Appl Physiol 90:360–364

    Article  PubMed  Google Scholar 

  5. Sutton JR, Reeves JT, Groves BM, Wagner PD, Alexander JK, Hultgren HN, Cymerman A, Houston CS (1992) Oxygen transport and cardiovascular function at extreme altitude: lessons from operation Everest II. Int J Sports Med 13(Suppl 1):S13–S18

    Article  PubMed  Google Scholar 

  6. Calbet JA, Boushel R, Radegran G, Sondergaard H, Wagner PD, Saltin B (2003) Why is VO2 max after altitude acclimatization still reduced despite normalization of arterial O2 content? Am J Physiol Regul Integr Comp Physiol 284:R304–R316

    Article  CAS  PubMed  Google Scholar 

  7. Cerretelli P (1976) Limiting factors to oxygen transport on Mount Everest. J Appl Physiol 40:658–667

    Article  CAS  PubMed  Google Scholar 

  8. West JB et al (2007) High altitude medicine and physiology. Hodder Arnold, London

    Google Scholar 

  9. Murray AJ (2016) Energy metabolism and the high-altitude environment. Exp Physiol 101(1):23–27. Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK

    Article  CAS  PubMed  Google Scholar 

  10. Ward MP, Milledge JS, West JB (2000) High altitude medicine and physiology. Arnold, London

    Google Scholar 

  11. Margaria R, Edwards HT, Dill DB (1933) The possible mechanisms of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Am J Physiol 106:689–715

    CAS  Google Scholar 

  12. Grocott M (2007) Review: high-altitude physiology and pathophysiology: implications and relevance for intensive care medicine. FASEB J, Crit Care 11(1):203

    Article  PubMed  PubMed Central  Google Scholar 

  13. Levett DZ, Radford EJ, Grocott W (2012) Acclimatization of skeletal muscle mitochondria to high-altitude hypoxia during an ascent of Everest. FASEB J 26:1431–1441. www.fasebj.org

    Article  CAS  PubMed  Google Scholar 

  14. Murray, A. J. (2009) Metabolic adaptation of skeletal muscle to high altitude hypoxia: how new technologies could resolve the controversies. Genome Medicine 1:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murray AJ, Horscroft JA (2016) Mitochondrial function at extreme high altitude. J Physiol 594(5):1137–1149. Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK

    Article  CAS  PubMed  Google Scholar 

  16. Horscroft JA, Murray AJ (2014) Skeletal muscle energy metabolism in environmental hypoxia: climbing towards consensus. Extrem Physiol Med 3:19

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kayser B et al (1996) Muscle ultrastructure and biochemistry of lowland Tibetans. J Appl Physiol 81(1):419–425

    Article  CAS  PubMed  Google Scholar 

  18. Horscroft JA, Burgess SL, Hu Y, Murray AJ (2015) Altered oxygen utilisation in rat left ventricle and soleus after 14 days, but not 2 days, of environmental hypoxia. PLoS One 10(9):e0138564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Edwards LM, Murray AJ, Tyler DJ, Kemp GJ, Grocott CJ, Clarke K, Caudwell Xtreme Everest Research Group (2010) The effect of high-altitude on human skeletal muscle energetics: P-MRS results from the Caudwell Xtreme Everest expedition. PLoS One 5:e10681. https://doi.org/10.1371/journal.pone.0010681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gladden LB (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558:5–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Horscroft JA, Murray AJ (2014) Skeletal muscle energy metabolism in environmental hypoxia: climbing towards consensus. Extrem Physiol Med 3:19

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jacobs RA, Boushel R, Wright-Paradis C, Calbet JA, Robach P et al (2013) Mitochondrial function in human skeletal muscle following high-altitude exposure. Exp Physiol 98:245–255

    Article  CAS  PubMed  Google Scholar 

  23. Jacobs RA, Siebenmann C, Hug M, Toigo M, Meinild AK et al (2012) Twenty-eight days at 3454-m altitude diminishes respiratory capacity but enhances efficiency in human skeletal muscle mitochondria. FASEB J 26:5192–5200

    Article  CAS  PubMed  Google Scholar 

  24. Noakes TD (2009) Last word on viewpoint: evidence that reduced skeletal muscle recruitment explains the lactate paradox during exercise at high altitude. J Appl Physiol (1985) 106:745

    Article  CAS  Google Scholar 

  25. Chapman RF, Stickford JL, Levine BD (2010) Altitude training considerations for the winter sport athlete. Exp Physiol 95(3):411–421

    Article  PubMed  Google Scholar 

  26. Hydren JR, Kraemer WJ, Volek JS, Dunn-Lewis C, Comstock BA, Szivak TK, Hooper DR, Denegar CR, Maresh CM (2013) Performance changes during a weeklong high-altitude alpine ski-racing training camp in lowlander young athletes. J Strength Cond Res 27(4):924–937

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Bartesaghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Bartesaghi, M., Miserocchi, G. (2018). Respiratory System Illness and Hypoxia. In: Schoenhuber, H., Panzeri, A., Porcelli, S. (eds) Alpine Skiing Injuries. Sports and Traumatology. Springer, Cham. https://doi.org/10.1007/978-3-319-61355-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61355-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61354-3

  • Online ISBN: 978-3-319-61355-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics