Skip to main content

Development of a NEMS-Technology Based Nano Gripper

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2017)

Abstract

This paper presents the first prototype of a new concept nanogripper whose overall size has been reduced as much as permitted by a new fabrication process based on Nano Technology. The jaws lumen size is adequate to the mechanical manipulation of microorganisms colonies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Verotti M, Dochshanov A, Belfiore NP (2017) Compliance synthesis of CSFH MEMS-based microgrippers. J Mech Des Trans ASME 139(2):022301–022301-10

    Article  Google Scholar 

  2. Verotti M, Crescenzi R, Balucani M, Belfiore NP (2015) MEMS-based conjugate surfaces flexure hinge. J Mech Des Trans ASME 137(1):012301

    Article  Google Scholar 

  3. Belfiore NP, Broggiato GB, Verotti M, Balucani M, Crescenzi R, Bagolini A, Bellutti P, Boscardin M (2015) Simulation and construction of a MEMS CSFH based microgripper. Int J Mech Control 16(1):21–30

    Google Scholar 

  4. Cecchi R, Verotti M, Capata R, Dochshanov AM, Broggiato GB, Crescenzi R, Balucani M, Natali S, Razzano G, Lucchese F, Bagolini A, Bellutti P, Sciubba E, Belfiore NP (2015) Development of micro-grippers for tissue and cell manipulation with direct morphological comparison. Micromachines 6(11):1710–1728

    Article  Google Scholar 

  5. Belfiore NP, Verotti M, Di Giamberardino P, Rudas IJ (2012) Active joint stiffness regulation to achieve isotropic compliance in the Euclidean space. J Mech Robot 4(4):041010

    Article  Google Scholar 

  6. Balucani M, Belfiore NP, Crescenzi R, Verotti M (2011) The development of a MEMS/NEMS-based 3 D.O.F. compliant micro robot. Int J Mech Control 12(1):3–10

    Google Scholar 

  7. Shaeffer DK (2013) MEMS inertial sensors: a tutorial overview. IEEE Commun Mag 51(4):100–109

    Article  Google Scholar 

  8. Verotti M, Dochshanov A, Belfiore NP (2017) A comprehensive survey on microgrippers design: mechanical structure. J Mech Des, Submitted on January 2017

    Google Scholar 

  9. Dochshanov A, Verotti M, Belfiore NP (2017) A comprehensive survey on microgrippers design: operational strategy. J Mech Des, Submitted on January 2017

    Google Scholar 

  10. Tsai C-H, Tsai J-C (2015) MEMS optical switches and interconnects. Displays 37:33–40

    Article  Google Scholar 

  11. Qiu Z, Piyawattanametha W (2015) MEMS-based medical endomicroscopes. IEEE J Sel Topics Quantum Electron 21(4):376–391

    Article  Google Scholar 

  12. Uranga A, Verd J, Barniol N (2014) CMOS-MEMS resonators: from devices to applications. Microelectron Eng 132:58–73

    Article  Google Scholar 

  13. Mita M, Kawara H, Toshiyoshi H, Ataka M, Fujita H (2003) An electrostatic 2-dimensional micro-gripper for nano structure. In: TRANSDUCERS 2003–12th international conference on solid-state sensors, actuators and microsystems, digest of technical papers, vol 1, pp 272–275

    Google Scholar 

  14. Lee J, Park DS, Nallani AK, Cui Y, Skoyles A, Lee J-B (2006) High-aspect ratio metallic nano grippers. In: Proceedings of 1st IEEE international conference on nano micro engineered and molecular systems, 1st IEEE-NEMS, pp 682–686

    Google Scholar 

  15. Colinjivadi KS, Lee J-B, Draper R (2008) Viable cell handling with high aspect ratio polymer chopstick gripper mounted on a nano precision manipulator. Microsyst Technol 14(9–11):1627–1633

    Article  Google Scholar 

  16. Helal MMK, Sun L, Chen L (2009) A novel nano-gripper compliant mechanism with parallel movement of gripping arms. In: Proceedings of SPIE - The international society for optical engineering, vol 7493

    Google Scholar 

  17. Abbasi AA, Ahmadian MT (2012) Force controlled manipulation of biological cells using a monolithic mems based nano-micro gripper. In: ASME international mechanical engineering congress and exposition, proceedings (IMECE), vol 2, pp 193–201

    Google Scholar 

  18. Valchev G, Dantchev D, Kostadinov K (2012) On the forces between micro and nano objects and a gripper. Int J Intell Mechatron Robot 2(2):15–33

    Google Scholar 

  19. Ghanbari A, Qaredaghi E (2013) Simulation and analysis of three finger micro/nano gripper using different materials. Adv Mater Res 622:665–670

    Google Scholar 

  20. Xiao S, Li Y, Yang Q (2013) A novel flexure-based 3-dof micro-parallel manipulator with a gripper for micro/nano manipulation. In: IFAC proceedings volumes (IFAC-PapersOnline), pp 606–611

    Google Scholar 

  21. Šafarič R, Lukman D (2014) One-finger gripper based on the variable van der waals force used for a single nano/micro-sized object. J Micromech Microeng 24(8):085012

    Article  Google Scholar 

  22. Dodge JT Jr, Brown BG, Bolson EL, Dodge HT (1992) Lumen diameter of normal human coronary arteries: Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 86(1):232–246

    Article  Google Scholar 

  23. Verotti M (2016) Analysis of the center of rotation in primitive flexures: uniform cantilever beams with constant curvature. Mech Mach Theory 97:29–50

    Article  Google Scholar 

  24. Sharpe WN, Yuan B, Vaidyanathan R, Edwards RL (1997) Measurements of Young’s modulus, Poisson’s ratio, and tensile strength of polysilicon. In: Proceedings IEEE the tenth annual international workshop on micro electro mechanical systems. An investigation of micro structures, sensors, actuators, machines and robots, pp 424–429

    Google Scholar 

  25. Sharpe WN Jr, Yuan B, Vaidyanathan R, Edwards RL (1996) New test structures and techniques for measurement of mechanical properties of MEMS materials. In: Micromachining and Microfabrication 1996, vol 2880, pp 78–91

    Google Scholar 

  26. Hou MT-K, Huang J-Y, Jiang S-S, Yeh JA (2008) In-plane rotary comb-drive actuator for a variable optical attenuator. J Micro/Nanolithog MEMS MOEMS 7(4):043015–043015-6

    Article  Google Scholar 

  27. Caputo D, Ceccarelli M, De Cesare G, Nascetti A, Scipinotti R (2009) Lab-on-glass system for DNA analysis using thin and thick film technologies. Mater Res Soc Symp Proc 1191:53–58

    Article  Google Scholar 

  28. De Cesare G, Gavesi M, Palma F, Riccò B (2003) A novel a-Si: H mechanical stress sensor. Thin Solid Films 427(1–2):191–195

    Article  Google Scholar 

  29. Caputo D, De Cesare G, Nardini M, Nascetti A, Scipinotti R (2012) Monitoring of temperature distribution in a thin film heater by an array of a-Si: H temperature sensors. IEEE Sens J 12(5):1209–1213

    Article  Google Scholar 

  30. De Cesare G, Nascetti A, Caputo D (2015) Amorphous silicon p-i-n structure acting as light and temperature sensor. Sensors (Switzerland) 15(6):12260–12272

    Article  Google Scholar 

  31. Tucci M, Serenelli L, Salza E, De Iuliis S, Geerligs LJ, Caputo D, Ceccarelli M, de Cesare G (2008) Back contacted a-Si:H/c-Si heterostructure solar cells. J Non-Cryst Solids 354(19–25):2386–2391

    Article  Google Scholar 

  32. Caputo D, De Cesare G (1996) New a-Si: H two-terminal switching device for active display. J Non-Cryst Solids 198—-200(PART 2):1134–1136

    Article  Google Scholar 

  33. De Cesare G, Caputo D, Tucci M (2012) Electrical properties of ITO/crystalline-silicon contact at different deposition temperatures. IEEE Electron Device Lett 33(3):327–329

    Article  Google Scholar 

  34. Veroli A, Mura F, Balucani M, Caminiti R (2016) Dose influence on the PMMA e-resist for the development of high-aspect ratio and reproducible sub-micrometric structures by electron beam lithography. In: AIP Conference Proceedings, vol 1749

    Google Scholar 

Download references

Acknowledgments

CNIS and SNN-Lab of Sapienza University are gratefully acknowledged for supporting the present investigation and, particularly, CNIS Director Prof. Ruggero Caminiti, for his constant encouragement to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Pio Belfiore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Veroli, A. et al. (2018). Development of a NEMS-Technology Based Nano Gripper. In: Ferraresi, C., Quaglia, G. (eds) Advances in Service and Industrial Robotics. RAAD 2017. Mechanisms and Machine Science, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-61276-8_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61276-8_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61275-1

  • Online ISBN: 978-3-319-61276-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics