Are You Lying: Validating the Time-Location of Outdoor Images

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10355)


Photos have been commonly used in our society to convey information, and the associated contextual information (i.e., the capture time and location) is a key part of what a photo conveys. However, the contextual information can be easily tampered or falsely claimed by forgers to achieve malicious goals, e.g., creating fear among the general public or distorting public opinions. Thus, this paper aims at verifying the capture time and location using the content of the photos only. Motivated by how the ancients estimate the time of the day by shadows, we designed algorithms based on projective geometry to estimate the sun position by leveraging shadows in the image. Meanwhile, we compute the sun position by applying astronomical algorithms according to the claimed capture time and location. By comparing the two estimations of the sun position, we are able to validate the consistency of the capture time and location, and hence the time-location of the photos. Experimental results show that our algorithms can estimate sun position and detect the inconsistency caused by falsified time, date, and latitude of location. By choosing the thresholds to be \(9.2^\circ \) and \(4.8^\circ \) for the sun position distance and altitude angle distance respectively, our framework can correctly identify 91.1% of the positive samples, with 7.7% error in identifying the negative samples. Note that we assume that the photos contain at least one vertical object and its shadow. Nevertheless, we believe this work serves as the first and important attempt in verifying the consistency of the contextual information only using the content of the photos.


Capture time and location Sun position Shadows Consistency Projective geometry 


  1. 1.
    Fema now has a rumor control section for misinformation.
  2. 2.
    Bayram, S., Sencar, H.T., Memon, N.: An efficient and robust method for detecting copy-move forgery. In: IEEE ICASSP 2009, pp. 1053–1056. IEEE (2009)Google Scholar
  3. 3.
    Boididou, C., Papadopoulos, S., Kompatsiaris, Y., Schifferes, S., Newman, N.: Challenges of computational verification in social multimedia. In: ACM WWW 2014, pp. 743–748. ACM (2014)Google Scholar
  4. 4.
    Carvalho, T., Farid, H., Kee, E.: Exposing photo manipulation from user-guided 3D lighting analysis. In: SPIE/IS&T Electronic Imaging, p. 940902. International Society for Optics and Photonics (2015)Google Scholar
  5. 5.
    Dearden, L.: The fake refugee images that are being used to distort public opinion on asylum seekers, September 2015.
  6. 6.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ferrara, E.: Manipulation and abuse on social media by Emilio Ferrara with Ching-man Au Yeung as coordinator. ACM SIGWEB Newslett. (Spring), Article No. 4 (2015)Google Scholar
  8. 8.
    Fridrich, J., Soukal, D., Lukas, J.: Detection of copy move forgery in digital images. In: Digital Forensic Research Workshop, August 2003Google Scholar
  9. 9.
    Garg, R., Varna, A.L., Wu, M.: Seeing ENF: natural time stamp for digital video via optical sensing and signal processing. In: ACM MM 2011, pp. 23–32. ACM (2011)Google Scholar
  10. 10.
    Gupta, A., Lamba, H., Kumaraguru, P., Joshi, A.: Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy. In: ACM WWW 2013, pp. 729–736. ACM (2013)Google Scholar
  11. 11.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  12. 12.
  13. 13.
    Holbert, K.E., Srinivasan, D.: Solar energy calculations. In: Handbook Of Renewable Energy Technology, pp. 189–204 (2011)Google Scholar
  14. 14.
    Imran, M., Elbassuoni, S.M., Castillo, C., Diaz, F., Meier, P.: Extracting information nuggets from disaster-related messages in social media. In: Proceedings of ISCRAM, Baden-Baden, Germany (2013)Google Scholar
  15. 15.
    Iqbal, M.: An Introduction to Solar Radiation. Elsevier, Amsterdam (2012)Google Scholar
  16. 16.
    Japan Electronics and Information Technology Industries Association: Exchangeable image file format for digital still cameras: Exif Version 2.2, April 2002Google Scholar
  17. 17.
    Junejo, I.N., Foroosh, H.: Estimating geo-temporal location of stationary cameras using shadow trajectories. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 318–331. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88682-2_25 CrossRefGoogle Scholar
  18. 18.
    Kakar, P., Sudha, N.: Verifying temporal data in geotagged images via sun azimuth estimation. IEEE Trans. Inf. Forensics and Secur. 7(3), 1029–1039 (2012)CrossRefGoogle Scholar
  19. 19.
    Karttunen, H., Kroger, P., Oja, H., Poutanen, M., Donner, K.J.: Fundamental Astronomy, 5th edn. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Kee, E., O’brien, J.F., Farid, H.: Exposing photo manipulation from shading and shadows. ACM Trans. Graph. 33(5), 165:1–165:21 (2014)CrossRefGoogle Scholar
  21. 21.
    Metadata Working Group: Guidelines For Handling Image Metadata v2.0, November 2010Google Scholar
  22. 22.
    National Information Standards Organization: Understanding Metadata (2004)Google Scholar
  23. 23.
    Pan, X., Lyu, S.: Detecting image region duplication using sift features. In: IEEE ICASSP 2010, pp. 1706–1709. IEEE (2010)Google Scholar
  24. 24.
    Savoie, D.: Sundials: Design, Construction, and Use. Praxis Publishing, Chichester (2009)CrossRefGoogle Scholar
  25. 25.
    Tian, J., Qu, C., Xu, W., Wang, S.: Kinwrite: handwriting-based authentication using kinect. In: NDSS 2013 (2013)Google Scholar
  26. 26.
    Tsai, T.H., Jhou, W.C., Cheng, W.H., Hu, M.C., Shen, I.C., Lim, T., Hua, K.L., Ghoneim, A., Hossain, M.A., Hidayati, S.C.: Photo sundial: estimating the time of capture in consumer photos. Neurocomputing 177, 529–542 (2016)CrossRefGoogle Scholar
  27. 27.
    Wu, L., Cao, X.: Geo-location estimation from two shadow trajectories. In: IEEE CVPR 2010, pp. 585–590 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of CSEUniversity of South CarolinaColumbiaUSA

Personalised recommendations