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Abstract. Photos have been commonly used in our society to convey
information, and the associated contextual information (i.e., the cap-
ture time and location) is a key part of what a photo conveys. However,
the contextual information can be easily tampered or falsely claimed by
forgers to achieve malicious goals, e.g., creating fear among the general
public or distorting public opinions. Thus, this paper aims at verifying
the capture time and location using the content of the photos only. Moti-
vated by how the ancients estimate the time of the day by shadows, we
designed algorithms based on projective geometry to estimate the sun
position by leveraging shadows in the image. Meanwhile, we compute
the sun position by applying astronomical algorithms according to the
claimed capture time and location. By comparing the two estimations of
the sun position, we are able to validate the consistency of the capture
time and location, and hence the time-location of the photos. Experi-
mental results show that our algorithms can estimate sun position and
detect the inconsistency caused by falsified time, date, and latitude of
location. By choosing the thresholds to be 9.2◦ and 4.8◦ for the sun
position distance and altitude angle distance respectively, our frame-
work can correctly identify 91.1% of the positive samples, with 7.7%
error in identifying the negative samples. Note that we assume that the
photos contain at least one vertical object and its shadow. Nevertheless,
we believe this work serves as the first and important attempt in verify-
ing the consistency of the contextual information only using the content
of the photos.

Keywords: Capture time and location · Sun position · Shadows ·
Consistency · Projective geometry

1 Introduction

Benefiting from the development of digital technologies and internet, photos
become increasingly common in our society. A huge number of photos are shared
through social media platforms. People use photos to convey information and
express emotions, and even employ them to illustrate news stories [14]. Mean-
while, people are exposed to fake photos that had been used for malicious pur-
poses: fooling the world and creating chaos as well as panic [3,7]. For example,
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Fig. 1. A photo that was taken in Sept. 2013 was used for a news event happened in
Jan. 2017.

the Hurricane Sandy hit the northeastern U. S. in 2012: numerious fake disas-
ter photos and rumors were spread through social networks and caused panic
and fear among the general public [10]. Therefore, the U.S. Federal Emergency
Management Agency had to set up a “rumor control” section to defend against
misinformation including fake photos on social networks [1]. In addition, fake
photos have been used to distort public opinions. For instance, the fake refugee
photos were shared online in the Europe’s refugee crisis in 2015 and used to twist
public opinion on asylum seekers [5].

Previous studies mainly focused on devising forensic techniques to detect
photo tampering and manipulation. For example, researchers have proposed
approaches to demonstrate copy-move manipulation [2,8,23] and leveraged shad-
ows and lighting to determine photo tampering [4,20]. However, in addition to
manipulating the content of a photo itself, the contextual information (i.e., the
capture time and location) can also be falsified. For instance, the photo in Fig. 1
was claimed to be taken in January 2017, and was used on social medias to
illustrate the news that a fleet of bikers were on the way to Washington D.C for
President Trump’s inauguration. However, the photo was actually published in
2013 for the anniversary of 9/111. Thus, it is promising if we can validate the
capture time and locations immediately purely using the photos themselves.

Determining whether the capture time or the location of an image is real
is promising yet challenging. Although most images have timestamps and GPS
information enclosed, these can be altered without traces once the format is
known. Deciding whether a picture is taken at a place simply by experiences
is infeasible since the image scenes may appear to be similar in various places,
such as public lawns, parking lots, beaches and roadsides. Even if the capture
location is true, the capture time can be falsified without any traces. Finding
evidences from the content of an image to verify the time is difficult. Objects
that reveal time directly (e.g., clocks and watches) are rarely seen in images.

1 https://www.buzzfeed.com/tasneemnashrulla/bikers-for-trump-inauguration-fake-p
ictures.

https://www.buzzfeed.com/tasneemnashrulla/bikers-for-trump-inauguration-fake-pictures
https://www.buzzfeed.com/tasneemnashrulla/bikers-for-trump-inauguration-fake-pictures
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Objects such as clothing, or colors of trees may indicate the capture time, but
these indicators can only reveal a relatively long time span (e.g., a T-shirt is
suitable from April through October in many places). So far, limited research has
addressed this problem. Garg et al. [9] demonstrated the feasibility of using the
Electric Network Frequency signal as a natural timestamp for video data in an
indoor enviroment. Junejo and Foroosh [17] and Wu and Cao [27] used shadow
trajectories to estimate the geo-location of stationary cameras from multiple
outdoor images. Tsai et al. [26] and Kakar and Sudha [18] developed approaches
that leverage the geolocation of images and the sun information to estimate the
capture time for outdoor images. However, to the best of our knowledge, none
has been done to validate both the capture time and location. In this paper, we
study how to validate whether the image’s capture time and location are true
from a single outdoor image that has at least one shadow. Although we require
a shadow in an image, we believe our work serves as the first attempt towards a
full-fledged solution.

The basic idea is that the position of the sun is determined by time and
location and can be utilized to check time-location consistency of outdoor images.
Specifically, we estimate the sun position from two sets of information: (1) utilize
vertical objects and their shadows in images to estimate sun position, and (2) use
the claimed capture time and location in the metadata of images for estimation.
Finally, we compare these two values and decide whether the claimed capture
time and location are true.

In summary, we outline our three main contributions as below:

– We propose a framework that is called AYL for validating time-location con-
sistency of outdoor images. We show that the variances of sun position corre-
late with the time and location, and the correlation can be used to determine
whether the capture time and location of images are consistent.

– We demonstrate that the sun position can be acquired from shadows and
design algorithms to estimate the sun position from one vertical object and
its shadow in the image. The results show that the algorithms are effective.

– We implement the proposed framework and evaluate it using photos collected
in 15 cities across the U.S. and China, which proves AYL to be effective.

2 Overview

We specify the threat model, overview the framework of AYL, and summarize
the research challenges in this section.

2.1 Threat Model

We assume that an attacker modifies the capture time and location of an image
for malicious purposes, but doesn’t tamper or manipulate the image itself. Note
that even if she modifies the image, we can detect it utilizing the prior works
[2,4,8,20,23]. Below we describe how an attacker can modify the metadata.
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Fig. 2. The basic structure of JPEG compressed image files.

An image file contains not only the image itself but also the metadata that
describes who, when, where, and how an image was taken [21,22]. Exchange-
able image file format (Exif) is a popular standard that specifies the formats
of images. The specification uses the existing file formats (e.g., JPEG) with the
addition of specific metadata tags. Figure 2 shows the basic structure of JPEG
compressed image files [16], and the application marker segment I (APPI) con-
tains contextual information of images, e.g., the capture time, the image size,
compression format, and details of cameras (focal length, camera maker) [16],
etc. In particular, DateTimeOriginal records the capture time. GPSLatitude
and GPSLongitude contain the GPS location (i.e., latitude and longitude) of
where the image was taken. GPSimgDirection represents the direction measured
by the magnetometer (i.e., the direction in which the camera faces). Modifying
the capture time and the GPS information enclosed in metadata can be easily
accomplished by using metadata editing tools such as ExifTool [12]. For exam-
ple, the photo shown in Fig. 2 was taken in Orlando, FL, on 13th October 2016,
at 10:47 a.m. An attacker can claim that the photo was taken in May 2016 in
Los Angeles by changing DateTimeOriginal and other related GPS fields.

2.2 Overview of AYL

Our goal is to validate whether the claimed capture time and location are true.
The capture time indicates the date and time when the photo was taken, and
the capture location reveals where it was taken.

Basic Idea. Although an attacker can modify the metadata and claim that a
photo was taken at time X and location Y , she won’t be able to change the “time”
and “location” information that is embedded in the photo. Thus, our framework
works as follows. On one hand, we utilize the contents in outdoor images—vertical
objects and resulting shadows—to extract the sun position that reflects when
and where the image was taken. On the other hand, we utilize the metadata
information—the claimed capture time and location—to obtain a second estima-
tion of the sun position by applying astronomical algorithms. If these two estima-
tions are close enough, we consider the capture time and location to be true with
a high probability. Otherwise, they are considered to be falsified.
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Fig. 3. The work flow of the proposed AYL framework.

Assumption. Without loss of generality, we assume that photos are taken using
smartphone’s rear cameras and the smartphone is held in such way that the
camera looks at the front horizontally or vertically, and it is perpendicular to
the ground. We further assume that the photographer stands on ground and the
ground that interested shadows lie on is approximated to water level. Finally we
assume that at least one vertical object and its shadow can be seen in the image.
The objects can be human beings, road signs, lampposts, tree trunks and so on.

Workflow. Figure 3 shows the work flow of proposed approach. For conve-
nience of description, we use the term shadow-inferred sun position to refer
to the sun position estimated from shadows in the image, and use the term
metadata-inferred sun position to refer to the sun position calculated from
claimed capture time and location. In this paper, capture time denotes the date
of year and the time of day unless otherwise indicated.

2.3 Research Challenges

Shadow-Inferred Sun Position. The first challenge is how to obtain sun
position from a single image. Although shadows can be viewed in images, we still
need to know the length ratio of objects and their shadows and the orientation
of shadows to determine the sun position. However, the relative position of two
objects in real world is no longer preserved when they are projected to a 2-d
image. How to measure the actual length ratio and angles can be a challenging
problem. Although single view reconstruction has been extensively studied, there
is no generalized way to recover the relative positions of objects from one single
image. To address above challenges, algorithms based on projective geometry
are proposed in Sect. 4.

Validation. Once the shadow-inferred sun position is obtained, the next chal-
lenge would be how to validate that the capture time and location are true. To
estimate the true capture time and location directly from the shadow-inferred
sun position is difficult since a specific sun position can be viewed at vari-
ous places and times. Conversely, the claimed capture time and location can
determine a unique value of sun position that should be close enough to the
shadow-inferred sun position. Then, we convert previous problem into a new
problem: how to determine the two estimations—the shadow-inferred sun posi-
tion and the metadata-inferred sun position—are close enough indicating the



108 X. Li et al.

same sun position. Appropriate thresholds need to be selected to solve this prob-
lem. The sun moves across the sky at a varying speed. The changes of sun position
with respect to time and location on the earth are not constant, which further
complicates the selection of thresholds. We will discuss this problem in Sect. 5
and our experimental results are presented in Sect. 6.

3 Background

We discuss the basics on how the sun changes its position in the section, which
serves as the foundation of our algorithm.

3.1 Sun Position Definition

The position of the sun in the sky is defined by an azimuth angle and an altitude
angle. An azimuth angle describes the direction of the sun, whereas an altitude
angle defines the height of the sun [24]. As shown in Fig. 4, the sun azimuth angle
A is measured clockwise in the horizontal plane, from the north to the direction
of the sun. Its value varies from 0◦ (north) through 90◦ (east), 180◦ (south), 270◦

(west), and up to 360◦ (north again). The altitude angle h is measured from the
horizontal to the sun and it thus ranges from −90◦ (at the nadir) through 0◦

(on the horizon), up to 90◦ (at the zenith). For instance, when the sun crosses
the meridian, its azimuth is 180◦ and altitude is at its largest value in a day.

Fig. 4. An illustration of the altitude
and azimuth angles of the sun.

Fig. 5. The path of the sun across
the sky as observed on various dates
in the northern hemisphere.

3.2 How Does the Sun Move

Observed from any location on the earth, the sun moves continuously across the
sky throughout days and years. The relative position change is mainly caused
by two types of motions of the earth: the rotation around its axis, and the
revolution around the sun [24]. It takes about 24 h for the earth to finish one
rotation around the earth’s axis and about 365 days to complete one revolution
around the sun. For an observer on the earth, the first motion contributes to the
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alternation of day and night, and the second motion leads to the alternation of
seasons.

Daily Sun Path. Because of the earth’s daily rotation, the sun appears to move
along with the celestial sphere every day. It makes a 360◦ journey around the
celestial sphere every 24 h. To an observer on the earth, the sun rises somewhere
along the eastern horizon, and goes up to the highest point (zenith) around
the noon, then goes down until it sets along the western horizon. Figure 5 shows
three of the sun’s daily paths viewed on the earth. Accordingly, the cast shadows
of any objects move oppositely from somewhere along the west to somewhere
along the east. The shadows’ lengths vary with the sun’s altitude angle. They
become shorter and shorter since sunrise and reach the shortest when the sun is
at its zenith. Then they become longer over time till sunset. Thus, the shadow
that a camera takes at the same day and location but different times of the day
will be totally different.

Yearly Sun Path. The sun’s daily path across the sky also changes throughout
the year. This is because the earth does not rotate on a stationary axis and the
tilt in the axis varies each day with respect to the earth’s orbit plane. To an
observer on the earth, the sun looks higher in the summer than it looks in the
winter at the same time in the day. As shown in Fig. 5, the sun follows different
circles at different days in one year: most northerly on June 21st and most
southerly on December 21st. The sun’s motion along the north-south axis over a
year is known as the declination of the sun, denoted by δ. Thus, the sun position
inferred from photos taken at the same location and time but different days in
a year will be different due to the sun’s declination.

Sun Path at Different Latitudes. As the sun travels across the sky, the
observed altitude angle varies based on the latitude of the observer. The further
north or south we go from the equator, the lower the sun’s altitude becomes.
Figure 6 shows the sun’s altitude angle versus the azimuth angle observed at
25◦ north latitude and 40◦ north latitude respectively. The sun’s altitude angle
observed at 25◦ north latitude is higher than the altitude angle observed at 40◦

north latitude at the same time. Thus, the sun position inferred from photos
taken at the same time but different latitudes will be different.

Fig. 6. The same path of the sun observed at two latitudes.
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4 Shadow-Inferred Sun Position

The framework AYL uses both the azimuth angle and altitude angle to determine
the position of the sun in the sky. As shown in Fig. 4, the sun’s altitude angle
equals the angle between the shadow and the sun ray, and the sun’s azimuth angle
equals the angle measured across the shadow point of the top of the column,
clockwise from the north to the direction of the shadow. In this section, we
provide algorithms to estimate the altitude and azimuth angles of the sun from
shadows in a photo. We study two scenarios and two corresponding algorithms to
estimate the altitude angle. We also design an algorithm to measure the azimuth
angle. For both algorithms, their sensitivities are analyzed.

Fig. 7. Estimate the sun’s altitude
angle with two shadows.

Fig. 8. Estimate the sun’s altitude and
azimuth angle with one shadow.

4.1 Estimate Altitude

We consider two scenarios for estimating the sun’s altitude angles: (a) photos
that contain two vertical objects and their shadows, and (b) photos that contain
only one vertical object and its shadow. Vertical objects refer to the ones that
are perpendicular to the ground plane.

Two-Shadow Estimation. Figure 7 illustrates the first scenario, where two
objects O1 and O2 cast shadows S1 and S2 on the ground plane, respectively.
The sun’s altitude angle h is the angle between the shadow and the sun ray.
From the graphical perspective, a set of parallel lines in space intersect at one
point when they are projected onto a 2-d image. This point is called vanishing
point. In Fig. 7, shadows S1 and S2 of two vertical objects are parallel in space,
and they intersect at vanishing point vs on the ground plane. Since the sun is
far away from the earth, the sun rays r1 and r2 can be considered to be parallel
and intersect at vr. The sun’s altitude angle h can be calculated according to
the following formula [11]:

h = arccos(
vr

Tωvs√
vr

Tωvr

√
vs

Tωvs

), (1)
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Algorithm 1. Estimating the altitude angle h

Input: I: an image, f : the camera’s focal length
Output: h
1: G ← find the equation of the ground plane;
2: find the equations of lines {p′

1p1, p
′
2p2, p

′
3p3};

3: {(x1, y1, z1), (x2, y2, z2)} ← compute the coordinates of the points {p1, p2} by
solving a set of equations G and p′

ipi accordingly;
4: find the equation of line p2p3
5: (x3, y3, z3) ← compute the coordinates of p3 by solving a set of equations p2p3 and

p′
3p3;

6: {−−→p1p2,
−−→p1p3} ← {(x2 − x1, y2 − y1, z2 − z1), (x3 − x1, y3 − y1, z3 − z1)}

7: h ← compute the angle between −−→p1p2 and −−→p1p3 using Eq. 9
8: return h

where ω is called the image of the absolute conic and given by the expression
[11,27]:

ω ∼
⎡

⎣
1 0 −u0

0 1 −v0
−u0 −v0 f2 + u2

0 + v2
0

⎤

⎦ . (2)

This expression assumes that the camera has zero skew, the intersection of the
optical axis and the image plane is at the center of the image, and the pixels
are square. Such assumptions are true for current camera technologies [11,27].
In Eq. 2, (u0, v0) denotes the coordinates of the center point of the image, and
f denotes the camera’s focal length. f is either included in the metadata of the
image or can be calculated by the following constraint on ω with respect to f :

vs
Tωvo = 0, (3)

where vo is the vanishing points of the two vertical objects O1 and O2. When
the objects and their shadows are at perpendicular directions, vo and vs will
satisfy Eq. 3 [11]. Once we have the coordinates of vo and vs, we can obtain f
by solving Eq. 3.

One-Shadow Estimation. In this scenario, only one vertical object and its
shadow are visible in the image. Figure 8 illustrates this scenario where C denotes
the camera and I is the image. We assume that the image plane is perpendicular
to the ground plane and the direction −→u is parallel to the ground plane. So the
angle between the image plane and the ground plane is 90◦. Let’s denote the
image plane to be z = 0, and the coordinate frame is shown in Fig. 8. The center
of the image is the origin point (0, 0, 0).

Algorithm 1 describes the steps to measure the altitude angle h given a ver-
tical object and its shadow. Firstly, to find the equation of the ground plane
G, we define the distance between the camera and the ground plane to be hc.
As we know G is perpendicular to the XY plane of the coordinate system, the
equation of G can be written as:

y = −hc. (4)
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Next, we compute the equations of the lines p′
1p1, p′

2p2 and p′
3p3. Since the

line p′
ipi passes through the point C (0, 0, f) and the point p′

i whose coordinates
can be obtained from the image, it can be described by the two points as:

x

x′
i

=
y

y′
i

=
z + f

f
, (5)

where (x′
i, y

′
i, 0) are the coordinates of p′

i for i = 1, 2, 3.
Lines p′

1p1 and p′
2p2 intersect with plane G at points p1 and p2 respectively.

By solving the Eqs. 4 and 5, the coordinates of p1 and p2 can be computed as
follows:

pi = (x′
iti,−hc, f(ti − 1)), (6)

where ti = −hc

y′
i

for i = 1, 2. Then we have vector −−→p1p2 = (x′
2t2 − x′

1t1, 0,

f(t2 − t1)).
Now, we determine the coordinates of p3 which is the intersection point of

lines p′
3p3 and p2p3. The equation of line p2p3 is given by:

x = x′
2t2, z = f(t2 − 1). (7)

By solving the equations of p′
3p3 and p2p3, we can obtain the coordinates of the

point p3:
p3 = (x′

2t2, y
′
3t2, f(t2 − 1)). (8)

Using the coordinates of p2 and p3, we have vector −−→p1p3 = (x′
2t2 − x′

1t1, hc +
y′
3t2, f(t2 − t1)). The angle between −−→p1p3 and −−→p1p2 is the altitude angle and can

be computed as follows:

h = arccos
(−−→p1p3)T−−→p1p2√

(−−→p1p3)T−−→p1p3
√

(−−→p1p2)T−−→p1p2
,

= arccos
m

√
m + (y′

3/y′
2 − 1)2

√
m

.

(9)

where the intermediate variable m = (x
′
2

y′
2

− x′
1

y′
1
)2 + f2( 1

y′
2

− 1
y′
1
)2.

4.2 Estimate Azimuth

To estimate the sun’s azimuth angle A from one shadow in an image, we design
the following algorithm. The scenario is illustrated in Fig. 8. In particular, the
point p3 is not necessary to be visible for estimating the azimuth angle. Let C
be the camera and the unit vector −→u = (1, 0, 0). The true north N is set to be
the reference direction in our algorithm. The orientation of −→u with respect to N
can be obtained by subtracting 90◦ from the image direction which is included
in the metadata of the image.

The sun azimuth angle A equals the angle measured clockwise around point
p1 from due north to the shadow. We calculate A as follows:

A = ∠(N,−→u ) + ∠(−→u ,−−→p1p2) , (10)
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where ∠(−→u ,−−→p1p2) denotes the angle measured clockwise from −→u to −−→p1p2, and
∠(N,−→u ) is the angle measured clockwise from N to −→u , which is the orientation
of −→u . ∠(−→u ,−−→p1p2) is the only unknown variable in Eq. 10.

Next, we define the angle between −→u and −−→p1p2 to be α. ∠(−→u ,−−→p1p2) equals α
if it is an acute angle. Otherwise, ∠(−→u ,−−→p1p2) is equal to (360◦ − α). The angle
α can be calculated as:

α = arccos
−→u T−−→p1p2√−→u T−→u

√−−→p1p2T
−−→p1p2

, (11)

where −−→p1p2 has been calculated in Algorithm 1: −−→p1p2 = (x′
2t2 −x′

1t1, 0, f(t2 − t1))
and −→u = (1, 0, 0). Then, we replace −→u and −−→p1p2 in Eq. 11 and compute it as:

α = arccos(
(x

′
1

y′
1

− x′
2

y′
2
)

√
(x

′
1

y′
1

− x′
2

y′
2
)2 + f2( 1

y′
1

− 1
y′
2
)2

). (12)

4.3 Sensitivity Analysis

In this section, we quantify the estimation errors in the computing of the altitude
angles and azimuth angles.

Errors of the Altitude Angle Inferred from Two Shadows. The estima-
tion errors of altitude angles stem from the following factors: camera distortion
and the detection errors of the objects and shadows. For a well designed camera,
the systematic errors (e.g. camera distortion) are constant and can be calibrated
if necessary. The detection errors of the shadows and objects in the image can
be modeled as random variables. Consequently, the detection errors will result
in random errors in the calculation of vr and vs. Without loss of generality, we
consider the errors of vr and vs to be linear to the detection errors and define
them to be Δvr and Δvs, respectively.

From the graphical perspective, the sun altitude angle h derived from van-
ishing points vr and vs has the geometric meaning as described in Fig. 9. Let C
be the camera. The lines Cvr and Cvs are parallel to the shadow and the sun
ray respectively. h represents the sun altitude angle and equals the angle formed
by vr, C and vs. The error range of each vanishing point is a circle centered at

Fig. 9. Errors in the estimated altitude angle with two shadows.
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the vanishing point with a radius of the maximum random error. Since Δvr and
Δvs are small enough compared to the length of |Cvr| and |Cvs|, they can be
considered as two arcs with the center at C. In the worst case, the error Δh of
the altitude angle can be calculated as below:

Δh = (
Δvr
|Cvr| +

Δvs
|Cvs| )

180◦

π
, (13)

where |Cvr| and |Cvs| are the lengths between the camera and the two corre-
sponding vanishing points: vr and vs. Thus, the error Δh depends on the random
errors Δvr and Δvs.

Errors of the Altitude Angle Inferred from One Shadow. The sources
of random errors in estimating the altitude angle from one shadow include the
slope of the ground and the detection errors of interested object and its shadow.
If the ground where the shadow located is not flat and has an error of ΔG
with respect to the horizontal plane, ΔG will propagate as the altitude angle is
estimated. In addition, the detection errors of the vertical object and its shadow
can cause estimation errors. The detection errors can affect the angle estimation
depending on the distances from the camera to the object and its shadow. The
farther the distance, the larger the uncertainty of the estimated altitude angle.
The errors in the altitude angle can be linear to the detection errors.

Errors of the Azimuth Angle. The sources of random errors in estimating the
azimuth angle include the camera’s orientation errors and the detection errors of
shadows. To understand how a camera’s orientation affects the estimation error
of the angle between −→u and the shadow S1, we define θ to be the angle between
the image plane and the horizontal ground plane, and γ to be the angle between
the camera and the horizontal plane. Assume θ = 90◦ and γ = 0◦. And the
estimated camera orientation is θ = 90◦ + Δθ and γ = 0◦ + Δγ, where Δθ and
Δγ are random errors.

Figure 10 shows the impact of Δθ and Δγ on the estimated direction of
the shadow. First, the error Δθ will be propagated as we estimate the ground
plane according to the camera’s orientation. And due to this error, the estimated
shadow direction will deviate from the true direction of the shadow. The devia-
tion will be Δθ in the worst case. Second, the error Δγ will also be propagated
to the estimated ground plane. And this error will lead to a deviation in the
estimated shadow direction as well, which is Δγ in the worst case. In summary,
the estimated shadow direction deviates from its true direction at most Δθ+Δγ,
which can produce Δθ + Δγ error in the estimated azimuth angle in the worst
case.

In summary, we find three main sources of the errors: the detection errors of
the objects and their shadows, the ground slope, and the camera’s orientation
errors. In general, the estimation errors of the sun position are linear to the
three types of errors. The detection errors in our algorithms can be reduced by
choosing the objects and shadows that are clear enough and using effective image
detection algorithms. The errors caused by the slope of the ground will not be



Are You Lying: Validating the Time-Location of Outdoor Images 115

Fig. 10. Effects caused by random errors in camera’s orientation

greater than the slope angle and can be reduced greatly by measuring this angle.
In addition, the camera’s orientation errors can be reduced using inertial sensors
to obtain the camera orientation.

5 Metadata-Inferred Sun Position and Validation

In this section, we describe the process to validate the consistency of a photo’s
capture time and location. The key idea is the following: we calculate the sun
position using the capture time and location in the metadata of images. If the
capture time and location are true, the sun position will match the one we
estimated from shadows.

5.1 Metadata-Inferred Sun Position

As mentioned in Sect. 3, the position of the sun depends on the time of day, the
date and the location of the observer. Its movement across the sky obeys the rules
that have been studied in astronomy. In this section, we discuss the astronomical
algorithms that are used to calculate metadata-inferred sun position, given the
time and location.

We refer the time of day as the local time based on the standard time offsets
of Coordinated Universal Time (UTC). However, the local standard time doesn’t
provide an intuitive connection with the sun position. In astronomy, the solar
time is often used to discuss the sun position. It works because the sun finishes
a 360◦ rotation around the celestial sphere every 24 h. The completed journey is
divided into 24 h, and one solar hour means that the sun travels a 15◦ arc [19].
The instant when the sun is due south in the sky or the shadow points to exactly
north is called solar noon, which is 12:00 for solar time. Every 15◦ arc the sun
travels, one hour is added to 12:00 under the 24-h clock system, and the angle
distance that the sun passes on the celestial sphere is defined as the hour angle
H [19]. It is measured from the sun’s solar noon position, and ranges from 0◦ to
+180◦ westwards and from 0◦ to −180◦ eastwards. The conversion between the
local standard time tl to the solar time ts is as follows [13,24]:

ts = tl + ET +
4 min

deg
(λstd − λl), (14)
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where λl denotes the local longitude, and λstd is the local longitude of standard
time meridian, and ET stands for the equation of time, which describes the
difference of the true solar time and the mean solar time [13]. The sun’s hour
angle is calculated as follows:

H = 15◦(ts − 12). (15)

Using the observer’s local horizon as a reference plane, the azimuth and
altitude angles of the sun can be calculated as follows [24]:

tan(A) =
sin H

sinϕ cos H − cos ϕ tan δ
, (16)

sin(h) = sin δ sin ϕ + cos ϕ cos δ cos H, (17)

where ϕ is the latitude of the observer’s location, and δ is the sun’s declination
angle and it can be calculated as below [15,24]:

δ = −23.44◦ cos(
360◦(N + 10)

365◦ ), (18)

where N is the number of days since January 1st. Note that the azimuth angle A
calculated in Eq. 16 uses south as a reference. We can derive the azimuth angle
according to its definition in Sect. 3.

5.2 Consistency Validation

Once obtaining the shadow-inferred sun position and metadata-inferred sun posi-
tion, we check the difference between these two estimations by comparing their
altitude angles and azimuth angles respectively. However, since there exists ran-
dom and systemic errors in the shadow-inferred sun position, the estimation may
not equal the “true” sun position. Thus, we have to select a threshold that is
large enough to tolerate the errors yet small enough to detect the inconsistency
between the shadow-inferred sun position and metadata-inferred sun position.
Intuitively, the closer these two sun positions are to each other, the more likely
the capture time and location are true.

We define the altitude angles of shadow-inferred sun position and metadata-
inferred sun position to be hs and hm respectively, and the corresponding
azimuth angles to be As and Am. Then the distance of the two altitude angles
is dh = |hs − hm|, and the distance of the two azimuth angles is computed as
dA = |As−Am|. The likelihood of the consistency is inversely proportional to dh
and dA. However, the effects on dh and dA caused by fake capture time and/or
location are different. For example, modifying the capture time from 12:00 p.m.
to 13:00 p.m. may lead to 10◦ in dA but only 2◦ in dh. So two different thresholds
for dh and dA have to be selected. The capture time and location are considered
to be true only when both dh and dA are within the thresholds. Besides, the sun
position can be described by a pair of azimuth angle and altitude angle: (A, h).
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We can also use the sun position distance that is computed as dp =
√

d2A + d2h
to distinguish the two estimations of the sun position. Our goal is to choose
appropriate variables and thresholds that can increase the probability of correct
validation for inconsistent images and decrease the probability of false valida-
tion for consistent images. Section 6 details the selection of thresholds in the
validation experiment.

6 Evaluation

This section presents the results of our experiments. To evaluate the perfor-
mance of the sun position estimation algorithms, we conducted an experiment
on November 8, 2016 in the U.S. and collected 60 photos. To validate the effec-
tiveness of the framework AYL, we gathered 124 photos in China and the U.S in
the span of four months, and examined whether we can detect the modifications
of capture time, date and location.

6.1 Sun Position Estimation

To evaluate the accuracy of our sun position estimation algorithms, we collected
60 photos using the rear camera of an iPhone 7 from 9:30 a.m. to 14:30 p.m. at
an interval of about 5 min on November 8, 2016 in Columbia, SC. As shown in
Fig. 11(a) we set up the experiment in a relatively ideal situation: we place two
columns (the red one and the grey one) on the ground vertically, and fixed the
iPhone 7 on another vertical stick to take photos of these two columns and their
shadows. Figure 11(b) shows the estimated altitude angles by applying the two-
shadow estimation and one-shadow estimation algorithms to the photos.
The ground truth sun positions are calculated using the astronomical algorithms
in Sect. 5.1 according to the real time, latitude and longitude. The ground truth
altitude angles are labeled with red and denoted as “Altitude”. The other two

Fig. 11. The experiment setting is shown in (a). And (b) presents the comparison of
estimated altitude angle to ground truth altitude angle. (c) shows the comparison of
estimated azimuth angle to ground truth azimuth angle.
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curves in Fig. 11(b) represent the estimated altitude angles inferred from shad-
ows. “2S-Estimation” is obtained by applying the two-shadow estimation
algorithm, while “1S-Estimation” is plotted by applying the one-shadow esti-
mation algorithm. We find that the average error in “2S-Estimation” is 1.43◦,
while it is 2.98◦ in “1S-Estimation”. Figure 11(c) presents the estimated azimuth
angles versus the ground truth azimuth angles. The curve in red is plotted using
the ground truth azimuth angles, while the curve in blue is plotted using the
data of estimated azimuth angles. The average error is approximately 4.3◦.

The estimation errors of sun positions are mainly contributed by three fac-
tors. First, due to the ground slope and the camera’s orientation, the image plane
may not be precisely perpendicular to the ground plane, which causes errors. The
second type of errors is random one that is introduced when extracting objects
and shadows from the photos. Finally, errors can be created by the measure-
ment drift of the compass over time. Due to the nature of the two algorithms,
these types of errors will have different levels of impact on them. Figure 11(b)
indicates that the two-shadow estimation algorithm outperforms the one-
shadow estimation algorithm. It is partly because the one-shadow estima-
tion algorithm is more sensitive to the ground slope. We believe that given the
measurement of the slope, we shall be able to reduce the error. In summary, the
algorithms in Sect. 4 are able to infer the sun position, either from two vertical
objects and their shadows or from one object and its shadow.

6.2 Consistency Validation

To evaluate the performance of AYL and to understand threshold selection, we
conducted a set of experiments.

Dataset. The data in this experiment was captured at 15 cities around the USA
and China since September 2016. Our dataset consists of 124 photographs taken
by 10 iPhones, including iPhone 5s, 6, 6 plus, 6s, 6s plus and 7. 61 out of the 124
photos were taken in China. Each photo encloses the metadata that includes
the real capture time and location. 72 out of the 124 photos contain at least
two vertical objects and their shadows, while 52 photos only contain one verti-
cal object and its shadow. Our dataset mainly contains three types of vertical
objects: standing people, poles (e.g. road signs, lampposts) and tree trunks. We
chose these objects because they are common in reality and are mostly vertical
to the ground. Our experimental results confirm that our algorithms work well
on these objects. We refer to the true metadata of the 124 photos as the positive
samples.

We generate the attack data by falsifying the metadata of the 124 photos.
Note that multiple types of metadata may result in the same effect. For instance,
modifying longitude one degree more to the west has the same effect on the sun
position as changing the local time forward by four minutes. Thus, falsifying
either longitude or the local time is equivalent. To simplify the analysis yet
without loss of generality, we focus on three types of attacks that modify the
following metadata:
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– The falsified time of day, and true date and location.
– The falsified date, and true time and location.
– The falsified latitude of location, and true time and date.

We refer to the attack metadata as the negative samples. We have 124 negative
samples for each type of attack metadata, The “fake” times of day are randomly
generated in the range from 8:00 a.m. to 17:00 p.m. when the sun is likely to be
seen. The “fake” dates are randomly generated from the range within one year.
The “fake” latitudes of location are randomly generated in the range of 25◦ and
50◦ of the Northern Hemisphere where most of the U.S. and China locate. Here
we didn’t consider the attack data with falsified longitude. Because the result
produced by only falsifying longitude can be equivalent to the result caused by
falsifying the time of day accordingly.

Metric. We use ROC curves to evaluate the performance of AYL by varying
thresholds for our system. An ROC curve represents Receiver Operating Char-
acteristic curve and is created by plotting true positive rate (TPR) against false
positive rate (FPR), as the threshold varies [6]. The true positive rate and false
positive rate are defined as below.

TPR =
# of true positives

# of (true positives + false negatives)
=

# of true positives
# of positives

FPR =
# of false positives

# of (true negatives + false positives)
=

# of false positives
# of negatives

where a true positive denotes the result that a positive sample is correctly iden-
tified as such, and a false positive is the one that a negative sample is identified
as a positive sample by mistakes. The point (0, 1) on the ROC curve denotes 0
FPR and 100% TPR, which indicates an ideal system that can correctly iden-
tify all genuine photos and reject all falsified photos [25]. In our experiment, we
select the optimal threshold as the one that yields the minimum distance from
the corresponding point on the ROC curve to the ideal point (0, 1). Another
indicator that we use to evaluate the average performance of the validation is
the area under the ROC curve (AUC). The closer it is to 1, the better the average
performance is [6].

Performance and Threshold Selection. Based on the framework AYL, we
performed consistency validation using the three types of attack metadata. To
understand how the altitude angle and azimuth angle influence the performance
of the validation, we examine three distances separately: the distance of the
altitude angles dh, the distance of the azimuth angles dA, and the distance of
the sun positions dp. Here, the sun position is defined to be (A, h), in which A
refers to the azimuth angle and h refers to the altitude angle. To decide the best
distance variable which can yield the maximum AUC and the optimal threshold
of the variable, we analyze the ROC curves that are plotted by varying the
threshold of each type of distance.

The results are presented in the set of ROC curves shown in Fig. 12. Each
ROC curve with distinct color is plotted by varying the threshold of one type
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Fig. 12. ROC curves based on different distance variables and different types of attack
metadata.

of the three distances. “TH − dp” denotes varying the threshold of the sun posi-
tion distance dp. “TH − dh” and “TH − dA” denote varying the threshold of the
altitude angle distance dh and the azimuth angle distance dA respectively. For
each type of attack metadata, the randomly generating of 124 negative samples
is repeated 5 times. Each false positive rate on the ROC curve is averaged over
these repeated attack metadata. Figure 12(a) indicates that the detection based
on dA slightly outperforms the one based on dh, to detect the attacks that falsify
the photo’s time of day. However, the dh based detection achieves better perfor-
mance in detecting the other types of attacks as shown in Fig. 12(b–c), especially
in detecting falsified latitude. The result implies that dh is more important in
distinguishing different positions of the sun compared to dA in general. Such a
conclusion confirms with the result reported in Sect. 6.1, i.e., the average esti-
mation error of the altitude angles is smaller than that of the azimuth angles.
If only dh is used for consistency validation, Fig. 12(d) guides us to choose the
optimal threshold of dh to be 3◦ and it achieves combined (TPR, FPR) values
of (89.5%, 22%), which means that 89.5% of positive samples can be correctly
validated but 22% of negative samples will be mistakenly identified. In addition,
Fig. 12(a–c) shows that the dp based detection achieves the best performance in
detecting falsified time, and has almost the same performance as the dh based
detection in detecting the other types of attacks. Once we only use dp for con-
sistency validation as shown in Fig. 12(d), we choose the optimal threshold of dp
to be 9.2◦, which achieves combined (TPR, FPR) values of (92.7%, 18.6%) for
all attacks.

To improve the performance further, we examine both the dp and dh to
validate the consistency of time and location. That is, a sample has to satisfy
both the thresholds of dh and dp to be accepted by AYL. Plotting the ROC
curves and finding the global optimal thresholds by varying two thresholds can
be tricky. Thus, we chose the local optimal threshold for one variable and varied
the other threshold to plot the ROC curve. This approach may not generate the
global optimal thresholds for the two variables, but it strikes a balance between
the optimum and the computational cost. We chose the threshold of dp to be
9.2◦ and varied the threshold of dh. The resulting curve illustrates an improved
performance than the one of using a single threshold as shown in Fig. 12(d).
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Note that we cannot plot an integral ROC curve when the threshold of dp is
fixed since the highest true positive rate will be decided by the fixed threshold,
which is 92.7%. The curve “TH − dpdh” in Fig. 12(d) indicates that choosing the
optimal threshold of dh to be 4.8◦ can correctly identify 91.1% positive samples,
and cannot identify 7.7% of negative samples.

Attacks Against AYL. Based on the above results, we analyze the robustness of
the framework AYL when falsifying one of the three parameters—time of day, date
and latitude of location, and falsifying more than one parameters. AYL cannot
detect the falsifications that do not cause violations of both the thresholds of
the altitude angle distance and the sun position distance. If an attacker modifies
both the time and location of a photo such that the altitude angle and the sun
position are within the thresholds, then the modification can fool AYL. Luckily.
the motivation of falsifying the metadata of a photo is to use it for a chose event
and the attacker may not be guaranteed to find such a combination.

Our framework can detect that the image shown in Fig. 1 was not taken at
the claimed date and location. Although we do not have the required metadata
(e.g., the time of day, the image direction and the camera orientation) and cannot
estimate the azimuth angle as well as the exact sun position, we can estimate
the altitude angle from the image. Given that the photo was claimed to be taken
on or before January 16th in Florida, we can calculate the possible maximum
altitude angle between January 1st and 16th to be 41◦. Based on the image, we
estimate the focal length to be 1287 pixels and the altitude angle to be 47.6◦.
The distance between the two estimates will be 6.6◦ which is larger than the
threshold 4.8◦ in our experiments. Thus, we conclude that the date and location
of this image were spoofed.

6.3 Discussions and Limitations

When estimating the altitude angle using the one-shadow estimation algo-
rithm, an integrated vertical object and its shadow are required. However, ver-
tical objects in the real world may not be absolutely vertical. By examining
the scenario, we find that the direction of the sun ray is determined by a point
on the object and the resulting point on the shadow. Even if the object is not
exactly vertical, these two points are still able to decide the path of the sun ray
and the altitude angle can be obtained from the sun ray and the shadow. Thus,
we believe that our algorithm can eliminate this requirement, and AYL may not
require to have the entire object in the photo if there exists a distinct point on
the object.

In this paper, we assume that the camera is perpendicular to the ground
and looks front horizontally or vertically when taking photos. Such assumption
is used to simplify the algorithms for estimating the sun position. In fact, most
smartphotnes are equipped with inertial sensors that have been widely used to
estimate the orientation of the smartphone. If the sensor data is enclosed in
the metadata, the device orientation can be obtained and used to determine
the relationship between the device and the ground as well as the shadows.
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A direction of future work is to estimate the sun position regardless of how
cameras are oriented when taking photos.

7 Conclusion

We presented a new framework AYL which uses two estimations of sun position—
shadow-inferred sun position and metadata-inferred sun position—to check
whether the capture time and location of an outdoor image are true. Our frame-
work exploits the relationship between the sun position in the sky and the time
and location of an observer. We designed algorithms to obtain shadow-inferred
sun position using only one vertical object and its shadow in the image. Our
experiments show that the algorithms can estimate the sun position from shad-
ows in the image with satisfactory accuracy. AYL utilizes both the altitude angle
and azimuth angle for the consistency validation. The evaluation results guide
us to choose the thresholds of altitude angle distance and sun position distance
to be 4.8◦ and 9.2◦ respectively, which achieves combined (TPR, FPR) values
of (91.1%, 7.7%) for the consistency validation. We believe that our results illus-
trate the potential of using sun position to validate the consistency of the capture
time and location. Our work raises an open question that whether other image
contents can be leveraged for validating the consistency of image’s contextual
information.
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