Skip to main content

Three Dimensional In Vitro Tumor Platforms for Cancer Discovery

  • Chapter
  • First Online:
Tumor Organoids

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Traditional experimental platforms to study cancer biology consist of two-dimensional (2D) cell culture systems and animal models. Although 2D cell cultures have yielded fundamental insights into cancer biology, they do not provide a physiologically representative three-dimensional (3D) volume for cell attachment and infiltration. These systems also cannot recapitulate critical features of the tumor microenvironment including hemodynamics, matrix mechanics, cellular crosstalk, and matrix interactions in a dynamic manner, or impose chemical and mechanical gradients. While animal models provide physiologic fidelity, they can be highly variable and cost prohibitive for extensive biological investigation and therapeutic optimization. Furthermore, the interplay of many different microenvironmental variables, such as growth factors, immune reaction, and stromal interactions, make it difficult to isolate the effect of a specific stimulus on cell response using animal models. Due to these limitations, 3D in vitro tumor models have recently emerged as valuable tools for the study of cancer progression as these systems have the ability to overcome many of the limitations of static 2D monolayers and mammalian systems. Initial 3D in vitro models have consisted of static 3D co-culture platforms and have been successful in providing a deeper insight compared to animal and static 2D systems. However, the majority of these existing systems lack the presence of physiological flow, a pivotal stimuli in tumor growth and metastasis and important consideration for transport of diagnostic or therapeutic agents. In order to consider the influence of flow on cancer progression microfluidic platforms are being widely used. The integration of microfluidic technology and microfabrication techniques with tumor biology has resulted in complex 3D microfluidic platforms capable of investigating various key stages in cancer evolution including angiogenesis and metastasis. 3D microfluidic platforms are able to provide a physiologically representative tumor environment while allowing for dynamic monitoring and simultaneous control of multiple factors such as cellular and extracellular matrix composition, fluid velocity and wall shear stress, and both biochemical and mechanical gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buchanan C, Voigt E, Szot CS, Freeman JW, Vlachos P, Rylander MN (2013) Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization. Tissue Eng Part C Methods 20(1):64–75

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ingram M, Techy G, Ward B, Imam S, Atkinson R, Ho H, Taylor C (2010) Tissue engineered tumor models. Biotech Histochem 85:213–229

    Article  CAS  PubMed  Google Scholar 

  3. Kumar VA, Brewster LP, Caves JM, Chaikof EL (2011) Tissue engineering of blood vessels: functional requirements, progress, and future challenges. Cardiovasc Eng Technol 2:137–148

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sung JH, Shuler ML (2012) Microtechnology for mimicking in vivo tissue environment. Ann Biomed Eng 40:1289–1300

    Article  PubMed  Google Scholar 

  5. Abraham LC, Zuena E, Perez-ramirez B, Kaplan DL (2008) Guide to collagen characterization for biomaterial studies. J Biomed Mater Res B Appl Biomater 87:264–285

    Article  PubMed  Google Scholar 

  6. Charulatha V, Rajaram A (2003) Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials 24:759–767

    Article  CAS  PubMed  Google Scholar 

  7. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  CAS  PubMed  Google Scholar 

  8. Kreger S, Bell B, Bailey J, Stites E, Kuske J, Waisner B, Voytik-harbin S (2010) Polymerization and matrix physical properties as important design considerations for soluble collagen formulations. Biopolymers 93:690–707

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Parenteau-bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3:1863–1887

    Article  CAS  PubMed Central  Google Scholar 

  10. Wolf K, Alexander S, Schacht V, Coussens LM, von Andrian UH, van Rheenen J, Deryugina E, Friedl P (2009. Elsevier) Collagen-based cell migration models in vitro and in vivo. Semin Cell Dev Biol 20(8):931–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yamamura n, Sudo r, Ikeda M, Tanishita K (2007) Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Eng 13:1443–1453

    Article  CAS  PubMed  Google Scholar 

  12. Gribova V, Crouzier T, Picart C (2011) A material’s point of view on recent developments of polymeric biomaterials: control of mechanical and biochemical properties. J Mater Chem 21:14354–14366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Levy-mishali M, Zoldan J, Levenberg S (2009) Effect of scaffold stiffness on myoblast differentiation. Tissue Eng A 15:935–944

    Article  CAS  Google Scholar 

  14. Ulrich TA, Jain A, Tanner K, Mackay JL, Kumar S (2010) Probing cellular mechanobiology in three-dimensional culture with collagen–agarose matrices. Biomaterials 31:1875–1884

    Article  CAS  PubMed  Google Scholar 

  15. Antoine EE, Vlachos PP, Rylander MN (2014) Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng Part B Rev 20:683–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chrobak KM, Potter DR, Tien J (2006) Formation of perfused, functional microvascular tubes in vitro. Microvasc Res 71:185–196

    Article  CAS  PubMed  Google Scholar 

  17. Cross VL, Zheng Y, Choi NW, Verbridge SS, Sutermaster BA, Bonassar LJ, Fischbach C, Stroock AD (2010) Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials 31:8596–8607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koumoutsakos P, Pivkin I, Milde F (2013) The fluid mechanics of cancer and its therapy. Annual review of fluid mechanics 45:325

    Google Scholar 

  19. Polacheck WJ, Zervantonakis IK, Kamm RD (2013) Tumor cell migration in complex microenvironments. Cellular and Molecular Life Sciences 70:1335–1356

    Google Scholar 

  20. Raub CB, Suresh V, Krasieva T, Lyubovitsky J, Mih JD, Putnam AJ, Tromberg BJ, George SC (2007) Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy. Biophys J 92:2212–2222

    Article  CAS  PubMed  Google Scholar 

  21. Yang Y-L, Motte S, Kaufman LJ (2010) Pore size variable type I collagen gels and their interaction with glioma cells. Biomaterials 31:5678–5688

    Article  CAS  PubMed  Google Scholar 

  22. Achilli M, Mantovani D (2010) Tailoring mechanical properties of collagen-based scaffolds for vascular tissue engineering: the effects of pH, temperature and ionic strength on gelation. Polymers 2:664–680

    Article  CAS  Google Scholar 

  23. Raub CB, Unruh J, Suresh V, Krasieva T, Lindmo T, Gratton E, Tromberg BJ, George SC (2008) Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties. Biophys J 94:2361–2373

    Article  CAS  PubMed  Google Scholar 

  24. Roeder BA, Kokini K, Voytik-harbin SL (2009) Fibril microstructure affects strain transmission within collagen extracellular matrices. J Biomech Eng 131:031004

    Article  PubMed  Google Scholar 

  25. Naciri M, Kuystermans D, Al-rubeai M (2008) Monitoring pH and dissolved oxygen in mammalian cell culture using optical sensors. Cytotechnology 57:245–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sung KE, Su G, Pehlke C, Trier SM, Eliceiri KW, Keely PJ, Friedl A, Beebe DJ (2009) Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices. Biomaterials 30:4833–4841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Califano JP, Reinhart-king CA (2010) Exogenous and endogenous force regulation of endothelial cell behavior. J Biomech 43:79–86

    Article  PubMed  Google Scholar 

  28. Carey SP, Kraning-rush CM, Williams RM, Reinhart-king CA (2012) Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials 33:4157–4165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ghousifam N, Mortazavian H, Bhowmick R, Vasquez Y, Blum FD, Gappa-fahlenkamp H (2017) A three-dimensional in vitro model to demonstrate the haptotactic effect of monocyte chemoattractant protein-1 on atherosclerosis-associated monocyte migration. Int J Biol Macromol 97:141–147

    Article  CAS  PubMed  Google Scholar 

  30. Gunzer M, Friedl P, Niggemann B, Bröcker E-B, Kämpgen E, Zänker KS (2000) Migration of dendritic cells within 3-D collagen lattices is dependent on tissue origin, state of maturation, and matrix structure and is maintained by proinflammatory cytokines. J Leukoc Biol 67:622–629

    CAS  PubMed  Google Scholar 

  31. Haugh MG, Murphy CM, Mckiernan RC, Altenbuchner C, O'brien FJ (2011) Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds. Tissue Eng A 17:1201–1208

    Article  CAS  Google Scholar 

  32. Lo C-M, Wang H-B, Dembo M, Wang Y-L (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG, Keely PJ (2008) Collagen density promotes mammary tumor initiation and progression. BMC Med 6:11

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sieminski A, Hebbel RP, Gooch KJ (2004) The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp Cell Res 297:574–584

    Article  CAS  PubMed  Google Scholar 

  35. Wells RG (2008) The role of matrix stiffness in regulating cell behavior. Hepatology 47:1394–1400

    Article  CAS  PubMed  Google Scholar 

  36. Antoine EE, Vlachos PP, Rylander MN (2015) Tunable collagen I hydrogels for engineered physiological tissue micro-environments. PLoS One 10:e0122500

    Article  PubMed  PubMed Central  Google Scholar 

  37. Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224

    Article  CAS  PubMed  Google Scholar 

  38. Horning JL, Sahoo SK, Vijayaraghavalu S, Dimitrijevic S, Vasir JK, Jain TK, Panda AK, Labhasetwar V (2008) 3-D tumor model for in vitro evaluation of anticancer drugs. Mol Pharm 5:849–862

    Article  CAS  PubMed  Google Scholar 

  39. Hutmacher DW, Horch RE, Loessner D, Rizzi S, Sieh S, Reichert JC, Clements JA, Beier JP, Arkudas A, Bleiziffer O (2009) Translating tissue engineering technology platforms into cancer research. J Cell Mol Med 13:1417–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim JB (2005. Elsevier) Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol 15(5):365–377

    Article  PubMed  Google Scholar 

  41. Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130:601–610

    Article  CAS  PubMed  Google Scholar 

  42. Fischbach C, Chen R, Matsumoto T, Schmelzle T, Brugge JS, Polverini PJ, Mooney DJ (2007) Engineering tumors with 3D scaffolds. Nat Methods 4:855–860

    Article  CAS  PubMed  Google Scholar 

  43. Ghajar CM, Bissell MJ (2010) Tumor engineering: the other face of tissue engineering. Tissue Eng A 16:2153–2156

    Article  Google Scholar 

  44. Hutmacher DW, Loessner D, Rizzi S, Kaplan DL, Mooney DJ, Clements JA (2010) Can tissue engineering concepts advance tumor biology research? Trends Biotechnol 28:125–133

    Article  CAS  PubMed  Google Scholar 

  45. Nelson CM, Bissell MJ (2005. Elsevier) Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin Cancer Biol 15(5):342–352

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nelson CM, Inman JL, Bissell MJ (2008) Three-dimensional lithographically defined organotypic tissue arrays for quantitative analysis of morphogenesis and neoplastic progression. Nat Protoc 3:674–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Raof NA, Raja WK, Castracane J, Xie Y (2011) Bioengineering embryonic stem cell microenvironments for exploring inhibitory effects on metastatic breast cancer cells. Biomaterials 32:4130–4139

    Article  PubMed  Google Scholar 

  48. Verbridge SS, Choi NW, Zheng Y, Brooks DJ, Stroock AD, Fischbach C (2010) Oxygen-controlled three-dimensional cultures to analyze tumor angiogenesis. Tissue Eng A 16:2133–2141

    Article  CAS  Google Scholar 

  49. Szot CS, Buchanan CF, Freeman JW, Rylander MN (2011) 3D in vitro bioengineered tumors based on collagen I hydrogels. Biomaterials 32:7905–7912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brahimi-Horn MC, Chiche J, Pouysségur J (2007) Hypoxia and cancer. J Mol Med 85:1301–1307

    Article  PubMed  Google Scholar 

  51. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  52. Kilarski W, Bikfalvi A (2007) Recent developments in tumor angiogenesis. Curr Pharm Biotechnol 8:3–9

    Article  CAS  PubMed  Google Scholar 

  53. Zhou J, Schmid T, Schnitzer S, Brüne B (2006) Tumor hypoxia and cancer progression. Cancer Lett 237:10–21

    Article  CAS  PubMed  Google Scholar 

  54. Hayes A, Huang W, Yu J, Maisonpierre P, Liu A, Kern F, Lippman M, Mcleskey S, Li L (2000) Expression and function of angiopoietin-1 in breast cancer. Br J Cancer 83:1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nagata S (2000) Apoptotic DNA fragmentation. Exp Cell Res 256:12–18

    Article  CAS  PubMed  Google Scholar 

  56. Bos R, van Diest PJ, de Jong JS, van der Groep P, van der Valk P, van der Wall E (2005) Hypoxia-inducible factor-1α is associated with angiogenesis, and expression of bFGF, PDGF-BB, and EGFR in invasive breast cancer. Histopathology 46:31–36

    Article  CAS  PubMed  Google Scholar 

  57. Szot CS, Buchanan CF, Freeman JW, Rylander MN (2013) In vitro angiogenesis induced by tumor-endothelial cell co-culture in bilayered, collagen I hydrogel bioengineered tumors. Tissue Eng Part C Methods 19:864–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kebers F, Lewalle JM, Desreux J, Munaut C, Devy L, Foidart JM, Noel A (1998) Induction of endothelial cell apoptosis by solid tumor cells. Exp Cell Res 240:197–205

    Article  CAS  PubMed  Google Scholar 

  59. Lin RZ, Wang TP, Hung RJ, Chuang YJ, Chien CC, Chang HY (2011) Tumor-induced endothelial cell apoptosis: roles of NAD(P)H oxidase-derived reactive oxygen species. J Cell Physiol 226:1750–1762

    Article  CAS  PubMed  Google Scholar 

  60. Mcewen A, Emmanuel C, Medbury H, Leick A, Walker DM, Zoellner H (2003) Induction of contact-dependent endothelial apoptosis by osteosarcoma cells suggests a role for endothelial cell apoptosis in blood-borne metastasis. J Pathol 201:395–403

    Article  CAS  PubMed  Google Scholar 

  61. Pepper MS, Ferrara N, Orci L, Montesano R (1992) Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 189:824–831

    Article  CAS  PubMed  Google Scholar 

  62. Hong JW, Quake SR (2003) Integrated nanoliter systems. Nat Biotechnol 21:1179–1183

    Article  CAS  PubMed  Google Scholar 

  63. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Z, Nagrath S (2013) Microfluidics and cancer: are we there yet? Biomed Microdevices 15:595–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sung KE, Beebe DJ (2014) Microfluidic 3D models of cancer. Adv Drug Deliv Rev 79-80:68–78

    Article  CAS  PubMed  Google Scholar 

  66. Bersini S, Moretti M (2015) 3D functional and perfusable microvascular networks for organotypic microfluidic models. J Mater Sci Mater Med 26:180

    Article  PubMed  Google Scholar 

  67. Xu X, Farach-carson MC, Jia X (2014) Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnol Adv 32:1256–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stadler M, Walter S, Walzl A, Kramer N, Unger C, Scherzer M, Unterleuthner D, Hengstschlager M, Krupitza G, Dolznig H (2015) Increased complexity in carcinomas: analyzing and modeling the interaction of human cancer cells with their microenvironment. Semin Cancer Biol 35:107–124

    Article  PubMed  Google Scholar 

  69. Buchanan C, Rylander MN (2013) Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response. Biotechnol Bioeng 110:2063–2072

    Article  CAS  PubMed  Google Scholar 

  70. Park TH, Shuler ML (2003) Integration of cell culture and microfabrication technology. Biotechnol Prog 19:243–253

    Article  CAS  PubMed  Google Scholar 

  71. Buchanan CF, Verbridge SS, Vlachos PP, Rylander MN (2014) Flow shear stress regulates endothelial barrier function and expression of angiogenic factors in a 3D microfluidic tumor vascular model. Cell Adhes Migr 8:517–524

    Article  Google Scholar 

  72. Antoine E, Buchanan C, Fezzaa K, Lee WK, Rylander MN, Vlachos P (2013) Flow measurements in a blood-perfused collagen vessel using x-ray micro-particle image velocimetry. PLoS One 8:e81198

    Article  PubMed  PubMed Central  Google Scholar 

  73. Garcia-cardena G, Comander J, Anderson KR, Blackman BR, Gimbrone MA Jr (2001) Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci U S A 98:4478–4485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Levesque MJ, Nerem RM (1985) The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng 107:341–347

    Article  CAS  PubMed  Google Scholar 

  75. Lin K, Hsu PP, Chen BP, Yuan S, Usami S, Shyy JY, LI YS, Chien S (2000) Molecular mechanism of endothelial growth arrest by laminar shear stress. Proc Natl Acad Sci U S A 97:9385–9389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Price GM, Wong KH, Truslow JG, Leung AD, Acharya C, Tien J (2010) Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 31:6182–6189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Song JW, Munn LL (2011) Fluid forces control endothelial sprouting. Proc Natl Acad Sci U S A 108:15342–15347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mitchell MJ, King MR (2013) Fluid Shear Stress Sensitizes Cancer Cells to Receptor-Mediated Apoptosis via Trimeric Death Receptors. New J Phys 15:0150r08

    Article  Google Scholar 

  79. Shieh AC, Rozansky HA, Hinz B, Swartz MA (2011) Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Res 71:790–800

    Article  CAS  PubMed  Google Scholar 

  80. Price GM, Chu KK, Truslow JG, Tang-schomer MD, Golden AP, Mertz J, Tien J (2008) Bonding of macromolecular hydrogels using perturbants. J Am Chem Soc 130:6664–6665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bischel LL, Young EW, Mader BR, Beebe DJ (2013) Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials 34:1471–1477

    Article  CAS  PubMed  Google Scholar 

  82. Zheng Y, Chen J, Craven M, Choi NW, Totorica S, Diaz-Santana A, Kermani P, Hempstead B, Fischbach-teschl C, Lopez JA, Stroock AD (2012) In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci U S A 109:9342–9347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, Kamm RD (2015) Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci U S A 112:214–219

    Article  CAS  PubMed  Google Scholar 

  84. Vickerman V, Kamm RD (2012) Mechanism of a flow-gated angiogenesis switch: early signaling events at cell-matrix and cell-cell junctions. Integr Biol (Camb) 4:863–874

    Article  CAS  Google Scholar 

  85. Song JW, Cavnar SP, Walker AC, Luker KE, Gupta M, Tung YC, Luker GD, Takayama S (2009) Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS One 4:e5756

    Article  PubMed  PubMed Central  Google Scholar 

  86. Heylman C, Sobrino A, Shirure VS, Hughes CC, George SC (2014) A strategy for integrating essential three-dimensional microphysiological systems of human organs for realistic anticancer drug screening. Exp Biol Med (Maywood) 239:1240–1254

    Article  Google Scholar 

  87. Imura Y, Sato K, Yoshimura E (2010) Micro total bioassay system for ingested substances: assessment of intestinal absorption, hepatic metabolism, and bioactivity. Anal Chem 82:9983–9988

    Article  CAS  PubMed  Google Scholar 

  88. Sung JH, Kam C, Shuler ML (2010) A microfluidic device for a pharmacokinetic–pharmacodynamic (PK–PD) model on a chip. Lab Chip 10:446–455

    Article  CAS  PubMed  Google Scholar 

  89. Zhang C, Zhao Z, Abdul RN, van Noort D, Yu H (2009) Towards a human-on-chip: culturing multiple cell types on a chip with compartmentalized microenvironments. Lab Chip 9:3185

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge funding from the National Institute of Health grant 1R21EB019646 that made this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marissa Nichole Rylander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Gadde, M., Marrinan, D., Michna, R.J., Rylander, M.N. (2018). Three Dimensional In Vitro Tumor Platforms for Cancer Discovery. In: Soker, S., Skardal, A. (eds) Tumor Organoids. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60511-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60511-1_5

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-60509-8

  • Online ISBN: 978-3-319-60511-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics