Skip to main content

Advertisement

Log in

Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Vascular disease results in the decreased utility and decreased availability of autologus vascular tissue for small diameter (<6 mm) vessel replacements. While synthetic polymer alternatives to date have failed to meet the performance of autogenous conduits, tissue-engineered replacement vessels represent an ideal solution to this clinical problem. Ongoing progress requires combined approaches from biomaterials science, cell biology, and translational medicine to develop feasible solutions with the requisite mechanical support, a non-fouling surface for blood flow, and tissue regeneration. Over the past two decades interest in blood vessel tissue engineering has soared on a global scale, resulting in the first clinical implants of multiple technologies, steady progress with several other systems, and critical lessons-learned. This review will highlight the current inadequacies of autologus and synthetic grafts, the engineering requirements for implantation of tissue-engineered grafts, and the current status of tissue-engineered blood vessel research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, J., et al. Characterization of porcine circulating progenitor cells: toward a functional endothelium. Tissue Eng. Part A 14(1):183–194, 2008.

    Article  Google Scholar 

  2. Allen, J. B., et al. Toward engineering a human neoendothelium with circulating progenitor cells. Stem Cells 28(2):318–328, 2010.

    Google Scholar 

  3. Amarnath, L. P., A. Srinivas, and A. Ramamurthi. In vitro hemocompatibility testing of UV-modified hyaluronan hydrogels. Biomaterials 27(8):1416–1424, 2006.

    Article  Google Scholar 

  4. ANSI/AAMI/ISO. Cardiovascular Implants—Tubular Vascular Prostheses, 2001.

  5. Ariganello, M. B., R. S. Labow, and J. M. Lee. In vitro response of monocyte-derived macrophages to a decellularized pericardial biomaterial. J. Biomed. Mater. Res. A 93(1):280–288, 2010.

    Google Scholar 

  6. Ariganello, M. B., et al. Macrophage differentiation and polarization on a decellularized pericardial biomaterial. Biomaterials 32(2):439–449, 2011.

    Article  Google Scholar 

  7. Arrigoni, C., D. Camozzi, and A. Remuzzi. Vascular tissue engineering. Cell Transplant. 15(Suppl. 1):S119–S125, 2006.

    Article  Google Scholar 

  8. ASTM Committee F-4 on Medical Surgical, M.D. Vascular Graft Update: Safety and Performance. Philadelphia, PA: ASTM, 1986.

  9. Badylak, S. F., et al. Comparison of the resistance to infection of intestinal submucosa arterial autografts versus polytetrafluoroethylene arterial prostheses in a dog model. J. Vasc. Surg. 19(3):465–472, 1994.

    Google Scholar 

  10. Ball, S. G., C. A. Shuttleworth, and C. M. Kielty. Mesenchymal stem cells and neovascularization: role of platelet-derived growth factor receptors. J. Cell. Mol. Med. 11(5):1012–1030, 2007.

    Article  Google Scholar 

  11. Bowlin, G. L., et al. The persistence of electrostatically seeded endothelial cells lining a small diameter expanded polytetrafluoroethylene vascular graft. J. Biomater. Appl. 16(2):157–173, 2001.

    Article  Google Scholar 

  12. Byrne, J., P. Feustel, and R. C. Darling, III. Primary closure, routine patching, and eversion endarterectomy: what is the current state of the literature supporting use of these techniques? Semin. Vasc. Surg. 20(4):226–235, 2007.

    Article  Google Scholar 

  13. Campbell, G. R., and J. H. Campbell. Development of tissue engineered vascular grafts. Curr. Pharm. Biotechnol. 8(1):43–50, 2007.

    Article  Google Scholar 

  14. Campbell, J. H., J. L. Efendy, and G. R. Campbell. Novel vascular graft grown within recipient’s own peritoneal cavity. Circ. Res. 85(12):1173–1178, 1999.

    Google Scholar 

  15. Campbell, G. R., et al. The peritoneal cavity as a bioreactor for tissue engineering visceral organs: bladder, uterus and vas deferens. J. Tissue Eng. Regen. Med. 2(1):50–60, 2008.

    Article  Google Scholar 

  16. Campoccia, D., et al. Human neutrophil chemokinesis and polarization induced by hyaluronic acid derivatives. Biomaterials 14(15):1135–1139, 1993.

    Article  Google Scholar 

  17. Caves, J. M., et al. The use of microfiber composites of elastin-like protein matrix reinforced with synthetic collagen in the design of vascular grafts. Biomaterials 31(27):7175–7182, 2010.

    Article  Google Scholar 

  18. Chan-Park, M. B., et al. Biomimetic control of vascular smooth muscle cell morphology and phenotype for functional tissue-engineered small-diameter blood vessels. J. Biomed. Mater. Res. A 88(4):1104–1121, 2009.

    Google Scholar 

  19. Chaouat, M., et al. The evaluation of a small-diameter polysaccharide-based arterial graft in rats. Biomaterials 27(32):5546–5553, 2006.

    Article  Google Scholar 

  20. Chemla, E. S., and M. Morsy. Randomized clinical trial comparing decellularized bovine ureter with expanded polytetrafluoroethylene for vascular access. Br. J. Surg. 96(1):34–39, 2009.

    Article  Google Scholar 

  21. Cho, S. W., et al. Small-diameter blood vessels engineered with bone marrow-derived cells. Ann. Surg. 241(3):506–515, 2005.

    Article  Google Scholar 

  22. Chuang, T. W., and K. S. Masters. Regulation of polyurethane hemocompatibility and endothelialization by tethered hyaluronic acid oligosaccharides. Biomaterials 30(29):5341–5351, 2009.

    Article  Google Scholar 

  23. Clarke, D. R., et al. Transformation of nonvascular acellular tissue matrices into durable vascular conduits. Ann. Thorac. Surg. 71(5 Suppl.):S433–S436, 2001.

    Article  Google Scholar 

  24. Cummings, C. L., et al. Properties of engineered vascular constructs made from collagen, fibrin, and collagen–fibrin mixtures. Biomaterials 25(17):3699–3706, 2004.

    Article  Google Scholar 

  25. Dahl, S. L., M. E. Vaughn, and L. E. Niklason. An ultrastructural analysis of collagen in tissue engineered arteries. Ann. Biomed. Eng. 35(10):1749–1755, 2007.

    Article  Google Scholar 

  26. Dahl, S. L., et al. Mechanical properties and compositions of tissue engineered and native arteries. Ann. Biomed. Eng. 35(3):348–355, 2007.

    Article  MathSciNet  Google Scholar 

  27. Dahl, S. L., et al. Readily available tissue-engineered vascular grafts. Sci. Transl. Med. 3(68):68ra9, 2011.

    Google Scholar 

  28. Daniel, J. M., and D. G. Sedding. Circulating smooth muscle progenitor cells in arterial remodeling. J. Mol. Cell. Cardiol. 50(2):273–279, 2011.

    Article  Google Scholar 

  29. Das, N., et al. Results of a seven-year, single-centre experience of the long-term outcomes of bovine ureter grafts used as novel conduits for haemodialysis fistulas. Cardiovasc. Intervent. Radiol. 1–6, 2011.

  30. Davis, N. P., et al. Sustained axial loading lengthens arteries in organ culture. Ann. Biomed. Eng. 33(7):867–877, 2005.

    Article  Google Scholar 

  31. Derham, C., et al. Tissue engineering small-diameter vascular grafts: preparation of a biocompatible porcine ureteric scaffold. Tissue Eng. Part A 14(11):1871–1882, 2008.

    Article  Google Scholar 

  32. Deutsch, M., et al. Long-term experience in autologous in vitro endothelialization of infrainguinal ePTFE grafts. J. Vasc. Surg. 49(2):352–362, 2009; discussion 362.

    Article  Google Scholar 

  33. Dorafshar, A. H., et al. Interposition grafts for difficult carotid artery reconstruction: a 17-year experience. Ann. Vasc. Surg. 22(1):63–69, 2008.

    Article  Google Scholar 

  34. Drilling, S., J. Gaumer, and J. Lannutti. Fabrication of burst pressure competent vascular grafts via electrospinning: effects of microstructure. J. Biomed. Mater. Res. A 88(4):923–934, 2009.

    Google Scholar 

  35. Ehrbar, M., et al. Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ. Res. 94(8):1124–1132, 2004.

    Article  Google Scholar 

  36. Fernandez, P., and A. R. Bausch. The compaction of gels by cells: a case of collective mechanical activity. Integr. Biol. (Camb.) 1(3):252–259, 2009.

    Article  Google Scholar 

  37. Fidkowski, C., et al. Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng. 11(1–2):302–309, 2005.

    Article  Google Scholar 

  38. Fitzpatrick, J. C., P. M. Clark, and F. M. Capaldi. Effect of decellularization protocol on the mechanical behavior of porcine descending aorta. Int. J. Biomater. 2010:620503 (11 pp), 2010.

  39. Gan, Q., et al. Smooth muscle cells and myofibroblasts use distinct transcriptional mechanisms for smooth muscle alpha-actin expression. Circ. Res. 101(9):883–892, 2007.

    Article  Google Scholar 

  40. Gauvin, R., et al. A novel single-step self-assembly approach for the fabrication of tissue-engineered vascular constructs. Tissue Eng. Part A 16(5):1737–1747, 2010.

    Article  Google Scholar 

  41. Goldstein, L. J., et al. Carotid artery stenting is safe and associated with comparable outcomes in men and women. J. Vasc. Surg. 49(2):315–323, 2009; discussion 323–4.

    Article  Google Scholar 

  42. Gong, Z., and L. E. Niklason. Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J. 22(6):1635–1648, 2008.

    Article  Google Scholar 

  43. Gong, Z., et al. Influence of culture medium on smooth muscle cell differentiation from human bone marrow-derived mesenchymal stem cells. Tissue Eng. Part A 15(2):319–330, 2009.

    Article  Google Scholar 

  44. Goodman, S. L. Sheep, pig, and human platelet–material interactions with model cardiovascular biomaterials. J. Biomed. Mater. Res. 45(3):240–250, 1999.

    Article  Google Scholar 

  45. Gotherstrom, C. Immunomodulation by multipotent mesenchymal stromal cells. Transplantation 84(1 Suppl.):S35–S37, 2007.

    Article  Google Scholar 

  46. Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. J. Biomed. Mater. Res. 60(4):607–612, 2002.

    Article  Google Scholar 

  47. Greenwald, S. E., and C. L. Berry. Improving vascular grafts: the importance of mechanical and haemodynamic properties. J. Pathol. 190(3):292–299, 2000.

    Article  Google Scholar 

  48. Gui, L., et al. Development of decellularized human umbilical arteries as small-diameter vascular grafts. Tissue Eng. Part A 15(9):2665–2676, 2009.

    Article  Google Scholar 

  49. Han, H. C., D. N. Ku, and R. P. Vito. Arterial wall adaptation under elevated longitudinal stretch in organ culture. Ann. Biomed. Eng. 31(4):403–411, 2003.

    Article  Google Scholar 

  50. Hancock, W. W. Delayed xenograft rejection. World J. Surg. 21(9):917–923, 1997.

    Article  Google Scholar 

  51. Hashi, C. K., et al. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc. Natl Acad. Sci. USA 104(29):11915–11920, 2007.

    Article  Google Scholar 

  52. He, W., et al. Tubular nanofiber scaffolds for tissue engineered small-diameter vascular grafts. J. Biomed. Mater. Res. A 90(1):205–216, 2009.

    Google Scholar 

  53. Heidenhain, C., et al. Polymer coating of porcine decellularized and cross-linked aortic grafts. J. Biomed. Mater. Res. B Appl. Biomater. 94(1):256–263, 2010.

    Google Scholar 

  54. Hjortnaes, J., et al. Intravital molecular imaging of small-diameter tissue-engineered vascular grafts in mice: a feasibility study. Tissue Eng. Part C Methods 16(4):597–607, 2010.

    Article  Google Scholar 

  55. Hong, Y., et al. A small diameter, fibrous vascular conduit generated from a poly(ester urethane)urea and phospholipid polymer blend. Biomaterials 30(13):2457–2467, 2009.

    Article  Google Scholar 

  56. Isaka, M., et al. Experimental study on stability of a high-porosity expanded polytetrafluoroethylene graft in dogs. Ann. Thorac. Cardiovasc. Surg. 12(1):37–41, 2006.

    Google Scholar 

  57. Isenberg, B. C., and R. T. Tranquillo. Long-term cyclic distention enhances the mechanical properties of collagen-based media-equivalents. Ann. Biomed. Eng. 31(8):937–949, 2003.

    Article  Google Scholar 

  58. Iwakura, A., et al. Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation 108(25):3115–3121, 2003.

    Article  Google Scholar 

  59. Iwasaki, K., et al. Bioengineered three-layered robust and elastic artery using hemodynamically-equivalent pulsatile bioreactor. Circulation 118(14 Suppl.):S52–S57, 2008.

    Article  Google Scholar 

  60. Jiang, Z., et al. Established neointimal hyperplasia in vein grafts expands via TGF-beta-mediated progressive fibrosis. Am. J. Physiol. Heart Circ. Physiol. 297(4):H1200–H1207, 2009.

    Article  Google Scholar 

  61. Jorgensen, C. Mesenchymal stem cells immunosuppressive properties: is it specific to bone marrow-derived cells? Stem Cell Res. Ther. 1(2):15, 2010.

    Article  Google Scholar 

  62. Kaushiva, A., et al. A biodegradable vascularizing membrane: a feasibility study. Acta Biomater. 3(5):631–642, 2007.

    Article  Google Scholar 

  63. Kibbe, M. R., et al. Citric acid-based elastomers provide a biocompatible interface for vascular grafts. J. Biomed. Mater. Res. A 93(1):314–324, 2010.

    Google Scholar 

  64. Kielty, C. M., et al. Applying elastic fibre biology in vascular tissue engineering. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362(1484):1293–1312, 2007.

    Article  Google Scholar 

  65. Klinger, R. Y., et al. Relevance and safety of telomerase for human tissue engineering. Proc. Natl Acad. Sci. USA 103(8):2500–2505, 2006.

    Article  Google Scholar 

  66. Konig, G., et al. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30(8):1542–1550, 2009.

    Article  Google Scholar 

  67. Ku, D. N., and D. P. Giddens. Pulsatile flow in a model carotid bifurcation. Arteriosclerosis 3(1):31–39, 1983.

    Article  Google Scholar 

  68. Ku, D. N., et al. Hemodynamics of the normal human carotid bifurcation: in vitro and in vivo studies. Ultrasound Med. Biol. 11(1):13–26, 1985.

    Article  Google Scholar 

  69. Ku, D. N., et al. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5(3):293–302, 1985.

    Article  Google Scholar 

  70. Laurent, S., et al. Carotid artery distensibility and distending pressure in hypertensive humans. Hypertension 23(6 Pt 2):878–883, 1994.

    Google Scholar 

  71. Lee, M. H., et al. Considerations for tissue-engineered and regenerative medicine product development prior to clinical trials in the United States. Tissue Eng. Part B Rev. 16(1):41–54, 2010.

    Article  Google Scholar 

  72. L’Heureux, N., T. N. McAllister, and L. M. de la Fuente. Tissue-engineered blood vessel for adult arterial revascularization. N. Engl. J. Med. 357(14):1451–1453, 2007.

    Article  Google Scholar 

  73. L’Heureux, N., et al. A completely biological tissue-engineered human blood vessel. FASEB J. 12(1):47–56, 1998.

    Google Scholar 

  74. L’Heureux, N., et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat. Med. 12(3):361–365, 2006.

    Article  Google Scholar 

  75. L’Heureux, N., et al. Technology insight: the evolution of tissue-engineered vascular grafts—from research to clinical practice. Nat. Clin. Pract. Cardiovasc. Med. 4(7):389–395, 2007.

    Article  Google Scholar 

  76. Li, C., A. Hill, and M. Imran. In vitro and in vivo studies of ePTFE vascular grafts treated with P15 peptide. J. Biomater. Sci. Polym. Ed. 16(7):875–891, 2005.

    Article  Google Scholar 

  77. Liu, J. Y., et al. Functional tissue-engineered blood vessels from bone marrow progenitor cells. Cardiovasc. Res. 75(3):618–628, 2007.

    Article  Google Scholar 

  78. Liu, G. F., et al. Decellularized aorta of fetal pigs as a potential scaffold for small diameter tissue engineered vascular graft (Engl). Chin. Med. J. 121(15):1398–1406, 2008.

    Google Scholar 

  79. Lloyd-Jones, D., et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121(7):e46–e215, 2010.

    Article  Google Scholar 

  80. Long, J. L., and R. T. Tranquillo. Elastic fiber production in cardiovascular tissue-equivalents. Matrix Biol. 22(4):339–350, 2003.

    Article  Google Scholar 

  81. Lopez-Soler, R. I., et al. Development of a mouse model for evaluation of small diameter vascular grafts. J. Surg. Res. 139(1):1–6, 2007.

    Article  Google Scholar 

  82. Lund, A. W., J. P. Stegemann, and G. E. Plopper. Inhibition of ERK promotes collagen gel compaction and fibrillogenesis to amplify the osteogenesis of human mesenchymal stem cells in three-dimensional collagen I culture. Stem Cells Dev. 18(2):331–341, 2009.

    Article  Google Scholar 

  83. Matsumura, G., et al. First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation 108(14):1729–1734, 2003.

    Article  Google Scholar 

  84. McAllister, T. N., et al. Cell-based therapeutics from an economic perspective: primed for a commercial success or a research sinkhole? Regen. Med. 3(6):925–937, 2008.

    Article  Google Scholar 

  85. McAllister, T. N., et al. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373(9673):1440–1446, 2009.

    Article  Google Scholar 

  86. McKee, J. A., et al. Human arteries engineered in vitro. EMBO Rep. 4(6):633–638, 2003.

    Article  Google Scholar 

  87. Meinhart, J., M. Deutsch, and P. Zilla. Eight years of clinical endothelial cell transplantation. Closing the gap between prosthetic grafts and vein grafts. ASAIO J. 43(5):M515–M521, 1997.

    Article  Google Scholar 

  88. Mine, Y., et al. Suture retention strength of expanded polytetrafluoroethylene (ePTFE) graft. Acta Med. Okayama 64(2):121–128, 2010.

    Google Scholar 

  89. Mirensky, T. L., et al. Tissue-engineered arterial grafts: long-term results after implantation in a small animal model. J. Pediatr. Surg. 44(6):1127–1132, 2009; discussion 1132–3.

    Article  Google Scholar 

  90. Mitchell, S. L., and L. E. Niklason. Requirements for growing tissue-engineered vascular grafts. Cardiovasc. Pathol. 12(2):59–64, 2003.

    Article  Google Scholar 

  91. Motlagh, D., et al. Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials 27(24):4315–4324, 2006.

    Article  Google Scholar 

  92. Motlagh, D., et al. Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering. J. Biomed. Mater. Res. A 82(4):907–916, 2007.

    Google Scholar 

  93. Narita, Y., et al. Decellularized ureter for tissue-engineered small-caliber vascular graft. J. Artif. Organs 11(2):91–99, 2008.

    Article  MathSciNet  Google Scholar 

  94. Neff, L. P., et al. Vascular smooth muscle enhances functionality of tissue-engineered blood vessels in vivo. J. Vasc. Surg. 53(2):426–434, 2011.

    Article  Google Scholar 

  95. Nieponice, A., et al. Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique. Biomaterials 29(7):825–833, 2008.

    Article  Google Scholar 

  96. Niklason, L. E. Techview: medical technology. Replacement arteries made to order. Science 286(5444):1493–1494, 1999.

    Article  Google Scholar 

  97. Niklason, L. E., et al. Functional arteries grown in vitro. Science 284(5413):489–493, 1999.

    Article  Google Scholar 

  98. Noel, D., et al. Multipotent mesenchymal stromal cells and immune tolerance. Leuk. Lymphoma 48(7):1283–1289, 2007.

    Article  Google Scholar 

  99. Opitz, F., et al. Tissue engineering of aortic tissue: dire consequence of suboptimal elastic fiber synthesis in vivo. Cardiovasc. Res. 63(4):719–730, 2004.

    Article  Google Scholar 

  100. Owens, G. K. Regulation of differentiation of vascular smooth muscle cells. Physiol. Rev. 75(3):487–517, 1995.

    Google Scholar 

  101. Owens, G. K. Role of mechanical strain in regulation of differentiation of vascular smooth muscle cells. Circ. Res. 79(5):1054–1055, 1996.

    Google Scholar 

  102. Owens, G. K. Molecular control of vascular smooth muscle cell differentiation and phenotypic plasticity. Novartis Found Symp. 283:174–191, 2007; discussion 191–3, 238–41.

    Article  Google Scholar 

  103. Pektok, E., et al. Degradation and healing characteristics of small-diameter poly(epsilon-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation 118(24):2563–2570, 2008.

    Article  Google Scholar 

  104. Petersen, T. H., et al. Utility of telomerase-pot1 fusion protein in vascular tissue engineering. Cell Transplant. 19(1):79–87, 2010.

    Article  Google Scholar 

  105. Poh, M., et al. Blood vessels engineered from human cells. Lancet 365(9477):2122–2124, 2005.

    Article  Google Scholar 

  106. Qi, J., et al. Modulation of collagen gel compaction by extracellular ATP is MAPK and NF-kappaB pathways dependent. Exp. Cell Res. 315(11):1990–2000, 2009.

    Article  Google Scholar 

  107. Quillard, T., et al. Impaired Notch4 activity elicits endothelial cell activation and apoptosis: implication for transplant arteriosclerosis. Arterioscler. Thromb. Vasc. Biol. 28(12):2258–2265, 2008.

    Article  Google Scholar 

  108. Rachev, A., Z. Dominguez, and R. Vito. System and method for investigating arterial remodeling. J. Biomech. Eng. 131:104501, 2009.

    Article  Google Scholar 

  109. Ravi, S., Z. Qu, and E. L. Chaikof. Polymeric materials for tissue engineering of arterial substitutes. Vascular 17(Suppl. 1):S45–S54, 2009.

    Article  Google Scholar 

  110. Roeder, R., et al. Compliance, elastic modulus, and burst pressure of small-intestine submucosa (SIS), small-diameter vascular grafts. J. Biomed. Mater. Res. 47(1):65–70, 1999.

    Article  Google Scholar 

  111. Roh, J. D., et al. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc. Natl Acad. Sci. USA 107(10):4669–4674, 2010.

    Article  Google Scholar 

  112. Salem, H. K., and C. Thiemermann. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28(3):585–596, 2010.

    Google Scholar 

  113. Salom, R. N., J. A. Maguire, and W. W. Hancock. Endothelial activation and cytokine expression in human acute cardiac allograft rejection. Pathology 30(1):24–29, 1998.

    Article  Google Scholar 

  114. Sandusky, G. E., G. C. Lantz, and S. F. Badylak. Healing comparison of small intestine submucosa and ePTFE grafts in the canine carotid artery. J. Surg. Res. 58(4):415–420, 1995.

    Article  Google Scholar 

  115. Sarkar, S., et al. Critical parameter of burst pressure measurement in development of bypass grafts is highly dependent on methodology used. J. Vasc. Surg. 44(4):846–852, 2006.

    Article  Google Scholar 

  116. Sarkar, S., et al. The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency. Eur. J. Vasc. Endovasc. Surg. 31(6):627–636, 2006.

    Article  Google Scholar 

  117. Sarkar, S., et al. Addressing thrombogenicity in vascular graft construction. J. Biomed. Mater. Res. B Appl. Biomater. 82(1):100–108, 2007.

    Google Scholar 

  118. Schaner, P. J., et al. Decellularized vein as a potential scaffold for vascular tissue engineering. J. Vasc. Surg. 40(1):146–153, 2004.

    Article  Google Scholar 

  119. Seliktar, D., et al. Dynamic mechanical conditioning of collagen–gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng. 28(4):351–362, 2000.

    Article  Google Scholar 

  120. Sell, S. A., et al. Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts. Biomed. Mater. 1(2):72–80, 2006.

    Article  MathSciNet  Google Scholar 

  121. Sell, S. A., et al. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv. Drug Deliv. Rev. 61(12):1007–1019, 2009.

    Article  Google Scholar 

  122. Shaikh, F. M., et al. Fibrin: a natural biodegradable scaffold in vascular tissue engineering. Cells Tissues Organs 188(4):333–346, 2008.

    Article  Google Scholar 

  123. Sharp, M. A., et al. A cautionary case: the SynerGraft vascular prosthesis. Eur. J. Vasc. Endovasc. Surg. 27(1):42–44, 2004.

    Article  Google Scholar 

  124. Shaw, J. A., et al. Determinants of coronary artery compliance in subjects with and without angiographic coronary artery disease. J. Am. Coll. Cardiol. 39(10):1637–1643, 2002.

    Article  Google Scholar 

  125. Shi, Y., et al. Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res. 20(5):510–518, 2010.

    Article  Google Scholar 

  126. Shin’oka, T., Y. Imai, and Y. Ikada. Transplantation of a tissue-engineered pulmonary artery. N. Engl. J. Med. 344(7):532–533, 2001.

    Article  Google Scholar 

  127. Shin’oka, T., et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J. Thorac. Cardiovasc. Surg. 129(6):1330–1338, 2005.

    Article  Google Scholar 

  128. Solan, A., S. L. Dahl, and L. E. Niklason. Effects of mechanical stretch on collagen and cross-linking in engineered blood vessels. Cell Transplant. 18(8):915–921, 2009.

    Article  Google Scholar 

  129. Soletti, L., et al. A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta Biomater. 6(1):110–122, 2010.

    Article  Google Scholar 

  130. Soletti, L., et al. A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta Biomater. 6(1):110–122, 2010.

    Article  Google Scholar 

  131. Spark, J. I., et al. Incomplete cellular depopulation may explain the high failure rate of bovine ureteric grafts. Br. J. Surg. 95(5):582–585, 2008.

    Article  Google Scholar 

  132. Stekelenburg, M., et al. Dynamic straining combined with fibrin gel cell seeding improves strength of tissue-engineered small-diameter vascular grafts. Tissue Eng. Part A 15(5):1081–1089, 2009.

    Article  Google Scholar 

  133. Sussman, M. A. Showing up isn’t enough for vascularization: persistence is essential. Circ. Res. 103(11):1200–1201, 2008.

    Article  Google Scholar 

  134. Sutherland, K., et al. Degradation of biomaterials by phagocyte-derived oxidants. J. Clin. Invest. 92(5):2360–2367, 1993.

    Article  Google Scholar 

  135. Swartz, D. D., J. A. Russell, and S. T. Andreadis. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am. J. Physiol. Heart Circ. Physiol. 288(3):H1451–H1460, 2005.

    Article  Google Scholar 

  136. Syedain, Z. H., et al. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials 32(3):714–722, 2010.

    Article  Google Scholar 

  137. Tai, N. R., et al. In vivo femoropopliteal arterial wall compliance in subjects with and without lower limb vascular disease. J. Vasc. Surg. 30(5):936–945, 1999.

    Article  MathSciNet  Google Scholar 

  138. Tai, N. R., et al. Compliance properties of conduits used in vascular reconstruction. Br. J. Surg. 87(11):1516–1524, 2000.

    Article  Google Scholar 

  139. Timaran, C. H., et al. Trends and outcomes of concurrent carotid revascularization and coronary bypass. J. Vasc. Surg. 48(2):355–360, 2008; discussion 360–1.

    Article  Google Scholar 

  140. Torikai, K., et al. A self-renewing, tissue-engineered vascular graft for arterial reconstruction. J. Thorac. Cardiovasc. Surg. 136(1):37–45, 45 e1 2008.

    Article  Google Scholar 

  141. Uccelli, A., V. Pistoia, and L. Moretta. Mesenchymal stem cells: a new strategy for immunosuppression? Trends Immunol. 28(5):219–226, 2007.

    Article  Google Scholar 

  142. Urbich, C., and S. Dimmeler. Endothelial progenitor cells: characterization and role in vascular biology. Circ. Res. 95(4):343–353, 2004.

    Article  Google Scholar 

  143. van Andel, C. J., P. V. Pistecky, and C. Borst. Mechanical properties of porcine and human arteries: implications for coronary anastomotic connectors. Ann. Thorac. Surg. 76(1):58–64, 2003; discussion 64–5.

    Article  Google Scholar 

  144. Villalona, G. A., et al. Cell-seeding techniques in vascular tissue engineering. Tissue Eng. Part B Rev. 16(3):341–350, 2010.

    Article  Google Scholar 

  145. Wagenseil, J. E., and R. P. Mecham. Vascular extracellular matrix and arterial mechanics. Physiol. Rev. 89(3):957–989, 2009.

    Article  Google Scholar 

  146. Walter, D. H., et al. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 105(25):3017–3024, 2002.

    Article  Google Scholar 

  147. Wang, C., et al. A new vascular prosthesis coated with polyamino-acid urethane copolymer (PAU) to enhance endothelialization. J. Biomed. Mater. Res. 62(3):315–322, 2002.

    Article  Google Scholar 

  148. Wang, S., et al. Fabrication and properties of the electrospun polylactide/silk fibroin–gelatin composite tubular scaffold. Biomacromolecules 10(8):2240–2244, 2009.

    Article  Google Scholar 

  149. Wayman, B. H., et al. Arteries respond to independent control of circumferential and shear stress in organ culture. Ann. Biomed. Eng. 36(5):673–684, 2008.

    Article  Google Scholar 

  150. Webb, A. R., et al. In vitro characterization of a compliant biodegradable scaffold with a novel bioreactor system. Ann. Biomed. Eng. 35(8):1357–1367, 2007.

    Article  Google Scholar 

  151. Weinberg, C. B., and E. Bell. A blood vessel model constructed from collagen and cultured vascular cells. Science 231(4736):397–400, 1986.

    Article  Google Scholar 

  152. Werner, N., et al. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ. Res. 93(2):e17–e24, 2003.

    Article  Google Scholar 

  153. Wise, S. G., et al. A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Acta Biomater. 7(1):295–303, 2011.

    Article  Google Scholar 

  154. Wolfe, P. S., et al. Evaluation of thrombogenic potential of electrospun bioresorbable vascular graft materials: acute monocyte tissue factor expression. J. Biomed. Mater. Res. A 92(4):1321–1328, 2010.

    MathSciNet  Google Scholar 

  155. Wootton, D. M., and D. N. Ku. Fluid mechanics of vascular systems, diseases, and thrombosis. Annu. Rev. Biomed. Eng. 1:299–329, 1999.

    Article  Google Scholar 

  156. Yazdani, S. K., et al. Smooth muscle cell seeding of decellularized scaffolds: the importance of bioreactor preconditioning to development of a more native architecture for tissue-engineered blood vessels. Tissue Eng. Part A 15(4):827–840, 2009.

    Article  Google Scholar 

  157. Yow, K. H., et al. Tissue engineering of vascular conduits. Br. J. Surg. 93(6):652–661, 2006.

    Article  Google Scholar 

  158. Yu, X. X., C. X. Wan, and H. Q. Chen. Preparation and endothelialization of decellularised vascular scaffold for tissue-engineered blood vessel. J. Mater. Sci. Mater. Med. 19(1):319–326, 2008.

    Article  Google Scholar 

  159. Zaucha, M. T., et al. A novel cylindrical biaxial computer-controlled bioreactor and biomechanical testing device for vascular tissue engineering. Tissue Eng. Part A 15(11):3331–3340, 2009.

    Article  Google Scholar 

  160. Zetrenne, E., et al. Prosthetic vascular graft infection: a multi-center review of surgical management. Yale J. Biol. Med. 80(3):113–121, 2007.

    Google Scholar 

  161. Zhang, X., V. Thomas, and Y. K. Vohra. In vitro biodegradation of designed tubular scaffolds of electrospun protein/polyglyconate blend fibers. J. Biomed. Mater. Res. B Appl. Biomater. 89(1):135–147, 2009.

    Google Scholar 

  162. Zhang, W. J., et al. Tissue engineering of blood vessel. J. Cell. Mol. Med. 11(5):945–957, 2007.

    Article  Google Scholar 

  163. Zhang, L., et al. A novel small-diameter vascular graft: in vivo behavior of biodegradable three-layered tubular scaffolds. Biotechnol. Bioeng. 99(4):1007–1015, 2008.

    Article  Google Scholar 

  164. Zhou, M., et al. Constructing a small-diameter decellularized vascular graft pre-loaded with bFGF. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 22(3):370–375, 2008.

    Google Scholar 

  165. Zhou, M., et al. Development and validation of small-diameter vascular tissue from a decellularized scaffold coated with heparin and vascular endothelial growth factor. Artif. Organs 33(3):230–239, 2009.

    Article  Google Scholar 

  166. Zhou, M., et al. Beneficial effects of granulocyte-colony stimulating factor on small-diameter heparin immobilized decellularized vascular graft. J. Biomed. Mater. Res. A 95(2):600–610, 2010.

    Google Scholar 

  167. Ziegler, T., and R. M. Nerem. Tissue engineering a blood vessel: regulation of vascular biology by mechanical stresses. J. Cell. Biochem. 56(2):204–209, 1994.

    Article  Google Scholar 

  168. Zilla, P., D. Bezuidenhout, and P. Human. Prosthetic vascular grafts: wrong models: wrong questions and no healing. Biomaterials 28(34):5009–5027, 2007.

    Article  Google Scholar 

  169. Zilla, P., M. Deutsch, and J. Meinhart. Endothelial cell transplantation. Semin. Vasc. Surg. 12(1):52–63, 1999.

    Google Scholar 

  170. Zorlutuna, P., A. Elsheikh, and V. Hasirci. Nanopatterning of collagen scaffolds improve the mechanical properties of tissue engineered vascular grafts. Biomacromolecules 10(4):814–821, 2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elliot L. Chaikof.

Additional information

Associate Editor Stephen Hilbert oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, V.A., Brewster, L.P., Caves, J.M. et al. Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges. Cardiovasc Eng Tech 2, 137–148 (2011). https://doi.org/10.1007/s13239-011-0049-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-011-0049-3

Keywords

Navigation