Skip to main content

Mathematical Modeling of Tumor Organoids: Toward Personalized Medicine

  • Chapter
  • First Online:
Tumor Organoids

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Three-dimensional organoid and organoidal cell cultures can recreate certain aspects of in vivo tumors and tumor microenvironments, and thus can be used to test intratumoral interactions and tumor response to treatments. In silico organoid models, when based on biological or clinical data, are an invaluable tool for hypothesis testing, and provide an opportunity to explore experimental conditions beyond what is feasible experimentally. In this chapter, three different approaches to building in silico organoids are described together with methods for integration with experimental or clinical data. The first model will be used to determine the mechanisms of development of breast tumor acini, based on their in vitro morphology. The second model will be used to predict conditions for the most effective cellular uptake of therapies targeting pancreatic cancers that incorporate intravital microscopy data. The third model will provide a procedure for assessing patients’ response to chemotherapeutic treatments, based on the biopsy data. For each of the models, a protocol will be proposed indicating how it can be used to generate testable hypotheses or predictions. These models can help biologists in determining what experiments should be performed in the laboratory. They can also assist clinicians in assessing cancer patients’ response to a given therapy and their risk of tumor recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chauhan VP, Stylianopoulos T, Boucher Y, Jain RK (2011) Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu Rev Chem Biomol Eng 2:281–298. doi:10.1146/annurev-chembioeng-061010-114300

    Article  CAS  PubMed  Google Scholar 

  2. Chin LK, Xia Y, Discher DE, Janmey PA (2016) Mechanotransduction in cancer. Curr Opin Chem Eng 11:77–84

    Article  PubMed  PubMed Central  Google Scholar 

  3. Debnath J, Brugge JS (2005) Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer 5(9):675–688. doi:10.1038/nrc1695

    Article  CAS  PubMed  Google Scholar 

  4. Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswamy SK, Brugge JS (2002) The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111(1):29–40

    Article  CAS  PubMed  Google Scholar 

  5. Debnath J, Muthuswamy SK, Brugge JS (2003) Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30(3):256–268

    Article  CAS  PubMed  Google Scholar 

  6. Dow LE, Elsum IA, King CL, Kinross KM, Richardson HE, Humbert PO (2008) Loss of human Scribble cooperates with H-Ras to promote cell invasion through deregulation of MAPK signalling. Oncogene 27(46):5988–6001. doi:10.1038/onc.2008.219

    Article  CAS  PubMed  Google Scholar 

  7. Fessart D, Begueret H, Delom F (2013) Three-dimensional culture model to distinguish normal from malignant human bronchial epithelial cells. Eur Respir J 42(5):1345–1356. doi:10.1183/09031936.00118812

    Article  PubMed  Google Scholar 

  8. Foroutan P, Kreahling JM, Morse DL, Grove O, Lloyd MC, Reed D, Raghavan M, Altiok S, Martinez GV, Gillies RJ (2013) Diffusion MRI and novel texture analysis in osteosarcoma xenotransplants predicts response to anti-checkpoint therapy. PLoS One 8(12):e82875. doi:10.1371/journal.pone.0082875

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fu F, Nowak MA, Bonhoeffer S (2015) Spatial heterogeneity in drug concentrations can facilitate the emergence of resistance to cancer therapy. PLoS Comput Biol 11(3):e1004142. doi:10.1371/journal.pcbi.1004142

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gatenby RA, Grove O, Gillies RJ (2013) Quantitative imaging in cancer evolution and ecology. Radiology 269(1):8–15. doi:10.1148/radiol.13122697

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gevertz JL, Aminzare Z, Norton KA, Perez-Velazquez J, Volkening A, Rejniak KA (2015) Emergence of anti-cancer drug resistance: exploring the importance of the microenvironmental niche via a spatial model. In: Radunskaya A, Jackson T (eds) Applications of dynamical systems in biology and medicine vol IMA volumes in mathematics and its applications. Springer, New York, NY pp 1–34

    Google Scholar 

  12. Hagios C, Lochter A, Bissell MJ (1998) Tissue architecture: the ultimate regulator of epithelial function? Philosophical transactions of the Royal Society of London Series B. Biological sciences 353(1370):857–870. doi:10.1098/rstb.1998.0250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Han J, Chang H, Giricz O, Lee GY, Baehner FL, Gray JW, Bissell MJ, Kenny PA, Parvin B (2010) Molecular predictors of 3D morphogenesis by breast cancer cell lines in 3D culture. PLoS Comput Biol 6(2):e1000684. doi:10.1371/journal.pcbi.1000684

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huang L, Holtzinger A, Jagan I, BeGora M, Lohse I, Ngai N, Nostro C, Wang R, Muthuswamy LB, Crawford HC, Arrowsmith C, Kalloger SE, Renouf DJ, Connor AA, Cleary S, Schaeffer DF, Roehrl M, Tsao MS, Gallinger S, Keller G, Muthuswamy SK (2015) Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med 21(11):1364–1371. doi:10.1038/nm.3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Imamura Y, Mukohara T, Shimono Y, Funakoshi Y, Chayahara N, Toyoda M, Kiyota N, Takao S, Kono S, Nakatsura T, Minami H (2015) Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol Rep 33(4):1837–1843. doi:10.3892/or.2015.3767

    Article  CAS  PubMed  Google Scholar 

  16. Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10(1):63–73. doi:10.1038/nrm2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jackson EL, Lu H (2016) Three-dimensional models for studying development and disease: moving on from organisms to organs-on-a-chip and organoids. Integr Biol (Quantitative Biosciences from Nano to Macro) 8(6):672–683. doi:10.1039/c6ib00039h

    Article  CAS  Google Scholar 

  18. Karolak A, Estrella V, Chen T, Huynh A, Morse DL, Rejniak KA (2016) Using computational modeling to quantify targeted agent binding and internalization in pancreatic cancers. Cancer Res 76(Suppl 3):B21

    Article  Google Scholar 

  19. Karolak A, Estrella V, Chen T, Huynh A, Morse DL, Rejniak KA (2017) Imaged-based computational predictions of imaging agent efficacy in pancreatic tumors expressing TLR2. Cancer Res 77(Suppl 2):A28

    Article  Google Scholar 

  20. Kass L, Erler JT, Dembo M, Weaver VM (2007) Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. Int J Biochem Cell Biol 39(11):1987–1994. doi:10.1016/j.biocel.2007.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kenny PA, Bissell MJ (2003) Tumor reversion: correction of malignant behavior by microenvironmental cues. Int J Cancer 107(5):688–695. doi:10.1002/ijc.11491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim M, Gillies RJ, Rejniak KA (2013) Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues. Front Oncol 3:278. doi:10.3389/fonc.2013.00278

    PubMed  PubMed Central  Google Scholar 

  23. Kim M, Reed D, Rejniak KA (2014) The formation of tight tumor clusters affects the efficacy of cell cycle inhibitors: a hybrid model study. J Theor Biol 352:31–50. doi:10.1016/j.jtbi.2014.02.027

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kolahi KS, Mofrad MR (2010) Mechanotransduction: a major regulator of homeostasis and development. Wiley Interdiscip Rev Syst Biol Med 2(6):625–639. doi:10.1002/wsbm.79

    Article  CAS  PubMed  Google Scholar 

  25. Lloyd MC, Rejniak KA, Brown JS, Gatenby RA, Minor ES, Bui MM (2015) Pathology to enhance precision medicine in oncology: lessons from landscape ecology. Adv Anat Pathol 22(4):267–272. doi:10.1097/PAP.0000000000000078

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lloyd MC, Rejniak KA, Johnson JO, Gillies R, Gatenby R, Bui MM (2012) Quantitative evaluation of the morphological heterogeneity in breast cancer progression. Mod Pathol 25:392A

    Google Scholar 

  27. Martin-Belmonte F, Yu W, Rodriguez-Fraticelli AE, Ewald AJ, Werb Z, Alonso MA, Mostov K (2008) Cell-polarity dynamics controls the mechanism of lumen formation in epithelial morphogenesis. Curr Biol (CB) 18(7):507–513. doi:10.1016/j.cub.2008.02.076

    Article  CAS  Google Scholar 

  28. Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6(8):583–592. doi:10.1038/nrc1893

    Article  CAS  PubMed  Google Scholar 

  29. Mumenthaler SM, Foo J, Choi NC, Heise N, Leder K, Agus DB, Pao W, Michor F, Mallick P (2015) The impact of microenvironmental heterogeneity on the evolution of drug resistance in cancer cells. Cancer Informat 14(Suppl 4):19–31. doi:10.4137/CIN.S19338

    CAS  Google Scholar 

  30. Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8(10):839–845. doi:10.1038/nrm2236

    Article  CAS  PubMed  Google Scholar 

  31. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254. doi:10.1016/j.ccr.2005.08.010

    Article  CAS  PubMed  Google Scholar 

  32. Perez-Velazquez J, Gevertz JL, Karolak A, Rejniak KA (2016) Microenvironmental niches and sanctuaries: a route to acquired resistance. In: Rejniak KA (ed) Systems biology of tumor microenvironment: quantitative models and simulations. Springer, Switzerland

    Google Scholar 

  33. Peskin CS (2002) The immersed boundary method. Acta Numerica:479–527

    Google Scholar 

  34. Picollet-D’hahan N, Dolega ME, Liguori L, Marquette C, Le Gac S, Gidrol X, Martin DK (2016) A 3D toolbox to enhance physiological relevance of human tissue models. Trends Biotechnol 34(9):757–769. doi:10.1016/j.tibtech.2016.06.012

    Article  PubMed  Google Scholar 

  35. Plachot C, Chaboub LS, Adissu HA, Wang L, Urazaev A, Sturgis J, Asem EK, Lelievre SA (2009) Factors necessary to produce basoapical polarity in human glandular epithelium formed in conventional and high-throughput three-dimensional culture: example of the breast epithelium. BMC Biol 7:77. doi:10.1186/1741-7007-7-77

    Article  PubMed  PubMed Central  Google Scholar 

  36. Radisky D, Hagios C, Bissell MJ (2001) Tumors are unique organs defined by abnormal signaling and context. Semin Cancer Biol 11(2):87–95. doi:10.1006/scbi.2000.0360

    Article  CAS  PubMed  Google Scholar 

  37. Reginato MJ, Muthuswamy SK (2006) Illuminating the center: mechanisms regulating lumen formation and maintenance in mammary morphogenesis. J Mammary Gland Biol Neoplasia 11(3–4):205–211. doi:10.1007/s10911-006-9030-4

    Article  PubMed  Google Scholar 

  38. Rejniak KA (2007) An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. J Theor Biol 247(1):186–204. doi:10.1016/j.jtbi.2007.02.019

    Article  CAS  PubMed  Google Scholar 

  39. Rejniak KA (2014) IBCell Morphocharts: a computational model for linking cell molecular activity with emerging tissue morphology. In: Jonoska N, Saito M (eds) Discrete and toplogical models in molecular biology. Natural Computing Series. Springer, Berlin

    Google Scholar 

  40. Rejniak KA, Anderson AR (2008) A computational study of the development of epithelial acini: I. Sufficient conditions for the formation of a hollow structure. Bull Math Biol 70(3):677–712. doi:10.1007/s11538-007-9274-1

    Article  PubMed  Google Scholar 

  41. Rejniak KA, Estrella V, Chen T, Cohen AS, Lloyd MC, Morse DL (2013) The role of tumor tissue architecture in treatment penetration and efficacy: an integrative study. Front Oncol 3:111. doi:10.3389/fonc.2013.00111

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rejniak KA, Lloyd MC, Reed DR, Bui MM (2015) Diagnostic assessment of osteosarcoma chemoresistance based on Virtual Clinical Trials. Med Hypotheses 85(3):348–354. doi:10.1016/j.mehy.2015.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rejniak KA, Quaranta V, Anderson AR (2012) Computational investigation of intrinsic and extrinsic mechanisms underlying the formation of carcinoma. Math Med Biol (A Journal of the IMA) 29(1):67–84. doi:10.1093/imammb/dqq021

    Article  Google Scholar 

  44. Rejniak KA, Wang SE, Bryce NS, Chang H, Parvin B, Jourquin J, Estrada L, Gray JW, Arteaga CL, Weaver AM, Quaranta V, Anderson AR (2010) Linking changes in epithelial morphogenesis to cancer mutations using computational modeling. PLoS Comput Biol 6(8). doi:10.1371/journal.pcbi.1000900

  45. Rizki A, Weaver VM, Lee SY, Rozenberg GI, Chin K, Myers CA, Bascom JL, Mott JD, Semeiks JR, Grate LR, Mian IS, Borowsky AD, Jensen RA, Idowu MO, Chen F, Chen DJ, Petersen OW, Gray JW, Bissell MJ (2008) A human breast cell model of preinvasive to invasive transition. Cancer Res 68(5):1378–1387. doi:10.1158/0008-5472.CAN-07-2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Santner SJ, Dawson PJ, Tait L, Soule HD, Eliason J, Mohamed AN, Wolman SR, Heppner GH, Miller FR (2001) Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Res Treat 65(2):101–110

    Article  CAS  PubMed  Google Scholar 

  47. Saunders NA, Simpson F, Thompson EW, Hill MM, Endo-Munoz L, Leggatt G, Minchin RF, Guminski A (2012) Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives. EMBO Mol Med 4(8):675–684. doi:10.1002/emmm.201101131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shamir ER, Ewald AJ (2014) Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol 15(10):647–664. doi:10.1038/nrm3873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thoma CR, Zimmermann M, Agarkova I, Kelm JM, Krek W (2014) 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv Drug Deliv Rev 69-70:29–41. doi:10.1016/j.addr.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  50. Tyson DR, Inokuchi J, Tsunoda T, Lau A, Ornstein DK (2007) Culture requirements of prostatic epithelial cell lines for acinar morphogenesis and lumen formation in vitro: role of extracellular calcium. Prostate 67(15):1601–1613. doi:10.1002/pros.20628

    Article  CAS  PubMed  Google Scholar 

  51. Weigelt B, Bissell MJ (2008) Unraveling the microenvironmental influences on the normal mammary gland and breast cancer. Semin Cancer Biol 18(5):311–321. doi:10.1016/j.semcancer.2008.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the U01-CA20229-01 grant from the National Institute of Health (NIH) via the National Cancer Institute—Physical Science Oncology Network (NCI-PSON). Data collection and analysis were supported by the Cancer Center Support Grant P30-CA-076292 from NIH to H. Lee Moffitt Cancer Center & Research Institute, an NCI-designated Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna A. Rejniak .

Editor information

Editors and Affiliations

Appendices

Appendix A: Mathematical Framework of the IBCell Model

The IBCell model belongs to the class of fluid-structure interaction models, and utilizes the immersed boundary method framework [33, 38]. The boundaries of all cells Γ are discretized, and every material point X(l,t) represents a cell pseudo-receptor (l is a position along the boundary, t denotes time). The forces F(l,t) defined at each boundary point (Eq. A1) arise from combining the elastic properties of cell boundaries, from cell-to-cell adhesion, and from contractile forces splitting a cell during its division. In this equation, G denotes spring stiffness, and L denotes spring resting length. These forces are applied to the surrounding fluid, as described in Eq. A2. The source points Y k and sink points Z m are placed in the cell local microenvironment, and the source and sink values S +(Y k ,t) and S (Z m ,t) are chosen such that they balance around each cell separately (Eq. A3). They assume the non-zero values only during cell growth (proliferation) or cell shrinkage (apoptosis). The transitions between the material points on cell boundaries and the Cartesian grid x = (x 1,x 2) in the domain Ω (Eqs. A3 and A7) are defined using the two dimensional Dirac delta function δ (Eq. A4). The fluid flow is described using the incompressible Navier-Stokes equation (Eq. A5), where p is the fluid pressure, μ is the fluid viscosity, ρ is the fluid density, s is the local fluid expansion, and f is the external force density. Eq. A6 is the law of mass balance. All material boundary points are carried along with the fluid (Eq. A7). The kinetics of ECM proteins γ(x,t) is defined along the cell boundaries and includes: constant secretion of ECM (at a rate κ1) along the cells’ basal domains and ECM decay (at a rate κ2) around all the cells’ boundaries (Eq. A8). More details on the mathematical formulation of IBCell and the implementation of cell life processes can be found in [38, 40, 44].

$$ \kern0.50em F\left(l,t\right)=G\frac{\parallel X\left(k,t\right)-X\left(l,t\right)\parallel -L}{\parallel X\left(k,t\right)-X\left(l,t\right)\parallel}\left(X\left(k,t\right)-X\left(l,t\right)\right), $$
(A1)
$$ f\left(x,t\right)=\underset{\varGamma }{\int }F\left(l,t\right)\delta \left(x-X\left(l,t\right)\right) dl, $$
(A2)
$$ \kern0.50em s\left(x,t\right)=\sum_{k\in \varXi +}{S}_{+}\left({Y}_k,t\right)\delta \left(x-{Y}_k(t)\right)+\sum_{m\in \varXi -}{S}_{-}\left({Z}_m,t\right)\delta \left(x-{Z}_m(t)\right), $$
(A3)
$$ {\delta}_h(r)=\Big\{{\displaystyle \begin{array}{l}\frac{1}{4h}\left(1+\cos \left(\frac{\pi r}{2h}\right)\right)\kern1.25em if \mid r\mid <2h\\ {}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0\kern4em if\ \kern0.125em \mid r\mid \ge 2h\end{array}}\ \ \ r=\parallel x-X\left(l,t\right)\parallel, $$
(A4)
$$ {\displaystyle \begin{array}{l}\rho \left(\frac{\partial u\left(x,t\right)}{\partial t}+\left(u\left(x,t\right)\cdot \nabla \right)u\left(x,t\right)\right)=-\nabla p\left(x,t\right)+\mu \varDelta \mathbf{u}\left(x,t\right)\\ {}+\frac{\mu }{3\rho}\nabla s\left(x,t\right)+f\left(x,t\right),\end{array}} $$
(A5)
$$ \rho \nabla \cdot u\left(x,t\right)=s\left(x,t\right), $$
(A6)
$$ \frac{\partial X}{\partial t}=u\left(X(t),t\right)=\underset{\varOmega }{\int }u\left(x,t\right)\delta \left(x-X(t)\right) dx, $$
(A7)
$$ \frac{\partial \gamma \left(X\left(l,t\right)\right)}{\partial t}={\kappa}_1X\left(l,t\right)-{\kappa}_2\gamma \left(X\left(l,t\right)\right). $$
(A8)

Appendix B: Mathematical Framework of the microPK/PD Model

The microPK/PD model is a discrete Brownian diffusion model, defined on an irregular domain and coupled with binding kinetics equations. In this model, the explicitly defined tumor cells {Cl} l=1,…,N (l is a cell index) are assumed to be non-motile and non-proliferative. The individual cell Cl is identified by a set of membrane virtual receptors C l = {(X i , Y i ) l , A i l , B i l} i=1…M l, where (X i ,Y i ) l are the coordinates of the ith receptor, A i l is affinity to the receptor, and B i l is a receptor saturation level. Initially, the model was calibrated to the experiment-based values for moderate diffusion coefficient (D = 2.5 x 10−5 mm2/s), high binding affinity (K A  = 100), and a slow release scheme (as if during intravenous injection). Subsequently, it was used to explore the parameter space beyond the experimental boundaries. The transport of particles is modeled as Brownian motion with an effective diffusion coefficient D that was varied between 10−4 and 10−6 mm/s2. Receptor binding affinity is defined as the probability with which a ligand molecule binds to the receptor after successful recognition. Therefore, three conditions for the binding probability are used: strong (100%), moderate (10%), or weak (1%). This results in three values of the pseudo-association constant (K A ): 100, 10, and 1, respectively.

The motion of a ligand particle (x,y) at the n + 1 time point is defined by Eq. (B1). The cell membranes are non-penetrable for the ligand particles, unless they are successfully recognized by receptors (Eq. B1a). The successful ligand–receptor binding condition (BC) requires that the agent particle is in close proximity to the receptor, i.e., ||(x j ,y j ) n  – (X i ,Y i )l|| < r min , where (x j ,y j ) n are coordinates of a j th ligand particle at n th simulation step, (X i ,Y i )l are coordinates of the i th receptor of the l th cell, and r min is the criterion for a minimum distance. In addition, the receptor may not be saturated (number of already bound particles is below B i l), and the probability of binding meets the affinity criterion. Otherwise, if the new position will result in a particle crossing the cell boundary without satisfying the BC, the particle’s position will remain unmodified (Eq. B1b) or continue to move through the tissue space with Brownian motion, as in Eq. (B1c), where Δt is a time step, ϖ a randomly chosen direction of motion. The effective diffusion coefficient D is defined in Eq. (B2), with k B being the Boltzmann constant, R the ligand molecule radius, and η the tissue viscosity. The receptor–ligand binding is quantified by fitting the association kinetics to simulated data that represent the averaged saturation per tissue area as a function of time (Eq. B3), where B corresponds to the receptor saturation parameter describing ligand–receptor complex formation [RL], with values between initial saturation and the maximum saturation B 0 and B max, respectively; k is a reaction rate constant; t is time. Equation (B4) gives the logarithmic formula used to generate specific binding curves from multiple ligand concentrations, where B, B 0, and B max are saturation parameters, K D is a dissociation constant, h is the Hill slope defining the steepness of the fitting curve, and [L] is ligand concentration.

$$ \kern0.125em {\left(x,y\right)}_{n+1}=\Big\{{\displaystyle \begin{array}{cc}{\left({X}_i,{Y}_i\right)}^l\ & {}^{(a)}\ if the binding condition is satisfied\\ {}{\left(x,y\right)}_n& {}^{(b)}\ if the particle crosses cell boundary\\ {}{\left(x,y\right)}_n+\sqrt{2 D\varDelta t}{\overrightarrow{\omega}}_n& {}^{(c)}\ otherwise,\kern10em \end{array}} $$
(B1)
$$ \kern0.50em D=\frac{k_BT}{6\pi R\eta} $$
(B2)
$$ B={B}_0+\left({B}_{\mathrm{max}}-{B}_0\right)/\left(1-{e}^{- kT}\right) $$
(B3)
$$ B={B}_0+\left({B}_{\mathrm{max}}-{B}_0\right)/\left(1+{10}^{\left(\left[L\right]-\mathit{\log}{K}_D\right)}\right) $$
(B4)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Karolak, A., Rejniak, K.A. (2018). Mathematical Modeling of Tumor Organoids: Toward Personalized Medicine. In: Soker, S., Skardal, A. (eds) Tumor Organoids. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60511-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60511-1_10

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-60509-8

  • Online ISBN: 978-3-319-60511-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics