Skip to main content

Therapeutics in Neurodegenerative Disorders: Emerging Compounds of Interest

  • Conference paper
  • First Online:
Emerging Trends in Chemical Sciences (ICPAC 2016)

Included in the following conference series:

Abstract

Neurodegenerative diseases are a heterogeneous group of disorders. They are characterized by progressive degeneration of the structure and function of the central nervous system or peripheral nervous system. Neurodegenerative diseases include Parkinson’s Disease (PD), Alzheimer’s Disease (AD), Amyotrophic Lateral Sclerosis (ALS) and Huntington’s Disease (HD). Key characteristic feature of neurodegenerative diseases is aggregation of misfolded proteins in the cytoplasm and nucleus of central nervous system (CNS) neurons. In this review we discuss about the emerging therapeutic compounds and targets for treating these devastating neurological disorders. Oxidative stress appears to be a common denominator and transcription factors are also involved. Compounds that can scavenge free radicals showed some potential. Some protein and peptide compounds also exhibited good therapeutic activity. Ligand binding domains are targeted for efficacy and showed promise. Agonists and antagonists of receptors and enzyme inhibitors are playing a remarkable role in controlling the symptoms of these diseases. Chemical chaperones and compounds that can inhibit the protein aggregation are widely tried and showing therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  Google Scholar 

  2. Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R, Bezard E, Obeso JA (2009) Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurol 8:1128–1139

    Article  CAS  Google Scholar 

  3. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  Google Scholar 

  4. Lim KL, Zhang CW (2013) Molecular events underlying Parkinson’s disease—an interwoven tapestry. Front Neurol 4:33

    Article  Google Scholar 

  5. Schapira AH, Jenner P (2011) Etiology and pathogenesis of Parkinson’s disease. Mov Disord 26:1049–1055

    Article  Google Scholar 

  6. Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    Article  CAS  Google Scholar 

  7. Hwang O (2013) Role of oxidative stress in Parkinson’s disease. Exp Neurobiol 22:11–17

    Article  Google Scholar 

  8. Kumar A, Singh RL, Babu GN (2010) Cell death mechanisms in the early stages of acute glutamate neurotoxicity. Neurosci Res 66:271–278

    Article  CAS  Google Scholar 

  9. Babu GN, Kumar A, Singh RL (2011) Chronic pretreatment with acetyl-L-carnitine and +/-DL-alpha-lipoic acid protects against acute glutamate-induced neurotoxicity in rat brain by altering mitochondrial function. Neurotox Res 19:319–329

    Article  CAS  Google Scholar 

  10. Luo J, Lee SH, VandeVrede L, Qin Z, Piyankarage S, Tavassoli E, Asghodom RT, Ben Aissa M, Fa M, Arancio O, Yue L, Pepperberg DR, Thatcher GR (2015) Re-engineering a neuroprotective, clinical drug as a procognitive agent with high in vivo potency and with GABAA potentiating activity for use in dementia. BMC Neurosci 16:67

    Article  Google Scholar 

  11. Procaccini C, Santopaolo M, Faicchia D, Colamatteo A, Formisano L, de Candia P, Galgani M, De Rosa V, Matarese G (2016) Role of metabolism in neurodegenerative disorders. Metabolism 65:1376–1390

    Article  CAS  Google Scholar 

  12. Babu GN, Kumar A, Chandra R, Puri SK, Kalita J, Misra UK (2008) Elevated inflammatory markers in a group of amyotrophic lateral sclerosis patients from northern India. Neurochem Res 33:1145–1149

    Article  CAS  Google Scholar 

  13. Babu GN, Kumar A, Chandra R, Puri SK, Singh RL, Kalita J, Misra UK (2008) Oxidant-antioxidant imbalance in the erythrocytes of sporadic amyotrophic lateral sclerosis patients correlates with the progression of disease. Neurochem Int 52:1284–1289

    Article  CAS  Google Scholar 

  14. Kumar A, Bala L, Kalita J, Misra UK, Singh RL, Khetrapal CL (2010) Metabolomic analysis of serum by (1) H NMR spectroscopy in amyotrophic lateral sclerosis. Clin Chim Acta 411:563–567

    Article  CAS  Google Scholar 

  15. Mollica PA, Reid JA, Ogle RC, Sachs PC, Bruno RD (2016) DNA methylation leads to DNA repair gene down-regulation and trinucleotide repeat expansion in patient-derived Huntington disease cells. Am J Pathol 186:1967–1976

    Article  CAS  Google Scholar 

  16. Gauthier LR, Charrin BC, Borrell-Pages M, Dompierre JP, Rangone H, Cordelieres FP, De Mey J, MacDonald ME, Lessmann V, Humbert S, Saudou F (2004) Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118:127–138

    Article  CAS  Google Scholar 

  17. Rizza S, Cirotti C, Montagna C, Cardaci S, Consales C, Cozzolino M, Carri MT, Cecconi F, Filomeni G (2015) S-nitrosoglutathione reductase plays opposite roles in SH-SY5Y models of Parkinson’s disease and amyotrophic lateral sclerosis. Mediators Inflamm 2015:536238

    Article  Google Scholar 

  18. Joshi G, Johnson JA (2012) The NRF-2 ARE pathway: a valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Pat CNS Drug Discov 7:218–229

    Article  CAS  Google Scholar 

  19. Kim CH, Han BS, Moon J, Kim DJ, Shin J, Rajan S, Nguyen QT, Sohn M, Kim WG, Han M, Jeong I, Kim KS, Lee EH, Tu Y, Naffin-Olivos JL, Park CH, Ringe D, Yoon HS, Petsko GA, Kim KS (2015) Nuclear receptor Nurr1 agonists enhance its dual functions and improve behavioral deficits in an animal model of Parkinson’s disease. Proc Natl Acad Sci USA 112:8756–8761

    Article  CAS  Google Scholar 

  20. Cortesi R, Esposito E, Drechsler M, Pavoni G, Cacciatore I, Sguizzato M, Di Stefano A (2017) Levodopa co-drugs in nanostructured lipid carriers: a comparative study. Mater Sci Eng C Mater Biol Appl 72:168–176

    Article  CAS  Google Scholar 

  21. Cattaneo C, Sardina M, Bonizzoni E (2016) Safinamide as add-on therapy to levodopa in mid- to late-stage Parkinson’s disease fluctuating patients: post hoc analyses of studies 016 and SETTLE. J Parkinsons Dis 6:165–173

    Article  CAS  Google Scholar 

  22. Lees AJ, Ferreira J, Rascol O, Poewe W, Rocha JF, McCrory M, Soares-da-Silva P, Investigators B-S (2016) Opicapone as adjunct to levodopa therapy in patients with Parkinson’s disease and motor fluctuations: a randomized clinical trial. JAMA Neurol 74(2):197–206. doi:10.1001/jamaneurol.2016.4703

    Article  Google Scholar 

  23. Senek M, Nielsen EI, Nyholm D (2016) Levodopa-entacapone-carbidopa intestinal gel in Parkinson’s disease: a randomized crossover study. Mov Disord 32(2):283–286. doi:10.1002/mds.26855

    Article  Google Scholar 

  24. Rossi C, Genovesi D, Marzullo P, Giorgetti A, Filidei E, Corsini GU, Bonuccelli U, Ceravolo R (2016) Striatal dopamine transporter modulation after rotigotine: results from a pilot single-photon emission computed tomography study in a group of early stage Parkinson disease patients. Clin Neuropharmacol 40(1):34–36. doi:10.1097/WNF.0000000000000198

    Google Scholar 

  25. Trenkwalder C, Stocchi F, Poewe W, Dronamraju N, Kenney C, Shah A, von Raison F, Graf A (2016) Mavoglurant in Parkinson’s patients with Levodopa-induced dyskinesias: two randomized phase 2 studies. Mov Disord 31:1054–1058

    Article  CAS  Google Scholar 

  26. Pinna A, Ko WK, Costa G, Tronci E, Fidalgo C, Simola N, Li Q, Tabrizi MA, Bezard E, Carta M, Morelli M (2016) Antidyskinetic effect of A2A and 5HT1A/1B receptor ligands in two animal models of Parkinson’s disease. Mov Disord 31:501–511

    Article  CAS  Google Scholar 

  27. Svenningsson P, Rosenblad C, Af Edholm Arvidsson K, Wictorin K, Keywood C, Shankar B, Lowe DA, Bjorklund A, Widner H (2015) Eltoprazine counteracts Levodopa-induced dyskinesias in Parkinson’s disease: a dose-finding study. Brain 138:963–973

    Article  Google Scholar 

  28. Paolone G, Brugnoli A, Arcuri L, Mercatelli D, Morari M (2015) Eltoprazine prevents levodopa-induced dyskinesias by reducing striatal glutamate and direct pathway activity. Mov Disord 30:1728–1738

    Article  CAS  Google Scholar 

  29. Pereira NA, Sureda FX, Perez M, Amat M, Santos MM (2016) Enantiopure indolo[2,3-a]quinolizidines: synthesis and evaluation as NMDA receptor antagonists. Molecules 21:1027

    Article  Google Scholar 

  30. van der Walt MM, Terre'Blanche G (2017) Selected C8 two-chain linkers enhance the adenosine A1/A2A receptor affinity and selectivity of caffeine. Eur J Med Chem 125:652–656

    Article  Google Scholar 

  31. Moccia M, Erro R, Picillo M, Vitale C, Longo K, Amboni M, Pellecchia MT, Barone P (2016) Caffeine consumption and the 4-year progression of de novo Parkinson’s disease. Parkinsonism Relat Disord 32:116–119

    Article  Google Scholar 

  32. Robinson SJ, Petzer JP, Terre'Blanche G, Petzer A, van der Walt MM, Bergh JJ, Lourens AC (2015) 2-Aminopyrimidines as dual adenosine A1/A2A antagonists. Eur J Med Chem 104:177–188

    Article  CAS  Google Scholar 

  33. Van der Walt MM, Terre'Blanche G, Petzer A, Petzer JP (2015) The adenosine receptor affinities and monoamine oxidase B inhibitory properties of sulfanylphthalimide analogues. Bioorg Chem 59:117–123

    Article  Google Scholar 

  34. Li Z, Wang P, Yu Z, Cong Y, Sun H, Zhang J, Zhang J, Sun C, Zhang Y, Ju X (2015) The effect of creatine and coenzyme q10 combination therapy on mild cognitive impairment in Parkinson’s disease. Eur Neurol 73:205–211

    Article  CAS  Google Scholar 

  35. Yoritaka A, Kawajiri S, Yamamoto Y, Nakahara T, Ando M, Hashimoto K, Nagase M, Saito Y, Hattori N (2015) Randomized, double-blind, placebo-controlled pilot trial of reduced coenzyme Q10 for Parkinson’s disease. Parkinsonism Relat Disord 21:911–916

    Article  Google Scholar 

  36. Breydo L, Newland B, Zhang H, Rosser A, Werner C, Uversky VN, Wang W (2016) A hyperbranched dopamine-containing PEG-based polymer for the inhibition of alpha-synuclein fibrillation. Biochem Biophys Res Commun 469:830–835

    Article  CAS  Google Scholar 

  37. Aasly JO, Saether O, Johansen KK, Bathen TF, Giskeodegard GF, White LR (2015) Changes to intermediary metabolites in sporadic and LRRK2 Parkinson’s disease demonstrated by proton magnetic resonance spectroscopy. Parkinsons Dis 2015:264896

    Google Scholar 

  38. Games D, Valera E, Spencer B, Rockenstein E, Mante M, Adame A, Patrick C, Ubhi K, Nuber S, Sakayon P, Zago W, Seubert P, Barbour R, Schenk D, Masliah E (2014) Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J Neurosci 34:9441–9454

    Article  Google Scholar 

  39. Ariga H, Takahashi-Niki K, Kato I, Maita H, Niki T, Iguchi-Ariga SM (2013) Neuroprotective function of DJ-1 in Parkinson’s disease. Oxid Med Cell Longev 2013:683920

    Article  Google Scholar 

  40. Lev N, Barhum Y, Ben-Zur T, Aharony I, Trifonov L, Regev N, Melamed E, Gruzman A, Offen D (2015) A DJ-1 based peptide attenuates dopaminergic degeneration in mice models of Parkinson’s disease via enhancing Nrf2. PLoS One 10:e0127549

    Article  Google Scholar 

  41. Glat MJ, Ben-Zur T, Barhum Y, Offen D (2016) Neuroprotective effect of a DJ-1 based peptide in a toxin induced mouse model of multiple system atrophy. PLoS One 11:e0148170

    Article  Google Scholar 

  42. Takahashi-Niki K, Inafune A, Michitani N, Hatakeyama Y, Suzuki K, Sasaki M, Kitamura Y, Niki T, Iguchi-Ariga SM, Ariga H (2015) DJ-1-dependent protective activity of DJ-1-binding compound no. 23 against neuronal cell death in MPTP-treated mouse model of Parkinson’s disease. J Pharmacol Sci 127:305–310

    Article  CAS  Google Scholar 

  43. Khan MM, Zaheer S, Nehman J, Zaheer A (2014) Suppression of glia maturation factor expression prevents 1-methyl-4-phenylpyridinium (MPP(+))-induced loss of mesencephalic dopaminergic neurons. Neuroscience 277:196–205

    Article  CAS  Google Scholar 

  44. Luk B, Mohammed M, Liu F, Lee FJ (2015) A physical interaction between the dopamine transporter and DJ-1 facilitates increased dopamine reuptake. PLoS One 10:e0136641

    Article  Google Scholar 

  45. Bhattacharyya S, Bakshi R, Logan R, Ascherio A, Macklin EA, Schwarzschild MA (2016) Oral inosine persistently elevates plasma antioxidant capacity in Parkinson’s disease. Mov Disord 31:417–421

    Article  CAS  Google Scholar 

  46. Frakey LL, Friedman JH (2016) Cognitive effects of Rasagiline in mild-to-moderate stage Parkinson’s disease without dementia. J Neuropsychiatry Clin Neurosci 29(1):22–25. doi:10.1176/appi.neuropsych.15050118

    Article  Google Scholar 

  47. Murata M, Hasegawa K, Kanazawa I, Fukasaka J, Kochi K, Shimazu R, Japan Zonisamide on PDSG (2015) Zonisamide improves wearing-off in Parkinson’s disease: a randomized, double-blind study. Mov Disord 30:1343–1350

    Article  CAS  Google Scholar 

  48. Zhou R, Shi XY, Bi DC, Fang WS, Wei GB, Xu X (2015) Alginate-derived oligosaccharide inhibits neuroinflammation and promotes microglial phagocytosis of beta-amyloid. Mar Drugs 13:5828–5846

    Article  CAS  Google Scholar 

  49. Trushina E, Zhang L, Zhang S, Trushin S, Hua D (2015) Mitochondria-targeted therapeutics for Alzheimer’s disease. J Neurol Sci 357:e7–e9

    Article  Google Scholar 

  50. Fisher A, Bezprozvanny I, Ryskamp D, Frenkel D, Rabinovich A, Bar-Ner N, Natan N, Brandeis R, Elkon H, Gershonov E, Laferla F, Mederios R (2016) A unique target for a comprehensive therapy of Alzheimer’s disease: concomitant activation of sigma1/M1 muscarinic receptors. Neurobiol Aging 39:S5

    Article  Google Scholar 

  51. Sheng R, Tang L, Jiang L, Hong L, Shi Y, Zhou N, Hu Y (2016) Novel 1-phenyl-3-hydroxy-4-pyridinone derivatives as multifunctional agents for the therapy of Alzheimer’s disease. ACS Chem Neurosci 7:69–81

    Article  CAS  Google Scholar 

  52. Baruch K, Rosenzweig N, Kertser A, Deczkowska A, Sharif AM, Spinrad A, Tsitsou-Kampeli A, Sarel A, Cahalon L, Schwartz M (2015) Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer’s disease pathology. Nat Commun 6:7967

    Article  CAS  Google Scholar 

  53. Panza F, Solfrizzi V, Seripa D, Imbimbo BP, Lozupone M, Santamato A, Zecca C, Barulli MR, Bellomo A, Pilotto A, Daniele A, Greco A, Logroscino G (2016) Tau-centric targets and drugs in clinical development for the treatment of Alzheimer’s disease. Biomed Res Int:3245935. doi:10.1155/2016/3245935

  54. Makhaeva GF, Lushchekina SV, Boltneva NP, Sokolov VB, Grigoriev VV, Serebryakova OG, Vikhareva EA, Aksinenko AY, Barreto GE, Aliev G, Bachurin SO (2015) Conjugates of gamma-carbolines and phenothiazine as new selective inhibitors of butyrylcholinesterase and blockers of NMDA receptors for Alzheimer disease. Sci Rep 5:13164

    Article  CAS  Google Scholar 

  55. Grimaldi M, Marino SD, Florenzano F, Ciotta MT, Nori SL, Rodriquez M, Sorrentino G, D'Ursi AM, Scrima M (2016) beta-Amyloid-acetylcholine molecular interaction: new role of cholinergic mediators in anti-Alzheimer therapy? Future Med Chem 8:1179–1189

    Article  CAS  Google Scholar 

  56. Dgachi Y, Ismaili L, Knez D, Benchekroun M, Martin H, Szalaj N, Wehle S, Bautista-Aguilera OM, Luzet V, Bonnet A, Malawska B, Gobec S, Chioua M, Decker M, Chabchoub F, Marco-Contelles J (2016) Synthesis and biological assessment of racemic benzochromenopyrimidinimines as antioxidant, cholinesterase, and Aβ1-42 aggregation inhibitors for Alzheimer’s disease therapy. Chem Med Chem 11:1318–1327

    Article  CAS  Google Scholar 

  57. Kumar J, Meena P, Singh A, Jameel E, Maqbool M, Mobashir M, Shandilya A, Tiwari M, Hoda N, Jayaram B (2016) Synthesis and screening of triazolopyrimidine scaffold as multi-functional agents for Alzheimer’s disease therapies. Eur J Med Chem 119:260–277

    Article  CAS  Google Scholar 

  58. Smilansky A, Dangoor L, Nakdimon I, Ben-Hail D, Mizrachi D, Shoshan-Barmatz V (2015) The voltage-dependent anion channel 1 mediates amyloid beta toxicity and represents a potential target for Alzheimer disease therapy. J Biol Chem 290:30670–30683

    Article  CAS  Google Scholar 

  59. Gejl M, Gjedde A, Egefjord L, Moller A, Hansen SB, Vang K, Rodell A, Braendgaard H, Gottrup H, Schacht A, Moller N, Brock B, Rungby J (2016) In Alzheimer’s disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial. Front Aging Neurosci 8:108

    Article  Google Scholar 

  60. Hinrich AJ, Jodelka FM, Chang JL, Brutman D, Bruno AM, Briggs CA, James BD, Stutzmann GE, Bennett DA, Miller SA, Rigo F, Marr RA, Hastings ML (2016) Therapeutic correction of ApoER2 splicing in Alzheimer’s disease mice using antisense oligonucleotides. EMBO Mol Med 8:328–345

    Article  CAS  Google Scholar 

  61. Pereira PA, Tomas JF, Queiroz JA, Figueiras AR, Sousa F (2016) Recombinant pre-miR-29b for Alzheimer’s disease therapeutics. Sci Rep 6:19946

    Article  CAS  Google Scholar 

  62. Nagata E, Ogino M, Iwamoto K, Kitagawa Y, Iwasaki Y, Yoshii F, Ikeda JE, ALS Consortium Investigators (2016) Bromocriptine mesylate attenuates amyotrophic lateral sclerosis: a phase 2a, randomized, double-blind, placebo-controlled research in Japanese patients. PLoS One 11:e0152845

    Article  Google Scholar 

  63. Naujock M, Stanslowsky N, Bufler S, Naumann M, Reinhardt P, Sterneckert J, Kefalakes E, Kassebaum C, Bursch F, Lojewski X, Storch A, Frickenhaus M, Boeckers TM, Putz S, Demestre M, Liebau S, Klingenstein M, Ludolph AC, Dengler R, Kim KS, Hermann A, Wegner F, Petri S (2016) 4-Aminopyridine induced activity rescues hypoexcitable motor neurons from amyotrophic lateral sclerosis patient-derived induced pluripotent stem cells. Stem Cells 34:1563–1575

    Article  CAS  Google Scholar 

  64. Getter T, Zaks I, Barhum Y, Ben-Zur T, Boselt S, Gregoire S, Viskind O, Shani T, Gottlieb H, Green O, Shubely M, Senderowitz H, Israelson A, Kwon I, Petri S, Offen D, Gruzman A (2015) A chemical chaperone-based drug candidate is effective in a mouse model of amyotrophic lateral sclerosis (ALS). Chem Med Chem 10:850–861

    Article  CAS  Google Scholar 

  65. Apolloni S, Fabbrizio P, Parisi C, Amadio S, Volonte C (2016) Clemastine confers neuroprotection and induces an anti-inflammatory phenotype in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Mol Neurobiol 53:518–531

    Article  CAS  Google Scholar 

  66. Elia AE, Lalli S, Monsurro MR, Sagnelli A, Taiello AC, Reggiori B, La Bella V, Tedeschi G, Albanese A (2016) Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis. Eur J Neurol 23:45–52

    Article  CAS  Google Scholar 

  67. Seredenina T, Nayernia Z, Sorce S, Maghzal GJ, Filippova A, Ling SC, Basset O, Plastre O, Daali Y, Rushing EJ, Giordana MT, Cleveland DW, Aguzzi A, Stocker R, Krause KH, Jaquet V (2016) Evaluation of NADPH oxidases as drug targets in a mouse model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 97:95–108

    Article  CAS  Google Scholar 

  68. Isobe T, Tooi N, Nakatsuji N, Aiba K (2015) Amyotrophic lateral sclerosis models derived from human embryonic stem cells with different superoxide dismutase 1 mutations exhibit differential drug responses. Stem Cell Res 15:459–468

    Article  CAS  Google Scholar 

  69. Bellouze S, Baillat G, Buttigieg D, de la Grange P, Rabouille C, Haase G (2016) Stathmin 1/2-triggered microtubule loss mediates Golgi fragmentation in mutant SOD1 motor neurons. Mol Neurodegener 11:43

    Article  Google Scholar 

  70. Cai M, Yang EJ (2016) Ginsenoside reattenuates neuroinflammation in a symptomatic ALS animal model. Am J Chin Med 44:401–413

    Article  CAS  Google Scholar 

  71. Akamatsu M, Yamashita T, Hirose N, Teramoto S, Kwak S (2016) The AMPA receptor antagonist perampanel robustly rescues amyotrophic lateral sclerosis (ALS) pathology in sporadic ALS model mice. Sci Rep 6:28649

    Article  CAS  Google Scholar 

  72. Zeng Y, Guo W, Xu G, Wang Q, Feng L, Long S, Liang F, Huang Y, Lu X, Li S, Zhou J, Burgunder JM, Pang J, Pei Z (2016) Xyloketal-derived small molecules show protective effect by decreasing mutant huntingtin protein aggregates in Caenorhabditis elegans model of Huntington’s disease. Drug Des Devel Ther 10:1443–1451

    Article  Google Scholar 

  73. Zielonka D, Mielcarek M, Landwehrmeyer GB (2015) Update on Huntington’s disease: advances in care and emerging therapeutic options. Parkinsonism Relat Disord 21:169–178

    Article  Google Scholar 

  74. Yin X, Manczak M, Reddy PH (2016) Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington’s disease. Hum Mol Genet 25:1739–1753

    Article  CAS  Google Scholar 

  75. Marelli C, Maschat F (2016) The P42 peptide and peptide-based therapies for Huntington’s disease. Orphanet J Rare Dis 11:24

    Article  Google Scholar 

  76. Sassone F, Margulets V, Maraschi A, Rodighiero S, Passafaro M, Silani V, Ciammola A, Kirshenbaum LA, Sassone JF (2015) Bcl-2/adenovirus E1B 19-kDa interacting protein (BNip3) has a key role in the mitochondrial dysfunction induced by mutant huntingtin. Hum Mol Genet 24:6530–6539

    Article  CAS  Google Scholar 

  77. Stanek LM, Sardi SP, Mastis B, Richards AR, Traleaven CM, Tatyana T, Misra K, Cheng SH, Shihabuddin LS (2014) Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington’s Disease. Human Gene Therapy 25:461–474

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by a research grant awarded to GNB by the Council of Science and Technology, UP, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nagesh Babu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Nagesh Babu, G., Gupta, M. (2018). Therapeutics in Neurodegenerative Disorders: Emerging Compounds of Interest. In: Ramasami, P., Gupta Bhowon, M., Jhaumeer Laulloo, S., Li Kam Wah, H. (eds) Emerging Trends in Chemical Sciences. ICPAC 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-60408-4_4

Download citation

Publish with us

Policies and ethics