Skip to main content

Genetic Risk Prediction in Breast Cancer

  • Chapter
  • First Online:
Changing Paradigms in the Management of Breast Cancer

Abstract

Knowledge related to genetic susceptibility in breast cancer, in particular the identification of BRCA1 and BRCA2 genes, has greatly enhanced the accuracy of breast cancer prediction for the subset of individuals with heritable disorders. Genetic testing for hereditary syndromes can aid in early detection and prevent cancer through screening, surgical prophylaxis, and chemoprevention. Genetic risk prediction can improve survival when combined with early detection and targeted therapy. Unfortunately, most patients who carry a genetic mutation for hereditary breast cancer are not tested (Drohan et al. Ann Surg Oncol. 2012;19(6):1732–7). Failure to notify mutation carriers prior to developing cancer robs them of the opportunity to utilize preventive strategies, direct surgical management, select systemic therapy, manage other at-risk organs, determine a follow-up approach, and manage recurrent disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Drohan B, Roche CA, Cusack JC Jr, Hughes KS. Hereditary breast and ovarian cancer and other hereditary syndromes: using technology to identify carriers. Ann Surg Oncol. 2012;19(6):1732–7.

    Article  PubMed  Google Scholar 

  2. Ingham SL, Sperrin M, Baildam A, Ross GL, Clayton R, Lalloo F, et al. Risk-reducing surgery increases survival in BRCA1/2 mutation carriers unaffected at time of family referral. Breast Cancer Res Treat. 2013;142(3):611–8.

    Article  CAS  PubMed  Google Scholar 

  3. Levy-Lahad E, Lahad A, King MC. Precision medicine meets public health: population screening for BRCA1 and BRCA2. J Natl Cancer Inst. 2015;107(1):420.

    Article  PubMed  Google Scholar 

  4. Srivastava A, McKinnon W, Wood ME. Risk of breast and ovarian cancer in women with strong family histories. Oncology (Williston Park). 2001;15(7):889–902. discussion, 5–7, 11–13

    CAS  PubMed  Google Scholar 

  5. NCCN Clinical practice guidelines in oncology: genetic/familial high risk assessment: breast and ovarian. https://www.nccn.org. Accessed 27 Aug 2016

  6. Schwartz GF, Hughes KS, Lynch HT, Fabian CJ, Fentiman IS, Robson ME, et al. Proceedings of the international consensus conference on breast cancer risk, genetics, & risk management, April, 2007. Cancer. 2008;113(10):2627–37.

    Article  PubMed  Google Scholar 

  7. Guenard F, Labrie Y, Ouellette G, Beauparlant CJ, Bessette P, Chiquette J, et al. Germline mutations in the breast cancer susceptibility gene PTEN are rare in high-risk non-BRCA1/2 French Canadian breast cancer families. Familial Cancer. 2007;6(4):483–90.

    Article  CAS  PubMed  Google Scholar 

  8. Bradbury AR, Olopade OI. Genetic susceptibility to breast cancer. Rev Endocr Metab Disord. 2007;8(3):255–67.

    Article  PubMed  Google Scholar 

  9. Hearle N, Schumacher V, Menko FH, Olschwang S, Boardman LA, Gille JJ, et al. Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res. 2006;12(10):3209–15.

    Article  CAS  PubMed  Google Scholar 

  10. Kaurah P, MacMillan A, Boyd N, Senz J, De Luca A, Chun N, et al. Founder and recurrent CDH1 mutations in families with hereditary diffuse gastric cancer. JAMA. 2007;297(21):2360–72.

    Article  CAS  PubMed  Google Scholar 

  11. Thompson D, Easton D, Breast Cancer Linkage C. Variation in cancer risks, by mutation position, in BRCA2 mutation carriers. Am J Hum Genet. 2001;68(2):410–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ford D, Easton DF, Bishop DT, Narod SA, Goldgar DE. Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet. 1994;343(8899):692–5.

    Article  CAS  PubMed  Google Scholar 

  13. Breast Cancer Linkage C. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst. 1999;91(15):1310–6.

    Article  Google Scholar 

  14. Thompson D, Easton DF, Breast Cancer Linkage C. Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst. 2002;94(18):1358–65.

    Article  CAS  PubMed  Google Scholar 

  15. Cybulski C, Wokolorczyk D, Jakubowska A, Huzarski T, Byrski T, Gronwald J, et al. Risk of breast cancer in women with a CHEK2 mutation with and without a family history of breast cancer. J Clin Oncol. 2011;29(28):3747–52.

    Article  CAS  PubMed  Google Scholar 

  16. Thompson D, Duedal S, Kirner J, McGuffog L, Last J, Reiman A, et al. Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst. 2005;97(11):813–22.

    Article  CAS  PubMed  Google Scholar 

  17. Antoniou AC, Casadei S, Heikkinen T, Barrowdale D, Pylkas K, Roberts J, et al. Breast-cancer risk in families with mutations in PALB2. N Engl J Med. 2014;371(6):497–506.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R, et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet. 2006;38(11):1239–41.

    Article  CAS  PubMed  Google Scholar 

  19. Rosenberg SM, Ruddy KJ, Tamimi RM, Gelber S, Schapira L, Come S, et al. BRCA1 and BRCA2 mutation testing in young women with breast cancer. JAMA Oncol. 2016;2(6):730–6.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Brown KL, Hutchison R, Zinberg RE, McGovern MM. Referral and experience with genetic testing among women with early onset breast cancer. Genet Test. 2005;9(4):301–5.

    Article  PubMed  Google Scholar 

  21. Loman N, Johannsson O, Kristoffersson U, Olsson H, Borg A. Family history of breast and ovarian cancers and BRCA1 and BRCA2 mutations in a population-based series of early-onset breast cancer. J Natl Cancer Inst. 2001;93(16):1215–23.

    Article  CAS  PubMed  Google Scholar 

  22. American Society of Clinical O. American Society of Clinical Oncology policy statement update: genetic testing for cancer susceptibility. J Clin Oncol. 2003;21(12):2397–406.

    Article  Google Scholar 

  23. Brose MS, Rebbeck TR, Calzone KA, Stopfer JE, Nathanson KL, Weber BL. Cancer risk estimates for BRCA1 mutation carriers identified in a risk evaluation program. J Natl Cancer Inst. 2002;94(18):1365–72.

    Article  CAS  PubMed  Google Scholar 

  24. Risch HA, McLaughlin JR, Cole DE, Rosen B, Bradley L, Fan I, et al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J Natl Cancer Inst. 2006;98(23):1694–706.

    Article  CAS  PubMed  Google Scholar 

  25. Iqbal J, Ragone A, Lubinski J, Lynch HT, Moller P, Ghadirian P, et al. The incidence of pancreatic cancer in BRCA1 and BRCA2 mutation carriers. Br J Cancer. 2012;107(12):2005–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grant RC, Selander I, Connor AA, Selvarajah S, Borgida A, Briollais L, et al. Prevalence of germline mutations in cancer predisposition genes in patients with pancreatic cancer. Gastroenterology. 2015;148(3):556–64.

    Article  CAS  PubMed  Google Scholar 

  27. Judkins T, Rosenthal E, Arnell C, Burbidge LA, Geary W, Barrus T, et al. Clinical significance of large rearrangements in BRCA1 and BRCA2. Cancer. 2012;118(21):5210–6.

    Article  CAS  PubMed  Google Scholar 

  28. Walsh T, Casadei S, Coats KH, Swisher E, Stray SM, Higgins J, et al. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA. 2006;295(12):1379–88.

    Article  CAS  PubMed  Google Scholar 

  29. Hendrickson BC, Judkins T, Ward BD, Eliason K, Deffenbaugh AE, Burbidge LA, et al. Prevalence of five previously reported and recurrent BRCA1 genetic rearrangement mutations in 20,000 patients from hereditary breast/ovarian cancer families. Genes Chromosom Cancer. 2005;43(3):309–13.

    Article  CAS  PubMed  Google Scholar 

  30. Campeau PM, Foulkes WD, Tischkowitz MD. Hereditary breast cancer: new genetic developments, new therapeutic avenues. Hum Genet. 2008;124(1):31–42.

    Article  CAS  PubMed  Google Scholar 

  31. Li J, Meeks H, Feng BJ, Healey S, Thorne H, Makunin I, et al. Targeted massively parallel sequencing of a panel of putative breast cancer susceptibility genes in a large cohort of multiple-case breast and ovarian cancer families. J Med Genet. 2016;53(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  32. Frey MK, Kim SH, Bassett RY, Martineau J, Dalton E, Chern JY, et al. Rescreening for genetic mutations using multi-gene panel testing in patients who previously underwent non-informative genetic screening. Gynecol Oncol. 2015;139(2):211–5.

    Article  PubMed  Google Scholar 

  33. Desmond A, Kurian AW, Gabree M, Mills MA, Anderson MJ, Kobayashi Y, et al. Clinical actionability of multigene panel testing for hereditary breast and ovarian cancer risk assessment. JAMA Oncol. 2015;1(7):943–51.

    Article  PubMed  Google Scholar 

  34. Metcalfe K, Gershman S, Lynch HT, Ghadirian P, Tung N, Kim-Sing C, et al. Predictors of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers. Br J Cancer. 2011;104(9):1384–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Sprundel TC, Schmidt MK, Rookus MA, Brohet R, van Asperen CJ, Rutgers EJ, et al. Risk reduction of contralateral breast cancer and survival after contralateral prophylactic mastectomy in BRCA1 or BRCA2 mutation carriers. Br J Cancer. 2005;93(3):287–92.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Giuliano AE, Boolbol S, Degnim A, Kuerer H, Leitch AM, Morrow M. Society of Surgical Oncology: position statement on prophylactic mastectomy. Approved by the Society of Surgical Oncology Executive Council, March 2007. Ann Surg Oncol. 2007;14(9):2425–7.

    Article  PubMed  Google Scholar 

  37. Valachis A, Nearchou AD, Lind P. Surgical management of breast cancer in BRCA-mutation carriers: a systematic review and meta-analysis. Breast Cancer Res Treat. 2014;144(3):443–55.

    Article  CAS  PubMed  Google Scholar 

  38. Metcalfe K, Lynch HT, Ghadirian P, Tung N, Olivotto I, Warner E, et al. Contralateral breast cancer in BRCA1 and BRCA2 mutation carriers. J Clin Oncol. 2004;22(12):2328–35.

    Article  CAS  PubMed  Google Scholar 

  39. Narod SA, Brunet JS, Ghadirian P, Robson M, Heimdal K, Neuhausen SL, et al. Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study. Hereditary Breast Cancer Clinical Study Group. Lancet. 2000;356(9245):1876–81.

    Article  CAS  PubMed  Google Scholar 

  40. Gronwald J, Tung N, Foulkes WD, Offit K, Gershoni R, Daly M, et al. Tamoxifen and contralateral breast cancer in BRCA1 and BRCA2 carriers: an update. Int J Cancer. 2006;118(9):2281–4.

    Article  CAS  PubMed  Google Scholar 

  41. Phillips KA, Milne RL, Rookus MA, Daly MB, Antoniou AC, Peock S, et al. Tamoxifen and risk of contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. J Clin Oncol. 2013;31(25):3091–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tung N, Domchek SM, Stadler Z, Nathanson KL, Couch F, Garber JE, et al. Counselling framework for moderate-penetrance cancer-susceptibility mutations. Nat Rev Clin Oncol. 2016;13(9):581–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heymann S, Delaloge S, Rahal A, Caron O, Frebourg T, Barreau L, et al. Radio-induced malignancies after breast cancer postoperative radiotherapy in patients with Li-Fraumeni syndrome. Radiat Oncol. 2010;5:104.

    Article  PubMed  PubMed Central  Google Scholar 

  44. van der Post RS, Vogelaar IP, Carneiro F, Guilford P, Huntsman D, Hoogerbrugge N, et al. Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline CDH1 mutation carriers. J Med Genet. 2015;52(6):361–74.

    Article  PubMed  Google Scholar 

  45. Prevention CfDCa. Tier 1 genomics applications and their importance to public health.

    Google Scholar 

  46. Prevention CfDCa. Hereditary Breast and Ovarian Cancer (HBOC) Phase 1.

    Google Scholar 

  47. Metcalfe K, Lynch HT, Ghadirian P, Tung N, Kim-Sing C, Olopade OI, et al. Risk of ipsilateral breast cancer in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res Treat. 2011;127(1):287–96.

    Article  CAS  PubMed  Google Scholar 

  48. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21.

    Article  CAS  PubMed  Google Scholar 

  49. Quinn JE, James CR, Stewart GE, Mulligan JM, White P, Chang GK, et al. BRCA1 mRNA expression levels predict for overall survival in ovarian cancer after chemotherapy. Clin Cancer Res. 2007;13(24):7413–20.

    Article  CAS  PubMed  Google Scholar 

  50. Rottenberg S, Nygren AO, Pajic M, van Leeuwen FW, van der Heijden I, van de Wetering K, et al. Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer. Proc Natl Acad Sci U S A. 2007;104(29):12117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Clergue O, Jones N, Sevenet N, Quenel-Tueux N, Debled M. Should knowledge of BRCA1 status impact the choice of chemotherapy in metastatic breast cancer: a review. Bull Cancer. 2015;102(3):245–55.

    Article  PubMed  Google Scholar 

  52. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434(7035):913–7.

    Article  CAS  PubMed  Google Scholar 

  53. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361(2):123–34.

    Article  CAS  PubMed  Google Scholar 

  54. PARP inhibitors. https://www.breastcancertrials.org/bct_nation/browse_trials.seam%3Bjsessionid=13FBD071E8DF7F064AF70D8C262EE2EF?categoryString=PARP&Search_Operator=OR.Accessed 27 Aug 2016.

  55. Mendes-Pereira AM, Martin SA, Brough R, McCarthy A, Taylor JR, Kim JS, et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med. 2009;1(6–7):315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gilardini Montani MS, Prodosmo A, Stagni V, Merli D, Monteonofrio L, Gatti V, et al. ATM-depletion in breast cancer cells confers sensitivity to PARP inhibition. J Exp Clin Cancer Res. 2013;32:95.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Schwartz MD, Lerman C, Brogan B, Peshkin BN, Isaacs C, DeMarco T, et al. Utilization of BRCA1/BRCA2 mutation testing in newly diagnosed breast cancer patients. Cancer Epidemiol Biomark Prev. 2005;14(4):1003–7.

    Article  CAS  Google Scholar 

  58. Schwartz MD, Lerman C, Brogan B, Peshkin BN, Halbert CH, DeMarco T, et al. Impact of BRCA1/BRCA2 counseling and testing on newly diagnosed breast cancer patients. J Clin Oncol. 2004;22(10):1823–9.

    Article  PubMed  Google Scholar 

  59. Meijers-Heijboer H, Brekelmans CT, Menke-Pluymers M, Seynaeve C, Baalbergen A, Burger C, et al. Use of genetic testing and prophylactic mastectomy and oophorectomy in women with breast or ovarian cancer from families with a BRCA1 or BRCA2 mutation. J Clin Oncol. 2003;21(9):1675–81.

    Article  PubMed  Google Scholar 

  60. Shattuck-Eidens D, Oliphant A, McClure M, McBride C, Gupte J, Rubano T, et al. BRCA1 sequence analysis in women at high risk for susceptibility mutations. Risk factor analysis and implications for genetic testing. JAMA. 1997;278(15):1242–50.

    Article  CAS  PubMed  Google Scholar 

  61. Frank TS, Manley SA, Olopade OI, Cummings S, Garber JE, Bernhardt B, et al. Sequence analysis of BRCA1 and BRCA2: correlation of mutations with family history and ovarian cancer risk. J Clin Oncol. 1998;16(7):2417–25.

    Article  CAS  PubMed  Google Scholar 

  62. Frank TS, Deffenbaugh AM, Reid JE, Hulick M, Ward BE, Lingenfelter B, et al. Clinical characteristics of individuals with germline mutations in BRCA1 and BRCA2: analysis of 10,000 individuals. J Clin Oncol: Off J Am Soc Clin Oncol. 2002;20(6):1480–90.

    Article  CAS  Google Scholar 

  63. Barcenas CH, Hosain GM, Arun B, Zong J, Zhou X, Chen J, et al. Assessing BRCA carrier probabilities in extended families. J Clin Oncol. 2006;24(3):354–60.

    Article  PubMed  Google Scholar 

  64. Bodmer D, Ligtenberg MJ, van der Hout AH, Gloudemans S, Ansink K, Oosterwijk JC, et al. Optimal selection for BRCA1 and BRCA2 mutation testing using a combination of ‘easy to apply’ probability models. Br J Cancer. 2006;95(6):757–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Parmigiani G, Chen S, Iversen ES Jr, Friebel TM, Finkelstein DM, Anton-Culver H, et al. Validity of models for predicting BRCA1 and BRCA2 mutations. Ann Intern Med. 2007;147(7):441–50.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Panchal SM, Ennis M, Canon S, Bordeleau LJ. Selecting a BRCA risk assessment model for use in a familial cancer clinic. BMC Med Genet. 2008;9:116.

    Article  PubMed  PubMed Central  Google Scholar 

  67. MYRIAD PRO: BRCA risk calculator. https://www.myriadpro.com/hereditary-cancer-testing/hereditary-breast-and-ovarian-cancer-hboc-syndrome/brca-risk-calculator/.Accessed 27 Aug 2016.

  68. MYRIAD PRO: prevalence tables. https://www.myriadpro.com/hereditary-cancer-testing/hereditary-breast-and-ovarian-cancer-hboc-syndrome/prevalence-tables/. Accessed 27 Aug 2016.

  69. Berry DA, Parmigiani G, Sanchez J, Schildkraut J, Winer E. Probability of carrying a mutation of breast-ovarian cancer gene BRCA1 based on family history. J Natl Cancer Inst. 1997;89(3):227–38.

    Article  CAS  PubMed  Google Scholar 

  70. Parmigiani G, Berry D, Aguilar O. Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2. Am J Hum Genet. 1998;62(1):145–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mazzola E, Blackford A, Parmigiani G, Biswas S. Recent enhancements to the genetic risk prediction model BRCAPRO. Cancer Informat. 2015;14(Suppl 2):147–57.

    Google Scholar 

  72. Biswas S, Atienza P, Chipman J, Hughes K, Barrera AM, Amos CI, et al. Simplifying clinical use of the genetic risk prediction model BRCAPRO. Breast Cancer Res Treat. 2013;139(2):571–9.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Recent enhancements to the genetic risk prediction model BRCAPRO. http://www.la-press.com/recent-enhancements-to-the-genetic-risk-prediction-model-brcapro-article-a4822. Accessed 27 Aug 2016.

  74. Online Risk Service. http://bayesmendel.dfci.harvard.edu/risk/. Accessed 27 Aug 2016.

  75. Progeny: cancer risk assessment. http://www.progenygenetics.com/clinical/risk. Accessed 27 Aug 2016.

  76. CancerGene. https://www4.utsouthwestern.edu/breasthealth/cagene/. Accessed 27 Aug 2016.

  77. CRA health: risk assessment. Accessed 27 Aug 2016.

    Google Scholar 

  78. Rao NY, Hu Z, Yu JM, Li WF, Zhang B, Su FX, et al. Evaluating the performance of models for predicting the BRCA germline mutations in Han Chinese familial breast cancer patients. Breast Cancer Res Treat. 2009;116(3):563–70.

    Article  PubMed  Google Scholar 

  79. Antoniou AC, Pharoah PD, McMullan G, Day NE, Stratton MR, Peto J, et al. A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br J Cancer. 2002;86(1):76–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Antoniou AC, Pharoah PP, Smith P, Easton DF. The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br J Cancer. 2004;91(8):1580–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Antoniou AC, Hardy R, Walker L, Evans DG, Shenton A, Eeles R, et al. Predicting the likelihood of carrying a BRCA1 or BRCA2 mutation: validation of BOADICEA, BRCAPRO, IBIS, Myriad and the Manchester scoring system using data from UK genetics clinics. J Med Genet. 2008;45(7):425–31.

    Article  CAS  PubMed  Google Scholar 

  82. Lee AJ, Cunningham AP, Kuchenbaecker KB, Mavaddat N, Easton DF, Antoniou AC. BOADICEA breast cancer risk prediction model: updates to cancer incidences, tumour pathology and web interface. Br J Cancer. 2014;110(2):535–45.

    Article  CAS  PubMed  Google Scholar 

  83. Antoniou AC, Durocher F, Smith P, Simard J, Easton DF. BRCA1 and BRCA2 mutation predictions using the BOADICEA and BRCAPRO models and penetrance estimation in high-risk French-Canadian families. Breast cancer research : BCR. 2006;8(1):R3.

    Article  PubMed  Google Scholar 

  84. Schneegans SM, Rosenberger A, Engel U, Sander M, Emons G, Shoukier M. Validation of three BRCA1/2 mutation-carrier probability models Myriad, BRCAPRO and BOADICEA in a population-based series of 183 German families. Familial Cancer. 2012;11(2):181–8.

    Article  CAS  PubMed  Google Scholar 

  85. Fischer C, Kuchenbacker K, Engel C, Zachariae S, Rhiem K, Meindl A, et al. Evaluating the performance of the breast cancer genetic risk models BOADICEA, IBIS, BRCAPRO and Claus for predicting BRCA1/2 mutation carrier probabilities: a study based on 7352 families from the German Hereditary Breast and Ovarian Cancer Consortium. J Med Genet. 2013;50(6):360–7.

    Article  CAS  PubMed  Google Scholar 

  86. BOADICEA web application. http://ccge.medschl.cam.ac.uk/boadicea/boadicea-web-application/. Accessed 27 Aug 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anvy Nguyen MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Nguyen, A., Plichta, J.K., Cintolo-Gonzalez, J., Kartal, K., Griffin, M.E., Hughes, K. (2018). Genetic Risk Prediction in Breast Cancer. In: Howard-McNatt, M. (eds) Changing Paradigms in the Management of Breast Cancer . Springer, Cham. https://doi.org/10.1007/978-3-319-60336-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60336-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60335-3

  • Online ISBN: 978-3-319-60336-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics