Skip to main content

Role of Non-coding RNAs in Vascular Complications of Diabetes Mellitus

  • Chapter
  • First Online:
Mechanisms of Vascular Defects in Diabetes Mellitus

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 17))

Abstract

Non-coding RNAs (ncRNAs) have emerged as an important component of gene regulatory networks. These regulatory RNAs orchestrate different functions of the vascular system by regulating target gene expression. Significant dysregulation of ncRNAs is associated with hyperglycemia, angiogenesis and vascular repair and contribute to vascular disease in patients with diabetes. The functional roles of only a very few ncRNAs such as miRNAs are well studied in vascular biology; studies on other ncRNAs are limited. In this article, we outline the known roles of ncRNAs in diabetes associated vascular complications, as well as their potential use as biomarkers and therapeutic targets. We also discuss the strategies and challenges in the possible use of these microregulators for clinical application in patients with diabetes associated vascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Diabetes association. Consensus Statement (1993) Role of cardiovascular risk factors in prevention and treatment of macrovascular disease in diabetes. Diabetes Care 16:72–78

    Article  Google Scholar 

  2. Vikram A, Tripathi DN, Kumar A et al (2014) Oxidative stress and inflammation in diabetic complications. Int J Endocrinol 2014:679754

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cines DB, Pollak ES, Buck CA et al (1998) Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91:3527–3561

    CAS  PubMed  Google Scholar 

  4. Loomans CJ, de Koning EJ, Staal FJ et al (2004) Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 53(1):195–199

    Article  CAS  PubMed  Google Scholar 

  5. Tepper OM, Galiano RD, Capla JM et al (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106:2781–2786

    Article  PubMed  Google Scholar 

  6. Georgescu A (2011) Vascular dysfunction in diabetes: the endothelial progenitor cells as new therapeutic strategsy. World J Diabetes 2(6):92–97

    Article  PubMed  PubMed Central  Google Scholar 

  7. Reddy MA, Park JT, Natarajan R (2013) Epigenetic modifications in the pathogenesis of diabetic nephropathy. Sem Nephrol 33(4):341–353

    Article  CAS  Google Scholar 

  8. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  9. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  10. Alexander RP, Fang G, Rozowsky J et al (2010) Annotating non-coding regions of the genome. Nat Rev Genet 11:559–571

    Article  CAS  PubMed  Google Scholar 

  11. Erdmann VA, Barciszewska MZ, Szymanski M et al (2001) The non-coding RNAs as riboregulators. Nucl Acids Res 29(1):189–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mallory A, Shkumatava A (2015) LncRNAs in vertebrates: advances and challenges. Biochimie 117:3–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thum T (2015) Facts and updates about cardiovascular non-coding RNAs in heart failure. ESC Heart Fail 2(3):108–111

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  17. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  CAS  PubMed  Google Scholar 

  18. Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    Article  CAS  PubMed  Google Scholar 

  19. Lee Y, Jeon K, Lee JT et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17):4663–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mendell JT (2005) MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 4(9):1179–1184

    Article  CAS  PubMed  Google Scholar 

  21. Orang AV, Safaralizadeh R, Kazemzadeh-Bavili M (2014) Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genom:970607

    Google Scholar 

  22. Makarova JA, Shkurnikov MU, Wicklein D et al (2016) Intracellular and extracellular microRNA: an update on localization and biological role. Prog Histochem Cytochem 51(3–4):33–49

    Article  PubMed  Google Scholar 

  23. Poy MN, Eliasson L, Krutzfeldt J et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230

    Article  CAS  PubMed  Google Scholar 

  24. Poy MN, Hausser J, Trajkovski M et al (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A 106(14):5813–5818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Salas-Perez F, Codner E, Valencia E et al (2013) MicroRNAs miR-21a and miR-93 are down regulated in peripheral blood mononuclear cells (PBMCs) from patients with type 1 diabetes. Immunobiology 218(5):733–737

    Article  CAS  PubMed  Google Scholar 

  26. Sebastiani G, Grieco FA, Spagnuolo I et al (2011) Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes Metab Res Rev 27:862–866

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Gao G, Yang C et al (2014) The role of circulating microRNA-126 (miR-126): a novel biomarker for screening prediabetes and newly diagnosed type 2 diabetes mellitus. Int J Mol Sci 15(6):10567–10577

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lustig Y, Barhod E, Ashwal-Fluss R et al (2014) RNA-binding protein PTB and microRNA-221 coregulate AdipoR1 translation and adiponectin signalling. Diabetes 63(2):433–445

    Article  CAS  PubMed  Google Scholar 

  29. Gallagher IJ, Scheele C, Keller P et al (2010) Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes. Genome Med 2(2):9

    Article  PubMed  PubMed Central  Google Scholar 

  30. Arner P, Kulyté A (2015) MicroRNA regulatory networks in human adipose tissue and obesity. Nat Rev Endocrinol 11(5):276–288

    Article  CAS  PubMed  Google Scholar 

  31. Hadi HA, Suwaidi JA (2007) Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag 3(6):853–876

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang XH, Qian RZ, Zhang W et al (2009) MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol 36:181–188

    Article  PubMed  Google Scholar 

  33. Chen Y, Banda M, Speyer CL et al (2010) Regulation of the expression and activity of the antiangiogenic homeobox gene gax/meox2 by zeb2 and microRNA-221. Mol Cell Biol 30:3902–3913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu X, Cheng Y, Yang J et al (2012) Cell-specific effects of miR-221/222 in vessels: molecular mechanism and therapeutic application. J Mol Cell Cardiol 52:245–255

    Article  CAS  PubMed  Google Scholar 

  35. Ying C, Sui-xin L, Kang-ling X et al (2014) MicroRNA-492 reverses high glucose-induced insulin resistance in HUVEC cells through targeting resistin. Mol Cell Biochem 391:117–125

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fish JE, Santoro MM, Morton SU et al (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15(2):272–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chistiakov DA, Orekhov AN, Bobryshev YV (2016) The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. J Mol Cell Cardiol 97:47–55

    Article  CAS  PubMed  Google Scholar 

  38. Meng S, Cao JT, Zhang B et al (2012) Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol 53:64–72

    Article  CAS  PubMed  Google Scholar 

  39. Leroyer AS, Isobe H, Lesèche G et al (2007) Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques. J Am Coll Cardiol 49:772–777

    Article  CAS  PubMed  Google Scholar 

  40. Li Y, Zhou Q, Pei C et al (2016) Hyperglycemia and advanced glycation end products regulate miR-126 expression in endothelial progenitor cells. J Vasc Res 53:94–104

    Article  CAS  PubMed  Google Scholar 

  41. Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 20:1603–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen Y, Tian L, Wan S (2016) MicroRNA-17-92 cluster regulates pancreatic beta-cell proliferation and adaptation. Mol Cell Endocrinol 437:213–223

    Article  CAS  PubMed  Google Scholar 

  43. Chamorro-Jorganes A, Lee MY, Araldi E et al (2016) VEGF-induced expression of mir-17–92 cluster in endothelial cells is mediated by ERK/ELK1 activation and regulates angiogenesis. Circ Res 118(1):38–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reddy MA, Jin W, Villeneuve L et al (2012) Pro-inflammatory role of microRNA-200 in vascular smooth muscle cells from diabetic mice. Arterioscler Thromb Vasc Biol 32(3):721–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang C, Wan S, Yang T et al (2016) Increased serum microRNAs are closely associated with the presence of microvascular complications in type 2 diabetes mellitus. Sci Rep 6:20032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Villeneuve LM, Kato M, Reddy MA et al (2010) Enhanced levels of microRNA-125b in vascular smooth muscle cells of diabetic db/db mice lead to increased inflammatory gene expression by targeting the histone methyltransferase Suv39h1. Diabetes 59(11):2904–2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dahan D, Ekman M, Larsson-Callerfelt AK et al (2014) Induction of angiotensin-converting enzyme after miR-143/145 deletion is critical for impaired smooth muscle contractility. Am J Physiol Cell Physiol 307(12):C1093–C1101

    Article  CAS  PubMed  Google Scholar 

  48. Moura J, Børsheim E, Carvalho E (2014) The role of micrornas in diabetic complications-special emphasis on wound healing. Genes 5(4):926–956

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ling HY, Ou HS, Feng SD et al (2009) Changes in microRNA (miR) profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes. Clin Exp Pharmacol Physiol 36(9):e32–e39

    Article  CAS  PubMed  Google Scholar 

  50. Fernandez-Valverde SL, Taft RJ, Mattick JS (2011) MicroRNAs in β-cell biology, insulin resistance, diabetes and its complications. Diabetes 60(7):1825–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Caporali A, Meloni M, Vollenkle C et al (2011) Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 123(3):282–291

    Article  CAS  PubMed  Google Scholar 

  52. Shantikumar S, Caporali A, Emanueli C (2012) Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc Res 93(4):583–593

    Article  CAS  PubMed  Google Scholar 

  53. Li X, Kong D, Chen H et al (2016) miR-155 acts as an anti-inflammatory factor in atherosclerosis-associated foam cell formation by repressing calcium-regulated heat stable protein 1. Sci Rep 6:21789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nguyen Ms M, Karunakaran D, Geoffrion M et al (2015) Role of extracellular micrornas in atherosclerosis. FASEB J 29 (Suppl):562.31

    Google Scholar 

  55. Liang X, Xu Z, Yuan M et al (2016) MicroRNA-16 suppresses the activation of inflammatory macrophages in atherosclerosis by targeting PDCD4. Int J Mol Med 37(4):967–975

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Schober A, Nazari-Jahantigh M, Wei Y et al (2014) MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 20(4):368–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Feng J, Li A, Deng J et al (2014) miR-21 attenuates lipopolysaccharide-induced lipid accumulation and inflammatory response: potential role in cerebrovascular disease. Lipids Health Dis 13:27

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tsai PC, Liao YC, Wang YS et al (2013) Serum microRNA-21 and microRNA-221 as potential biomarkers for cerebrovascular disease. J Vasc Res 50(4):346–354

    Article  CAS  PubMed  Google Scholar 

  59. Li T, Cao H, Zhuang J et al (2011) Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin Chim Acta 412(1–2):66–70

    Article  CAS  PubMed  Google Scholar 

  60. Yin KJ, Olsen K, Hamblin M et al (2012) Vascular endothelial cell-specific MicroRNA-15a inhibits angiogenesis in hindlimb ischemia. J Biol Chem 287:27055–27064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kovacs B, Lumayag S, Cowan C et al (2011) microRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci 52:4402–4409

    Article  CAS  PubMed  Google Scholar 

  62. Fabbri E, Borgatti M, Montagner G et al (2014) Expression of microRNA-93 and interleukin-8 during pseudomonas aeruginosa mediated induction of pro-inflammatory responses. Am J Respir Cell Mol Biol 50:1144–1155

    Article  PubMed  Google Scholar 

  63. Simpson K, Wonnacott A, Fraser DJ et al (2016) MicroRNAs in diabetic nephropathy: from biomarkers to therapy. Curr Diab Rep 16:35

    Article  PubMed  PubMed Central  Google Scholar 

  64. Krupa A, Jenkins R, Luo DD et al (2010) Loss of microRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol 21(3):438–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zampetaki A, Kiechl S, Drozdov I et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107(6):810–817

    Article  CAS  PubMed  Google Scholar 

  66. Van Rooij E, Kauppinen S (2014) Development of microRNA therapeutics is coming of age. EMBO Mol Med 6(7):851–864

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yue J (2011) miRNA and vascular cell movement. Adv Drug Deliv Rev 63:616–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang H, Shykind B, Sun T (2012) Approaches to manipulating microRNAs in neurogenesis. Front Neurosci 6:196

    PubMed  Google Scholar 

  69. Xie J, Burt DR, Gao G (2015) AAV-mediated miRNA delivery and therapeutics. Semin Liver Dis 35(1):81–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ebert MS, Sharp PA (2010) MicroRNA sponges: progress and possibilities. RNA 16(11):2043–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Trajkovski M, Hausser J, Soutschek J et al (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474:649–653

    Article  CAS  PubMed  Google Scholar 

  72. Ng R, Wu H, Xiao H et al (2014) Inhibition of microRNA-24 expression in liver prevents hepatic lipid accumulation and hyperlipidemia. Hepatology 60:554–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fernández-Hernando C, Moore KJ (2011) miRNA modulation of cholesterol homeostasis. Arterioscler Thromb Vasc Biol 31(11):2378–2382

    Article  PubMed  PubMed Central  Google Scholar 

  74. Brannan CI, Dees EC, Ingram RS et al (1990) The product of the H19 gene may function as an RNA. Mol Cell Biol 20:28–36

    Article  Google Scholar 

  75. Kung JTY, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193(3):651–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang Y, Liu N, Wang JP et al (2012) Regulatory long non-coding RNA and its functions. J Physiol Biochem 68(4):611–618

    Article  CAS  PubMed  Google Scholar 

  77. Cao J (2014) The functional role of long non-coding RNAs and epigenetics. Biol Proced Online 16:11

    Article  PubMed  PubMed Central  Google Scholar 

  78. Palazzo AF, Lee ES (2015) Non-coding RNA: what is functional and what is junk? Front Genet 6:2

    Article  PubMed  PubMed Central  Google Scholar 

  79. Fenoglio C, Ridolfi E, Galimberti D et al (2013) An emerging role for long non-coding RNA dysregulation in neurological disorders. Int J Mol Sci 14(10):20427–20442

    Article  PubMed  PubMed Central  Google Scholar 

  80. Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. van Heesch S, Van Iterson M, Jacobi J et al (2014) Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes. Genome Biol 15:R6. doi:10.1186/gb-2014-15-1-r6

    Article  PubMed  PubMed Central  Google Scholar 

  82. Cabili MN, Dunagin MC, McClanahan PD et al (2015) Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol 16(1):20

    Article  PubMed  PubMed Central  Google Scholar 

  83. Rayner KJ, Liu PP (2016) Long noncoding rnas in the heart: the regulatory roadmap of cardiovascular development and disease. Circ Cardiovasc Genet 9(2):101–103

    Article  PubMed  Google Scholar 

  84. Alvarez ML, Khosroheidari M, Eddy E et al (2016) Role of MicroRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: implications for diabetic nephropathy. PLoS One 11(12):e0168353

    Article  PubMed  PubMed Central  Google Scholar 

  85. Michalik KM, You X, Manavski Y et al (2014) Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 114(9):1389–1397

    Article  CAS  PubMed  Google Scholar 

  86. Liu JY, Yao J, Li XM et al (2014) Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis 5(10):e1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yan B, Yao J, Liu JY et al (2015) lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res 116(7):1143–1156

    Article  CAS  PubMed  Google Scholar 

  88. Li H, Zhu H, Ge J (2016) Long noncoding RNA: recent updates in atherosclerosis. Int J Biol Sci 12(7):898–910

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ling H, Fabbri M, Calin GA (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12(11):847–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Michel CI, Holley CL, Scruggs BS et al (2011) Small nucleolar RNAs U32a, U33 and U35a are critical mediators of metabolic stress. Cell Metab 14(1):33–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumi Surendran Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Surendran, S., Kartha, C.C. (2017). Role of Non-coding RNAs in Vascular Complications of Diabetes Mellitus. In: Kartha, C., Ramachandran, S., Pillai, R. (eds) Mechanisms of Vascular Defects in Diabetes Mellitus. Advances in Biochemistry in Health and Disease, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-60324-7_15

Download citation

Publish with us

Policies and ethics