Skip to main content

Coordination of Mobile Mules via Facility Location Strategies

  • Conference paper
  • First Online:
Advances in Practical Applications of Cyber-Physical Multi-Agent Systems: The PAAMS Collection (PAAMS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10349))

Abstract

In this paper, we study the problem of wireless sensor network (WSN) maintenance using mobile entities called mules. The mules are deployed in the area of the WSN in such a way that would minimize the time it takes them to reach a failed sensor and fix it. The mules must constantly optimize their collective deployment to account for occupied mules. The objective is to define the optimal deployment and task allocation strategy for the mules, so that the sensors’ downtime and the mules’ traveling distance are minimized. Our solutions are inspired by research in the field of computational geometry and the design of our algorithms is based on state of the art approximation algorithms for the classical problem of facility location. Our empirical results demonstrate how cooperation enhances the team’s performance, and indicate that a combination of k-Median based deployment with closest-available task allocation provides the best results in terms of minimizing the sensors’ downtime but is inefficient in terms of the mules’ travel distance. A k-Centroid based deployment produces good results in both criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the term mules and agents interchangeably.

References

  1. Anand, S., Zusseman, G., Modiano, E.: Construction and maintenance of wireless mobile backbone networks. IEEE/ACM Trans. Netw. 17(1), 239–252 (2009)

    Article  Google Scholar 

  2. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k-median and facility location problems. SIAM J. Comput. 33(3), 544–562 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor approximation algorithm for the k-median problem. J. Comput. Syst. Sci. 65(1), 129–149 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chrobak, M., Kenyon, C., Young, N.E.: The reverse greedy algorithm for the metric k-median problem. In: Computing and Combinatorics Conference, pp. 654–660 (2005)

    Google Scholar 

  5. Crowcroft, J., Levin, L., Segal, M.: Using data mules for sensor network data recovery. Ad Hoc Netw. 40, 26–36 (2016)

    Article  Google Scholar 

  6. Farinelli, A., Rogers, A., Jennings, N.: Agent-based decentralised coordination for sensor networks using the max-sum algorithm. J. Auton. Agents Multi-Agent Syst. 28(3), 337–380 (2013)

    Article  Google Scholar 

  7. Francesco, M.D., Das, S.K., Giuseppe, A.: Data collection in wireless sensor networks with mobile elements: A survey. ACM Trans. Sens. Netw. (TOSN) 8(1), 7–38 (2011)

    Google Scholar 

  8. Genter, K., Stone, P.: Placing influencing agents in a flock. In: AAAI (2015)

    Google Scholar 

  9. Gerkey, B., Matari, M.J.: A formal analysis, taxonomy of task allocation in multi-robot systems. Int. J. Robot. Res. 23(9), 939–954 (2004)

    Article  Google Scholar 

  10. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38, 293–306 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang, A., Procaccia, A., Qian, Y., Shah, N., Tambe, M.: Defender (mis) coordination in security games. In: AAAI (2013)

    Google Scholar 

  12. Kariv, O., Hakimi, S.: An algorithmic approach to network location problems. I: The p-centers. SIAM J. Appl. Math. 37(3), 513–538 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kariv, O., Hakimi, S.: An algorithmic approach to network location problems. II: The p-medians. SIAM J. Appl. Math. 37(3), 539–560 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim, D., Abay, B., Uma, R., Wu, W., Wang, W., Tokuta, A.: Minimizing data collection latency in wireless sensor network with multiple mobile elements. In: INFOCOM (2012)

    Google Scholar 

  15. Koenig, S., Keskinocak, P., Tovey, C.A.: Progress on agent coordination with cooperative auctions. In: AAAI 2010, pp. 1713–1717 (2010)

    Google Scholar 

  16. Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour via probabilistic model checking. Robot. Auton. Syst. 60(2), 199–213 (2012)

    Article  Google Scholar 

  17. Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in gaussian processes: Theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9, 235–284 (2008)

    MATH  Google Scholar 

  18. Levin, L., Efrat, A., Segal, M.: Collecting data in ad-hoc networks with reduced uncertainty. Ad Hoc Netw. 17, 71–81 (2014)

    Article  Google Scholar 

  19. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for server problems. J. Algorithms 11(2), 208–230 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Maxwell, M.S., Restrepo, M., Henderson, S.G., Topaloglu, H.: Approximate dynamic programming for ambulance redeployment. INFORMS J. Comput. 22(2), 266–281 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. McIntire, M., Nunes, E., Gini, M.: Iterated multi-robot auctions for precedence-constrained task scheduling. In: AAMAS (2016)

    Google Scholar 

  22. Milyeykovski, V., Segal, M., Katz, V.: central nodes for efficient data collection in wireless sensor networks. Comput. Netw. 91, 425–437 (2015)

    Article  Google Scholar 

  23. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5(1), 32–38 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discrete Comput. Geom. 44(4), 883–895 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Poduri, S., Sukhatme, G.S.: Constrained coverage for mobile sensor networks. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 165–171 (2004)

    Google Scholar 

  26. ReVelle, C., Eiselt, H.: Location analysis: A synthesis and survey. Eur. J. Oper. Res. 165(1), 1–19 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rui, T., Li, H., Miura, R.: Dynamic recovery of wireless multi-hop infrastructure with the autonomous mobile base station. IEEE Access 4, 627–638 (2016)

    Article  Google Scholar 

  28. Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data mules: Modeling and analysis of a three-tier architecture for sparse sensor networks. Ad Hoc Netw. 1(2), 215–233 (2003)

    Article  Google Scholar 

  29. Stone, P., Kaminka, G.A., Kraus, S., Rosenschein, J.S., et al.: Ad Hoc autonomous agent teams: Collaboration without pre-coordination. In: AAAI (2010)

    Google Scholar 

  30. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned. Cambridge University Press, New York (2011)

    Book  MATH  Google Scholar 

  31. Tedas, O., Isler, V., Lim, J.H., Terzis, A.: Using mobile robots to harvest data from sensor fields. IEEE Wirel. Commun. 16(1), 22 (2009)

    Article  Google Scholar 

  32. Urra, O., Ilarri, S., Mena, E., Delot, T.: Using hitchhiker mobile agents for environment monitoring. In: Demazeau, Y., Pavón, J., Corchado, J.M., Bajo, J. (eds.) 7th International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS 2009). AISC, vol. 55, pp. 557–566. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  33. Wang, Y., de Silva, C.: A machine-learning approach to multi-robot coordination. Eng. Appl. Artif. Intell. 21(3), 470–484 (2008)

    Article  Google Scholar 

  34. Yue, Y., Marla, L., Krishnan, R.: An efficient simulation-based approach to ambulance fleet allocation and dynamic redeployment. In: AAAI (2012)

    Google Scholar 

  35. Zivan, R., Yedidsion, H., Okamoto, S., Glinton, R., Sycara, K.P.: Distributed constraint optimization for teams of mobile sensing agents. J. Auton. Agents Multi-Agent Syst. 29, 495–536 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The research was been supported by the following sources: Israel Science Foundation grant No. 1055/14 and grant No. 317/15, IBM Corporation, the Israeli Ministry of Economy and Industry, and the Helmsley Charitable Trust through the Agricultural, Biological and Cognitive Robotics Initiative of Ben-Gurion University of the Negev.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harel Yedidsion .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hermelin, D., Segal, M., Yedidsion, H. (2017). Coordination of Mobile Mules via Facility Location Strategies. In: Demazeau, Y., Davidsson, P., Bajo, J., Vale, Z. (eds) Advances in Practical Applications of Cyber-Physical Multi-Agent Systems: The PAAMS Collection. PAAMS 2017. Lecture Notes in Computer Science(), vol 10349. Springer, Cham. https://doi.org/10.1007/978-3-319-59930-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59930-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59929-8

  • Online ISBN: 978-3-319-59930-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics