Skip to main content

On the Approximation of the Kolmogorov Complexity for DNA Sequences

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10255))

Included in the following conference series:

Abstract

The Kolmogorov complexity furnishes several ways for studying different natural processes that can be expressed using sequences of symbols from a finite alphabet, such as the case of DNA sequences. Although the Kolmogorov complexity is not algorithmically computable, it can be approximated by lossless normal compressors. In this paper, we use a specific DNA compressor to approximate the Kolmogorov complexity and we assess it regarding its normality. Then, we use it on several datasets, that are constituted by different DNA sequences, representing complete genomes of different species and domains. We show several evolution-related insights associated with the complexity, namely that, globally, archaea have higher relative complexity than bacteria and eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolmogorov, A.N.: Three approaches to the quantittative definition of information. Probl. Inf. Transm. 1(1), 1–7 (1965)

    MathSciNet  Google Scholar 

  2. Solomonoff, R.J.: A formal theory of inductive inference: Part I. Inf. Control 7(1), 1–22 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Solomonoff, R.J.: A formal theory of inductive inference: Part II. Inf. Control 7(2), 224–254 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chaitin, G.J.: On the length of programs for computing finite binary sequences. J. ACM 13, 547–569 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wallace, C.S., Boulton, D.M.: An information measure for classification. Comput. J. 11(2), 185–194 (1968)

    Article  MATH  Google Scholar 

  6. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)

    Article  MATH  Google Scholar 

  7. Hutter, M.: Algorithmic information theory: a brief non-technical guide to the field. Scholarpedia 9620, March 2007

    Google Scholar 

  8. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 3rd edn. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  9. Turing, A.: On computable numbers, with an application to the Entscheidungs problem. Proc. Lond. Math. Soc. 42(2), 230–265 (1936)

    MATH  Google Scholar 

  10. Cilibrasi, R., Vitányi, P.M.B.: Clustering by compression. IEEE Trans. Inf. Theor. 51(4), 1523–1545 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hammer, D., Romashchenko, A., Shen, A., Vereshchagin, N.: Inequalities for Shannon entropy and Kolmogorov complexity. J. Comput. Syst. Sci. 60(2), 442–464 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cebrián, M., Alfonseca, M., Ortega, A.: Common pitfalls using the normalized compression distance: what to watch out for in a compressor. Commun. Inf. Syst. 5(4), 367–384 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Pratas, D., Pinho, A.J., Ferreira, P.: Efficient compression of genomic sequences. In: Proceedings of the Data Compression Conference, DCC-2016, Snowbird, UT, pp. 231–240, March 2016

    Google Scholar 

  14. Pratas, D.: Compression and analysis of genomic data. Ph.D. thesis, University of Aveiro (2016)

    Google Scholar 

  15. Hosseini, M., Pratas, D., Pinho, A.J.: A survey on data compression methods for biological sequences. Information 7(4), 56 (2016)

    Article  Google Scholar 

  16. Bywater, R.P.: Prediction of protein structural features from sequence data based on Shannon entropy and Kolmogorov complexity. PLoS ONE 10(4), e0119306 (2015)

    Article  Google Scholar 

  17. Ferreira, P.J.S.G., Pinho, A.J.: Compression-based normal similarity measures for DNA sequences. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-2014, Florence, Italy, pp. 419–423, May 2014

    Google Scholar 

  18. Pratas, D., Pinho, A.J., Rodrigues, J.M.O.S.: XS: a FASTQ read simulator. BMC Res. Notes 7(1), 40 (2014)

    Article  Google Scholar 

  19. Hedges, S.B.: The origin and evolution of model organisms. Nat. Rev. Genet. 3(11), 838–849 (2002)

    Article  Google Scholar 

  20. Parfrey, L.W., Grant, J., Tekle, Y.I., Lasek-Nesselquist, E., Morrison, H.G., Sogin, M.L., Patterson, D.J., Katz, L.A.: Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst. Biol. 59(5), 518–533 (2010)

    Article  Google Scholar 

  21. Podani, J., Oltvai, Z.N., Jeong, H., Tombor, B., Barabási, A.L., Szathmary, E.: Comparable system-level organization of archaea and eukaryotes. Nat. Genet. 29(1), 54–56 (2001)

    Article  Google Scholar 

  22. Wu, D., Hugenholtz, P., Mavromatis, K., Pukall, R., Dalin, E., Ivanova, N.N., Kunin, V., Goodwin, L., Wu, M., Tindall, B.J., et al.: A phylogeny-driven genomic encyclopaedia of bacteria and archaea. Nature 462(7276), 1056–1060 (2009)

    Article  Google Scholar 

  23. Koonin, E.V., Senkevich, T.G., Dolja, V.V.: The ancient virus world and evolution of cells. Biol. Direct 1(1), 29 (2006)

    Article  Google Scholar 

  24. Maumus, F., Epert, A., Nogué, F., Blanc, G.: Plant genomes enclose footprints of past infections by giant virus relatives. Nat. Commun. 5, 4268 (2014)

    Google Scholar 

  25. Filée, J.: Multiple occurrences of giant virus core genes acquired by eukaryotic genomes: the visible part of the iceberg? Virology 466, 53–59 (2014)

    Article  Google Scholar 

  26. Colson, P., De Lamballerie, X., Yutin, N., Asgari, S., Bigot, Y., Bideshi, D.K., Cheng, X.W., Federici, B.A., Van Etten, J.L., Koonin, E.V., et al.: “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch. Virol. 158(12), 2517–2521 (2013)

    Article  Google Scholar 

  27. Forterre, P., Krupovic, M., Prangishvili, D.: Cellular domains and viral lineages. Trends Microbiol. 22(10), 554–558 (2014)

    Article  Google Scholar 

  28. Pennisi, E.: Ever-bigger viruses shake tree of life. Science 341(6143), 226–227 (2013)

    Article  Google Scholar 

  29. Canchaya, C., Fournous, G., Chibani-Chennoufi, S., Dillmann, M.L., Brüssow, H.: Phage as agents of lateral gene transfer. Curr. Opin. Microbiol. 6(4), 417–424 (2003)

    Article  Google Scholar 

  30. Bitra, K., Burke, G.R., Strand, M.R.: Permissiveness of lepidopteran hosts is linked to differential expression of bracovirus genes. Virology 492, 259–272 (2016)

    Article  Google Scholar 

  31. Pratas, D., Pinho, A.J.: Compressing the human genome using exclusively Markov models. In: Rocha, M.P., Rodríguez, J.M.C., Fdez-Riverola, F., Valencia, A. (eds.) PACBB 2011. AISC, vol. 93, pp. 213–220. Springer, Heidelberg (2011)

    Google Scholar 

Download references

Acknowledgments

This work was partially funded by FEDER (Programa Operacional Factores de Competitividade - COMPETE) and by National Funds through the FCT - Foundation for Science and Technology, in the context of the projects UID/CEC/00127/2013, PTCD/EEI-SII/6608/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Pratas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pratas, D., Pinho, A.J. (2017). On the Approximation of the Kolmogorov Complexity for DNA Sequences. In: Alexandre, L., Salvador Sánchez, J., Rodrigues, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2017. Lecture Notes in Computer Science(), vol 10255. Springer, Cham. https://doi.org/10.1007/978-3-319-58838-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58838-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58837-7

  • Online ISBN: 978-3-319-58838-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics