Advertisement

Metal Allergy and Tolerance Development

  • Angela Rizzi
  • Eleonora Nucera
  • Domenico Schiavino
Chapter

Abstract

Metals are ubiquitous in our environment and often cause allergic contact dermatitis (ACD), an inflammatory disease categorized as a delayed-type hypersensitivity (DTH) reaction. In epidemiological studies, nickel (Ni) represents the hapten with the highest prevalence in the pathogenesis of ACD.

Nickel hypersensitivity can induce not only ACD but also a more complex disease known as systemic nickel allergy syndrome (SNAS), characterized by a combination of manifestations caused by the intake of Ni with the diet.

Despite similar exposure patterns, only a minority of exposed individuals develop ACD suggesting an active role of immunological tolerance, orchestrated by CD4+CD25+ T regulatory cells (Tregs). Animal model studies, conducted both in vivo and in vitro, have demonstrated that the development of contact hypersensitivity (CHS) can be prevented by preceding repeated oral doses of metal salts. Oral tolerance is a long-lasting and hapten-specific process. This prophylactic effect of oral Ni exposure was confirmed in humans by epidemiological observations that reported lower prevalence rates of contact allergy to nickel in individuals wearing orthodontic braces (oral nickel exposure) prior to ear piercing (cutaneous nickel exposure), as compared to those who underwent piercing first. Recent evidence that nickel allergy is a highly regulated process has been provided by trials of Ni oral hyposensitizing treatment (NiOHT) in patients suffering from ACD and SNAS.

Keywords

Allergic contact dermatitis (ACD) Immunological tolerance Hyposensitization Tregs Systemic nickel allergy syndrome (SNAS) 

References

  1. 1.
    Thyssen JP, Linneberg A, Menn’e T, et al. The epidemiology of contact allergy in the general population—prevalence and main findings. Contact Dermatitis. 2007;57(5):287–99. doi: 10.1111/j.1600-0536.2007.01220.x.CrossRefGoogle Scholar
  2. 2.
    Loh J, Fraser J. Metal-derivatized major histocompatibility complex: zeroing in on contact hypersensitivity. J Exp Med. 2003;197(5):549–52. doi: 10.1084/jem.20022180.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bϋdinger L, Hertl M. Immunologic mechanisms in hypersensitivity reactions to metal ions: an overview. Allergy. 2000;55(2):108–15. doi: 10.1034/j.1398-9995.2000.00107.x.CrossRefGoogle Scholar
  4. 4.
    Pesonen M, Jolanki R, Larese Filon F, et al. Patch test results of the European baseline series among patients with occupational contact dermatitis across Europe – analyses of the European Surveillance System on Contact Allergy network, 2002–2010. Contact Dermatitis. 2015;72:154–63. doi: 10.1111/cod.12333.CrossRefPubMedGoogle Scholar
  5. 5.
    Fransway AF, Zug KA, Belsito DV, et al. North American Contact Dermatitis Group patch test results for 2007-2008. Dermatitis. 2013;24(1):10–21. doi: 10.1097/DER.0b013e318277ca50.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lidèn C, Bruze M, Menné T. Metals. In: Frosch PJ, Menné T, Lepoittevin JP, editors. Contact dermatitis. 4th ed. Heidelberg: Springer; 2006. p. 537–68.CrossRefGoogle Scholar
  7. 7.
    Rodrigues DF, Goulart EM. Patch-test results in children and adolescents: systematic review of a 15-year period. An Bras Dermatol. 2016;91(1):64–72. doi: 10.1590/abd1806-4841.20163927.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Onder M, Adisen E. Patch test results in a Turkish paediatric population. Contact Dermatitis. 2008;58:63–5. doi: 10.1111/j.1600-0536.2007.01171.x.CrossRefPubMedGoogle Scholar
  9. 9.
    Jacob SE, Brod B, Crawford GH. Clinically relevant patch test reactions in children –a United States based study. Pediatr Dermatol. 2008;25:520–7. doi: 10.1111/j.1525-1470.2008.00769.x.CrossRefPubMedGoogle Scholar
  10. 10.
    Bocca B, Forte G. The epidemiology of contact allergy to metals in the general population: prevalence and new evidences. Open Chem Biomed Methods J. 2009;2:26–34.CrossRefGoogle Scholar
  11. 11.
    Rui F, Bovenzi M, Prodi A, et al. Nickel, chromium and cobalt sensitization in a patch test population in north-eastern Italy (1996-2010). Contact Dermatitis. 2013;68:23–31. doi: 10.1111/j.1600-0536.2012.02133.x.CrossRefPubMedGoogle Scholar
  12. 12.
    Van der Walle HB, Brunsveld VM. Dermatitis in hairdressers. (I). The experience of the past 4 years. Contact Dermatitis. 1994;30(4):217–21.CrossRefGoogle Scholar
  13. 13.
    Falagiani P, Di Gioacchino M, Ricciardi L, et al. Systemic nickel allergy syndrome (SNAS): a review. Rev Port Imunoalergologia. 2008;16(2):135–47.Google Scholar
  14. 14.
    Rothman S. Überempfindlichkeit gegen Hartgeld. Dermatol Wochenschr. 1930;2:98–9.Google Scholar
  15. 15.
    Shimizuhira C, Otsuka A, Honda T. Natural killer T cells are essential for the development of contact hypersensitivity in BALB/c mice. J Investig Dermatol. 2014;134:2709–18.CrossRefGoogle Scholar
  16. 16.
    Fausto da Silva JJR, Williams RJP. The biological chemistry of the elements. The inorganic chemistry of life. 2nd ed. Oxford: Oxford University Press; 2001. p. 1–557.Google Scholar
  17. 17.
    Zhang Y, Wilcox DE. Thermodynamic and spectroscopic study of Cu(II) and Ni(II) binding to bovine serum albumin. J Biol Inorg Chem. 2002;7:327–37.CrossRefGoogle Scholar
  18. 18.
    Rachmawati D, Bontkes HJ, Verstege MI, et al. Transition metal sensing by Toll-like receptor-4: next to nickel, cobalt and palladium are potent human dendritic cell stimulators. Contact Dermatitis. 2013;68(6):331–8. doi: 10.1111/cod.12042.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Schmidt M, Goebeler M. Immunology of metal allergies. J Dtsch Dermatol Ges. 2015;13(7):653–60. doi: 10.1111/ddg.12673.CrossRefGoogle Scholar
  20. 20.
    McKee AS, Fontenot AP. Interplay of innate and adaptive immunity in metal-induced hypersensitivity. Curr Opin Immunol. 2016;42:25–30. doi: 10.1016/j.coi.2016.05.001.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kumagai K, Horikawa T, Shigematsu H et al. Possible immune regulation of natural killer T cells in a murine model of metal ion-induced allergic contact dermatitis. Int J Mol Sci. 2016;17(1). pii: E87. doi: 10.3390/ijms17010087.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Novak N, Bieber T. The skin as a target for allergic diseases. Allergy. 2000;55:103–7. doi: 10.1034/j.1398-9995.2000.00552.x.CrossRefPubMedGoogle Scholar
  23. 23.
    Jensen CS, Lisby S, Larsen JK, et al. Characterization of lymphocyte subpopulations and cytokine profiles in peripheral blood of nickel-sensitive individuals with systemic contact dermatitis after oral nickel exposure. Contact Dermatitis. 2004;50:31–8. doi: 10.1111/j.0105-1873.2004.00294.x.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Calnan CD. Nickel dermatitis. Br J Dermatol. 1956;68(7):229–36.CrossRefGoogle Scholar
  25. 25.
    Brent L. The discovery of immunologic tolerance. Hum Immunol. 1997;52(2):75–81.CrossRefGoogle Scholar
  26. 26.
    Artik S, Gleichmann E, Ruzicka T. Tolerance induction towards nickel. From animal model to humans. Hautarzt. 2004;55(11):1052–9. doi: 10.1007/s00105-004-0815-3.CrossRefPubMedGoogle Scholar
  27. 27.
    Strobel S, Mowat AM. Immune responses to dietary antigens: oral tolerance. Immunol Today. 1998;4:173–81.CrossRefGoogle Scholar
  28. 28.
    Swartz RP. Role of UVB-induced serum factor(s) in suppression of contact hypersensitivity in mice. J Invest Dermatol. 1984;83(4):305–7.CrossRefGoogle Scholar
  29. 29.
    Battisto JR, Miller J. Immunological unresponsiveness produced in adult guinea pigs by parenteral introduction of minute quantities of hapten or protein antigen. Proc Soc Exp Biol Med. 1962;11:111–5.CrossRefGoogle Scholar
  30. 30.
    Mowat AM. Basic mechanisms and clinical implications of oral tolerance. Curr Opin Gastroenterol. 1999;15(6):546–56.CrossRefGoogle Scholar
  31. 31.
    van Hoogstraten IM, Boden D, Von Blomberg ME, et al. Persistent immune tolerance to nickel and chromium by oral administration prior to cutaneous sensitization. J Invest Dermatol. 1992;99(5):608–16.CrossRefGoogle Scholar
  32. 32.
    Wu X, Roelofs-Haarhuis K, Zhang J, et al. Dose dependence of oral tolerance to nickel. Int Immunol. 2007;19(8):965–75. doi: 10.1093/intimm/dxm066.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Claessen AM, von Blomberg BM, de Groot J, et al. Reversal of mucosal tolerance by subcutaneous administration of interleukin-12 at the site of attempted sensitization. Immunology. 1996;88(3):363–7.CrossRefGoogle Scholar
  34. 34.
    Honda T, Miyachi Y, Kabashima K. Regulatory T cells in cutaneous immune responses. J Dermatol Sci. 2011;63(2):75–82. doi: 10.1016/j.jdermsci.2011.06.004.CrossRefPubMedGoogle Scholar
  35. 35.
    Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol. 2005;23:515–48. doi: 10.1146/annurev.immunol.23.021704.115611.CrossRefPubMedGoogle Scholar
  36. 36.
    Lee KM, Chuang E, Griffin M, et al. Molecular basis of T cell inactivation by CTLA-4. Science. 1998;282(5397):2263–6.CrossRefGoogle Scholar
  37. 37.
    Sakaguchi S, Yamaguchi T, Nomura T, et al. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–87. doi: 10.1016/j.cell.2008.05.009.CrossRefPubMedGoogle Scholar
  38. 38.
    Germain RN. Arose by any other name: from suppressor Tcells to Tregs, approbation to unbridled enthusiasm. Immunology. 2008;123:20–7. doi: 10.1111/j.1365-2567.2007.02779.x.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Dubois B, Chapat L, Goubier A, et al. CD4+CD25+ T cells as key regulators of immune responses. Eur J Dermatol. 2003;13(2):111–6.PubMedGoogle Scholar
  40. 40.
    Kish DD, Gorbachev AV, Fairchild RL. CD8+ T cells produce IL-2, which is required for CD(4+)CD25+ T cell regulation of effector CD8+ T cell development for contact hypersensitivity responses. J Leukoc Biol. 2005;78(3):725–35. doi: 10.1189/jlb.0205069.CrossRefPubMedGoogle Scholar
  41. 41.
    Rückert R, Brandt K, Hofmann U, et al. IL-2-IgG2b fusion protein suppresses murine contact hypersensitivity in vivo. J Invest Dermatol. 2002;119(2):370–6. doi: 10.1046/j.1523–1747.2002.01849.x.CrossRefPubMedGoogle Scholar
  42. 42.
    Cavani A, Nasorri F, Ottaviani C, et al. Human CD25+ regulatory T cells maintain immune tolerance to nickel in healthy, nonallergic individuals. J Immunol. 2003;171(11):5760–8.CrossRefGoogle Scholar
  43. 43.
    Gorbachev AV, Fairchild RL. Induction and regulation of T-cell priming for contact hypersensitivity. Crit Rev Immunol. 2001;21:451–72.CrossRefGoogle Scholar
  44. 44.
    Roelofs-Haarhuis K, Wu X, Gleichmann E. Oral tolerance to nickel requires CD4(+) invariant NKT cells for the infectious spread of tolerance and the induction of specific regulatory T cells. J Immunol. 2004;173(2):1043–50.CrossRefGoogle Scholar
  45. 45.
    Kerosuo H, Kullaa A, Kerosuo E, et al. Nickel allergy in adolescents in relation to orthodontic treatment and piercing of ears. Am J Orthod Dentofac Orthop. 1996;109(2):148–54.CrossRefGoogle Scholar
  46. 46.
    Mortz CG, Lauritsen JM, Bindslev-Jensen C, et al. Nickel sensitization in adolescents and association with ear piercing, use of dental braces and hand eczema. The Odense Adolescence Cohort Study on Atopic Diseases and Dermatitis (TOACS). Derm Venereol. 2002;82(5):359–64.CrossRefGoogle Scholar
  47. 47.
    Smith-Sivertsen T, Dotterud LK, Lund E. Nickel allergy and its relationship with local nickel pollution, ear piercing, and atopic dermatitis: a population-based study from Norway. J Am Acad Dermatol. 1999;40(5 Pt 1):726–35.CrossRefGoogle Scholar
  48. 48.
    Sjovall P, Christensen OB, Moller H. Oral hyposensitization in nickel allergy. J Am Acad Dermatol. 1987;17(5 pt 1):774–8.CrossRefGoogle Scholar
  49. 49.
    Morris DL. Intradermal testing and sublingual desensitization for nickel. Cutis. 1998;61(3):129–32.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Bagot M, Terki N, Bacha S, et al. Per os desensitization in nickel contact eczema: a double-blind placebo-controlled clinico-biological study. Ann Dermatol Venereol. 1999;126(6–7):502–4.PubMedGoogle Scholar
  51. 51.
    Schiavino D, Nucera E, Alonzi C, et al. A clinical trial of oral hyposensitization in systemic allergy to nickel. Int J Immunopathol Pharmacol. 2006;19(3):593–600.CrossRefGoogle Scholar
  52. 52.
    Tammaro A, De Marco G, Persechino S, et al. Allergy to nickel: first results on patients administered with an oral hyposensitization therapy. Int J Immunopathol Pharmacol. 2009;22(3):837–40.CrossRefGoogle Scholar
  53. 53.
    Minelli M, Schiavino D, Musca F, et al. Oral hyposensitization to nickel induces clinical improvement and a decrease in Th1 and Th2 cytokines in patients with systemic nickel allergy syndrome. Int J Immunopathol Pharmacol. 2010;23(1):193–201.CrossRefGoogle Scholar
  54. 54.
    Di Gioacchino M, Ricciardi L, De Pita O, et al. Nickel oral hyposensitization in patients with systemic nickel allergy syndrome. Ann Med. 2014;46(1):31–7. doi: 10.3109/07853890.2013.861158.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Angela Rizzi
    • 1
  • Eleonora Nucera
    • 1
  • Domenico Schiavino
    • 1
  1. 1.Department of Rheumatology, Immunology, Dermatology and Uro-Nefrological Sciences, Allergy UnitFondazione Policlinico Universitario A. Gemelli, Università Cattolica del Sacro CuoreRomeItaly

Personalised recommendations