Skip to main content

A Multi-Objective Optimization via Simulation Framework for Restructuring Traffic Networks Subject to Increases in Population

  • Chapter
  • First Online:
Recent Developments in Metaheuristics

Abstract

Traffic network design is a complex problem due to its nonlinear and stochastic nature. The Origin-Destiny Traffic Assignment Problem is particular case of this problem. In it, we are faced with an increase in the system vehicle population; and, we want to determine where to set the generating nodes and the traffic consumers, minimizing the current system and trying to reduce necessary investment. Performing optimizations in an analytical way in this kind of problems tends to be really complicated and a bit impractical, since it is difficult to estimate vehicle flows. In this chapter, we propose the use of a Multi-Objective Particle Swamp Optimization together with Traffic Simulations in order to generate restructuring alternatives that optimize both, traffic flow and cost associated to this restructure. This approach allows to obtain a very good approximation of the Pareto Frontier of the problem, with a fast convergence to the low infrastructure cost solutions and a total coverage of the frontier when the number of iterations is high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.K. Azad, O. Hasancebi, S.K. Azad, Upper bound strategy for metaheuristic based design optimization of steel frames. Adv. Eng. Soft. 57, 19–32 (2013)

    Article  Google Scholar 

  2. A. Banks, J. Vincent, C. Anyakoha, A review of particle swarm optimization. Part I: background and development. Nat. Comput. 6(4), 467–484 (2007)

    Google Scholar 

  3. A. Banks, J. Vincent, C. Anyakoha, A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat. Comput. 7(1), 109–124 (2008)

    Google Scholar 

  4. E.G. Baquela, A.C. Olivera, Combining genetic algorithms with traffic simulations for restructuring traffic networks subject to increases in population, in International Conference on Metaheuristics and Nature Inspired Computing 2014 (2014)

    Google Scholar 

  5. M. Behrisch, L. Bieker, J. Erdmann, D. Krajzewicz, Sumo – simulation of urban mobility: an overview, in SIMUL 2011, The Third International Conference on Advances in System Simulation, Barcelona, 2011, pp. 63–68

    Google Scholar 

  6. J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes (2011). https://cs.gmu.edu/~sean/book/metaheuristics/

    Google Scholar 

  7. L. Caggiani, M. Ottomanelli, Traffic equilibrium network design problem under uncertain constraints. Procedia Soc. Behav. Sci. 20, 372–380 (2011)

    Article  Google Scholar 

  8. P. Carrasqueira, M.J. Alves, C.H. Antunes, A bi-level multiobjective pso algorithm, in Evolutionary Multi-Criterion Optimization – 8th International Conference, Apr 2015

    Google Scholar 

  9. H.W. Casey, Simulation optimization of traffic light signal timings via perturbation analysis, Ph.D. thesis, Faculty of the Graduate School of the University of Maryland, College Park, 2006

    Google Scholar 

  10. H. Ceylan, M. Bell, Genetic algorithm solution for the stochastic equilibrium transportation networks under congestion. Transp. Res. B 39, 169–185 (2005)

    Article  Google Scholar 

  11. D. Chowdhury, L. Santen, A. Schadschneider, Statistical physics of vehicular traffic and some related systems. Physics Report 329 (2000), pp. 199–329

    Article  Google Scholar 

  12. K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II, in Parallel Problem Solving from Nature PPSN VI. Lecture Notes in Computer Science, vol. 1917 (Springer, Berlin, 2000), pp. 849–858

    Google Scholar 

  13. S. Dinu, G. Bordea, A new genetic approach for transport network design and optimization. Bull. Pol. Acad. Sci. Tech. Sci. 59(3), 263–272 (2011)

    Google Scholar 

  14. J.J. Durillo, J. Garcia-Nieto, A.J. Nebro, C.A.C. Coello, F. Luna, E. Alba, Multi-objective particle swarm optimizers: an experimental comparison, in Evolutionary Multi-Criterion Optimization 2009 (2009)

    Google Scholar 

  15. R.C. Eberhart, Y. Shi, Particle swarm optimization: developments, applications and resources, in Proceedings of the 2001 Congress on Evolutionary Computation, 2001, vol. 1 (2001), pp. 81–86

    Google Scholar 

  16. R.Z. Farahani, E. Miandoabchi, W. Szeto, H. Rashidi, A review of urban transportation network design problems. Eur. J. Oper. Res. 229, 281–302 (2013)

    Article  Google Scholar 

  17. J.A. Ferreira, B. Condessa, Defining expansion areas in small urban settlements an application to the municipality of Tomar (Portugal). Landsc. Urban Plan. 107, 281–302 (2012)

    Article  Google Scholar 

  18. J.A. Ferreira, B. Condessa, J.C. e Almeida, P. Pinto, Urban settlements delimitation in low-density areas an application to the municipality of Tomar (Portugal). Landsc. Urban Plan. 97(3), 156–167 (2010)

    Google Scholar 

  19. H. Fredik, Towards the solution of large-scale and stochastic traffic network design problems. Master’s thesis, Uppsala Universitet, 2010

    Google Scholar 

  20. T.L. Friesz, H.-J. Cho, N.J. Mehta, R.L. Tobin, G. Anandalingam, A simulated annealing approach to the network design problem with variational inequality constraints. Transp. Sci. 26(1), 18–26 (1992)

    Article  Google Scholar 

  21. M. Frutos, A.C. Olivera, F. Tohmé, A memetic algorithm based on a NSGAII scheme for the flexible job-shop scheduling problem. Ann. Oper. Res. 181, 745–765 (2010)

    Article  Google Scholar 

  22. M.C. Fu, Optimization via simulation: a review. Ann. Oper. Res. 53, 199–247 (1994)

    Article  Google Scholar 

  23. M.C. Fu, Optimization for simulation: theory vs. practice. INFORMS J. Comput. 14(3), 192–215 (2002)

    Google Scholar 

  24. M. Gallo, L. DAcierno, B. Montella, A meta-heuristic algorithm for solving the road network design problem in regional contexts. Procedia Soc. Behav. Sci. 54, 84–95 (2012). Proceedings of EWGT2012 – 15th Meeting of the EURO Working Group on Transportation, September 2012, Paris

    Google Scholar 

  25. A.H. Gandomi, X.-S. Yang, S. Talatahari, A.H. Alavi, 1 – metaheuristic algorithms in modeling and optimization, in Metaheuristic Applications in Structures and Infrastructures, ed. by A.H. Gandomi, X.-S. Yang, S. Talatahari, A.H. Alavi (Elsevier, Oxford, 2013), pp. 1–24

    Google Scholar 

  26. J. Garcia-Nieto, A. Olivera, E. Alba, Optimal cycle program of traffic lights with particle swarm optimization. IEEE Trans. Evol. Comput. 17, 823–839 (2013)

    Article  Google Scholar 

  27. H.C. Gomes, F. de Assis das Neves, M.J.F. Souza, Multi-objective metaheuristic algorithms for the resource-constrained project scheduling problem with precedence relations. Comput. Oper. Res. 44, 92–104 (2014)

    Google Scholar 

  28. N. Haregeweyn, G. Fikadu, A. Tsunekawa, M. Tsubo, D.T. Meshesha, The dynamics of urban expansion and its impacts on land use land cover change and small-scale farmers living near the urban fringe: a case study of Bahir Dar, Ethiopia. Landsc. Urban Plan. 106(2), 149–157 (2012)

    Article  Google Scholar 

  29. C. He, N. Okada, Q. Zhang, P. Shi, J. Li, Modelling dynamic urban expansion processes incorporating a potential model with cellular automata. Landsc. Urban Plan. 86(1), 79–91 (2008)

    Article  Google Scholar 

  30. C. He, J. Tian, P. Shi, D. Hu, Simulation of the spatial stress due to urban expansion on the wetlands in Beijing, China using a GIS-based assessment model. Landsc. Urban Plan. 101(3), 269–277 (2011)

    Google Scholar 

  31. A. Horvat, A. Tosic, Optimization of traffic networks by using genetic algorithms. Elektrotehniski Vestnik 79, 197–200 (2012)

    Google Scholar 

  32. M.K. Jha, M. Head, S.P. Gar, 23 – metaheuristic applications in bridge infrastructure maintenance scheduling considering stochastic aspects of deterioration, in Metaheuristic Applications in Structures and Infrastructures, ed. by A.H. Gandomi, X.-S. Yang, S. Talatahari, A.H. Alavi (Elsevier, Oxford, 2013), pp. 539–556

    Chapter  Google Scholar 

  33. J. Jin, T.G. Crainic, A. Lokketangen, A cooperative parallel metaheuristic for the capacitated vehicle routing problem. Comput. Oper. Res. 44, 33–41 (2014)

    Article  Google Scholar 

  34. T. Kalganova, G. Russell, A. Cumming, Multiple traffic signal control using a genetic algorithm, in Artificial Neural Nets and Genetic Algorithms (Springer, Vienna, 1999), pp. 220–228

    Google Scholar 

  35. J. Kennedy, R. Eberhart, Particle swarm optimization, in International Conference on Neural Networks (IEEE Service Center, Piscataway, NJ, 1995), pp. 1942–1948

    Google Scholar 

  36. J. Kratica, An electromagnetism-like metaheuristic for the uncapacitated multiple allocation p-hub median problem. Comput. Ind. Eng. 66(4), 1015–1024 (2013)

    Article  Google Scholar 

  37. S. Krauss, Microscopic modeling of traffic flow: investigation of collision free vehicle dynamics. Hauptabteilung Mobilität und Systemtechnik des DLR Köln, 1998

    Google Scholar 

  38. V. Kumar, S. Minz, Multi-objective particle swarm optimization: an introduction. Smart Comput. Rev. 4, 335–353 (2014)

    Google Scholar 

  39. D.T. Lang, XML: Tools for parsing and generating XML within R and S-Plus, R package version 3.95-0.1 (2012)

    Google Scholar 

  40. Y. Li, D. Sun, Microscopic car-following model for the traffic flow: the state of the art. J. Control Theory Appl. 10(2), 133–143 (2012)

    Article  Google Scholar 

  41. Y. Li, X. Zhu, X. Sun, F. Wang, Landscape effects of environmental impact on bay-area wetlands under rapid urban expansion and development policy: a case study of Lianyungang, China. Landsc. Urban Plan. 94(3,4), 218–227 (2010)

    Google Scholar 

  42. A. Liefooghe, S. Verel, J.-K. Hao, A hybrid metaheuristic for multiobjective unconstrained binary quadratic programming. Appl. Soft Comput. 16, 10–19 (2014)

    Article  Google Scholar 

  43. S. Luke, Essentials of Metaheuristics, 2nd edn. (Lulu, 2013). https://cs.gmu.edu/~sean/book/metaheuristics/

  44. E. Miandoabchi, R.Z. Farahani, Optimizing reserve capacity of urban road networks in a discrete network design problem. Adv. Eng. Softw. 42(12), 1041–1050 (2011)

    Article  Google Scholar 

  45. K. Nagel, M. Schreckenberg, A cellular automaton model for freeway traffic. J. Phys. I 2, 2221–2229 (1992)

    Google Scholar 

  46. N. Nedjah, L. de Macedo Mourelle, Evolutionary multi objective optimisation: a survey. Int. J. Bio-Inspired Comput. 7(1), 1–25 (2015)

    Article  Google Scholar 

  47. E. Olivares-Benitez, R.Z. Rios-Mercado, J.L. Gonzalez-Velarde, A metaheuristic algorithm to solve the selection of transportation channels in supply chain design. Int. J. Prod. Econ. 145(1), 161–172 (2013)

    Article  Google Scholar 

  48. M.J. Reddy, D.N. Kumar, Multi-objective particle swarm optimization for generating optimal trade-offs in reservoir operation. Hydrol. Process. 21, 2897–2909 (2007)

    Article  Google Scholar 

  49. M. Reyes-Sierra, C.A.C. Coello, Improving pso-based multi-objective optimization using crowding, mutation and e-dominance, in Evolutionary Multi-Criterion Optimization – Third International Conference (2005)

    Google Scholar 

  50. M. Reyes-Sierra, C.A.C. Coello, Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int. J. Comput. Intell. Res. 2, 287–308 (2006)

    Google Scholar 

  51. T.M. Sands, D. Tayal, M.E. Morris, S.T. Monteiro, Robust stock value prediction using support vector machines with particle swarm optimization, in 2015 IEEE Congress on Evolutionary Computation (CEC), May 2015, pp. 3327–3331

    Google Scholar 

  52. M.-P. Song, G.C. Gu. Research on particle swarm optimization: a review, in Proceedings of 2004 International Conference on Machine Learning and Cybernetics, 2004, vol. 4, Aug 2004, pp. 2236–2241

    Google Scholar 

  53. K. Stanilov, M. Batty, Exploring the historical determinants of urban growth patterns through cellular automata. Trans. GIS 15(3), 253–271 (2011)

    Article  Google Scholar 

  54. S. Talatahari, 17 – optimum performance-based seismic design of frames using metaheuristic optimization algorithms, in Metaheuristic Applications in Structures and Infrastructures, ed. by A.H. Gandomi, X.-S. Yang, S. Talatahari, A.H. Alavi (Elsevier, Oxford, 2013), pp. 419–437

    Chapter  Google Scholar 

  55. R.C. Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2012). ISBN 3-900051-07-0

    Google Scholar 

  56. S.T. Waller, A.K. Ziliaskopoulos, A chance-constrained based stochastic dynamic traffic assignment model: analysis, formulation and solution algorithms. Transp. Res. 14, 418–427 (2006)

    Google Scholar 

  57. S.T. Waller, K.C. Mouskos, D. Kamaryiannis, A.K. Ziliaskopoulos, A linear model for the continuous network design problem. Comput. Aided Civ. Inf. Eng. 21, 334–345 (2006)

    Article  Google Scholar 

  58. J. Xiao, Y. Shen, J. Ge, R. Tateishi, C. Tang, Y. Liang, Z. Huang, Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landsc. Urban Plan. 75(1,2), 69–80 (2006)

    Google Scholar 

  59. X.-S. Yang, 1 – optimization and metaheuristic algorithms in engineering, in Metaheuristics in Water, Geotechnical and Transport Engineering, ed. by X.-S. Yang, A.H. Gandomi, S. Talatahari, A.H. Alavi (Elsevier, Oxford, 2013), pp. 1–23

    Google Scholar 

Download references

Acknowledgements

The work of Baquela E. G. was supported by the Universidad Tecnologica Nacional, under PID TVUTNSN0003605. Olivera A. C. thanks to ANPCyT for grant PICT 2014-0430, CONICET (PCB-I), and Universidad Nacional de la Patagonia Austral for PI 29/B168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Gabriel Baquela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Baquela, E.G., Olivera, A.C. (2018). A Multi-Objective Optimization via Simulation Framework for Restructuring Traffic Networks Subject to Increases in Population. In: Amodeo, L., Talbi, EG., Yalaoui, F. (eds) Recent Developments in Metaheuristics. Operations Research/Computer Science Interfaces Series, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-319-58253-5_13

Download citation

Publish with us

Policies and ethics