Characterization Using Passive or Interactive Techniques



Analytical techniques can be distinguished between passive ones, taking profit of the inherent activity of the sample, and those which are interactive in character.


  1. Abdalla, A. M., Ashraf, O., Rammah, Y. S., Ashry, A. H., Eisa, M., & Tsuruta, T. (2015). Fast neutron detection in CR-39 and DAM–ADC nuclear track detectors. Radiation Physics and Chemistry, 108, 24–28.CrossRefGoogle Scholar
  2. Agarwal, B. K. (1991). X-Ray spectroscopy: An introduction. In Springer series in optical sciences (2nd ed.).Google Scholar
  3. Aggarwal, S. K. (2016a). Alpha-particle spectrometry for the determination of alpha emitting isotopes in nuclear, environmental and biological samples: Past, present and future. Analytical Methods.Google Scholar
  4. Aggarwal, S. K. (2016b). Thermal ionisation mass spectrometry (TIMS) in nuclear science and technology—a review. Analytical Methods, 8, 942–957.CrossRefGoogle Scholar
  5. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., et al. (2003). Geant4 a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506, 250–303.CrossRefGoogle Scholar
  6. Akopov, G. A., Krinitsyn, A. P., & Tikhonova, A. E. (1988). Radiokhim, 30, 578–583.Google Scholar
  7. Alfassi, Z. B. (1990) Activation analysis (Vol. 1, pp. 97–109). Boca Raton, Fl: CRC Press.Google Scholar
  8. Almqvist, N., Rubel, M., Fredriksson, S., Emmoth, B., Wienhold, P., & Ilyinsky, Lev S. (1995). AFM and STM characterization of surfaces exposed to high flux deuterium plasma. Journal Nuclear Materials, 220, 917–921.CrossRefGoogle Scholar
  9. Amemiya, S., Asawa, A., Tanaka, K., Tsurita, Y., Masuda, T., Katoh, T., et al. (1984). Application of PIXE to the study of nuclear fusion materials. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 3, 549–552.Google Scholar
  10. Apostol, A. I., Pantelica, A, Ortega-Feliu, I, Margineau, M., Sima, O., Straticiuc, M., et al. (2016). Ion beam analysis of elemental sugnatures in uranium dioxide samples: importance for nuclear forensics, Journal of Radioanalytical and Nuclear Chemistry, 310, 1–8.Google Scholar
  11. Al Haj, O., Peres, V., Serris, E., Grosjean, F., Kittel, J., Ropital, F., & Cournil, M (2015). In situ high temperature oxidation analysis of Zircaloy-4 using acoustic emission coupled with thermogravimetry; Proc. Conference on Contribution of Materials Investigations and Operating Experience to LWRs’ Safety; Avignon (France) 2014; INIS-FR--15-0411 Vol. 46Google Scholar
  12. Allen, G. C., Butler, I. S., & Tuan, N. A. (1987). Characterisation of uranium oxides by micro-Raman spectroscopy. Journal Nuclear Materials, 144, 17–19.CrossRefGoogle Scholar
  13. Allen, G. C., Tucker, P. M., & Tyler, J. W. (1982). The behaviour of uranium oxides in low partial pressures of O2 studied using X-ray photoelectron spectroscopy. Vacuum, 32, 481–486.CrossRefGoogle Scholar
  14. Ambe, F., & Ambe, S. (1973). Mössbauer spectroscopic verification of two different states of impurity 119Sn atoms in Sb2Te3. Physics Letters A, 43, 399–400.Google Scholar
  15. Ambe, S., & Ambe, F. (1975). Mössbauer emission spectrum of 121Sb after the β decay of 121m Sn in SnS2: Nuclear decay synthesis of antimony (V) sulfide. The Journal of Chemical Physics, 63, 4077–4078.Google Scholar
  16. Ambe, F., Ambe, S., Shoji, H., & Saito, N. (1974) Mössbauer emission spectra of 119Sn after the EC decay of 119Sb in metals, oxides, and chalcogenides of antimony and tellurium. The Journal of Chemical Physics 60, 3773–3778.Google Scholar
  17. Ammar, M. R., Galy, N., Rouzaud, J. N., Toulhoat, N., Vaudey, C. E., Simon, P., et al. (2015). Characterizing various types of defects in nuclear graphite using Raman scattering: Heat treatment, ion irradiation and polishing. Carbon, 95, 364–373.CrossRefGoogle Scholar
  18. Anderson, I. S., Hurd, A. J., & McGreevy, R. (Eds). (2016). Neutron scattering applications and techniques. Springer series.Google Scholar
  19. Anderson, I. S., McGreevy, R., & Bilheux, H. Z. (Eds.). (2009). Neutron imaging and applications: A reference for the imaging community. Berlin: Springer.Google Scholar
  20. Anderson, J. A., Eberhard, C. D., Byrd, M. J., Carroll, J. J., Collins, C. B., Scarbrough, E. C., et al. (1989). Nuclear photoactivation cross sections for short-lived isomeric states excited with a 6 MeV linac. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 40, 452–454.CrossRefGoogle Scholar
  21. Anderson, W., Kozak, D., Coleman, V. A., Jämting, Å. K., & Trau, M. (2013). A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions. Journal of Colloid and Interface Science, 405, 322–330.CrossRefGoogle Scholar
  22. Antonio, M. R., Soderholm, L., Williams, C. W., Blaudeau, J.-Ph., & Bursten, B. E. (2001). Neptunium redox speciation. Radiochimica Acta, 89, 17–25.CrossRefGoogle Scholar
  23. Apperley, D. C., Harris, R. K., & Hodgkinson, P. (2012). Solid state NMR: Basic principles and practice. Momentum: Press LLC.CrossRefGoogle Scholar
  24. Araki, T., Enomoto, S., Furuno, K., Gando, Y., Ichimura, K., Ikeda, H., et al. (2005). Experimental investigation of geologically produced antineutrinos with KamLAND. Nature, 436, 499–503.CrossRefGoogle Scholar
  25. Arinicheva, Y. (2016). Private communication.Google Scholar
  26. Armstrong, D. E. J., Hardie, C. D., Gibson, J. S. K. L., Bushby, A. J., Edmondson, P. D., & Roberts, S. G. (2015). Small-scale characterisation of irradiated nuclear materials: Part II nanoindentation and micro-cantilever testing of ion irradiated nuclear material. Journal of Nuclear Materials, 462, 374–381.CrossRefGoogle Scholar
  27. Asner, D. M., Burns, K., Campbell, L. W., Greenfield, B., Kos, M. S., Orrell, J. L., et al. (2015). Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 776, 75–82.CrossRefGoogle Scholar
  28. Assenheim, H. M. (2014). Introduction to electron spin resonance. Berlin: Springer.Google Scholar
  29. Aston, F. W. (1919). Philosophical Magazine Series 6, 3, 709.Google Scholar
  30. Baechler, S., Materna, Th, Jolie, J., Cauwels, P., Crittin, M., Honkimaki, V., et al. (2001). Non-destructive analysis of a bulky sample from a natural fossil reactor. Journal of Radioanalytical and Nuclear Chemistry, 250, 39–45.Google Scholar
  31. Barker, G. C. (1958). Pulse polarography. Analytica Chimica Acta, 18, 118–131.CrossRefGoogle Scholar
  32. Barker, G. C., & Gardner, A. W. (1958). Pulse polarography (pp. 79–83). Atomic Energy Research Establishment, AERE Harwell 2297.Google Scholar
  33. Barkhausen, H. (1919). Zwei mit Hilfe der neuen Verstärker entdeckte Erscheinungen. Physikalische Zeitschrift, 20, 401–403.Google Scholar
  34. Barnes, R. M. (1974). Chapter 21—Emission spectroscopy: Arc, spark, laser and plamas. Systematic Materials Analysis, 23–83.Google Scholar
  35. Barzilov, A., & Novikov, I. (2015). Material classification by analysis of prompt photon spectra induced by 14-Mev neutrons. Physics Procedia, 66, 396–402.CrossRefGoogle Scholar
  36. Banerjee, S., Chen, Sh., Powers, N., Haden, D., Liu, C., Golovin, G., et al. (2015). Compact source of narrowband and tunable X-rays for radiography. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 350, 106–111.Google Scholar
  37. Basile, L. J., Ferraro, J. R., Mitchell, M. L., & Sullivan, J. C. (1978). The Raman scattering of actinide (VI) ions in carbonate media. Applied Spectroscopy, 32, 535–537.CrossRefGoogle Scholar
  38. Beaurepaire, E., Bulou, H., Scheurer, F., & Kappler, J. P. (Eds.). (2008). Magnetism: A synchrotron radiation approach. Berlin: Springer.Google Scholar
  39. Becker, J. S. (2007). Inorganic mass spectroscopy, principles and applications. Hoboken: Wiley.Google Scholar
  40. Beckhoff, B., Kanngießer, B., Langhoff, N., Wedell, R., & Wolff, H. (Eds.). (2006). Handbook of practical X-ray fluorescence analysis. Berlin: Springer.Google Scholar
  41. Beer, A (1852). Bestimmung der Absorption des rothen Lichts in farbigen Flussigheiten [Determination of the absorption of red light in colored liquids], Annual Review of Physical Chemistry, 86, 78–88.Google Scholar
  42. Beitz, J. V., & Hessler, J. P. (1980). Oxidation state specific detection of transuranic ions in solution. Nuclear Technology, 51, 169–177.CrossRefGoogle Scholar
  43. Beitz, J. V., Bowers, D. L., Doxater, M. M., Maroni, V. A., & Reed, D. T. (1988). Detection and speciation of transuranium elements in synthetic groundwater via pulsed-laser excitation. Radiochimica Acta, 44(45), 87–93.Google Scholar
  44. Bellin, R. C., Strach, M., Truphémus, Th., Guéneau, Ch., Richaud, J.-Ch., & Rogez, J. (2015). In situ high temperature X-ray diffraction study of the phase equilibria in the UO2–PuO2–Pu2O3 system, Journal of Nuclear Materials, 465, 407–417.Google Scholar
  45. Benson, S., & Madey, J. M. J. (1985). Shot and quantum noise in free electron lasers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 237, 55–60.CrossRefGoogle Scholar
  46. Benedetto, A., & Pajewski, L. (Eds.). (2015). Civil engineering applications of ground penetrating radar. Berlin: Springer.Google Scholar
  47. Benninghoven, A., Colton, R. J., Simons, D. S., & Werner, H. W. (Eds.). (1986). Secondary Ion Mass Spectrometry (SIMS) V, Proceedings of the fifth International Conference.Google Scholar
  48. Bertsch, P. M., Hunter, D. B., Sutton, S. R., Bajt, S., & Rivers, M. L. (1994). In situ chemical speciation of uranium in soils and sediments by micro x-ray absorption spectroscopy. Environmental Science & Technology, 28, 980–984.CrossRefGoogle Scholar
  49. Bickel, M. (1997). The Davies-Gray titration for the assay of uranium in nuclear materials: A performance study. Journal of Nuclear Materials, 246, 30–36.CrossRefGoogle Scholar
  50. Binnemans, K. (2015). Interpretation of europium(III) spectra. Coordination Chemistry Reviews, 295, 1–45.CrossRefGoogle Scholar
  51. Bitea, C., Müller, R., Neck, V., Walther, C., & Kim, J. I. (2003). Study of the generation and stability of thorium(IV) colloids by LIBD combined with ultrafiltration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 217, 63–70.CrossRefGoogle Scholar
  52. Blümich, B., Casanova, F., & Appelt, S. (2009). NMR at low magnetic field. Chemical Physics Letters, 477, 231–240.CrossRefGoogle Scholar
  53. Boolchand, P., Bresser, W., & Ehrhart, G. J. (1981). 129I nuclear quadrupole interaction in trigonal Te and the role of oxygen contamination. Physical Review B, 23, 3669–3672.Google Scholar
  54. Bragg, W. H. (1908). The nature of γ- and X-rays. Nature, 77(1995), 270.CrossRefGoogle Scholar
  55. Bogé, M., Blaise, A., Bonnisseau, D., Fournier, J. M., Thérond, P. G., Poirot, I., et al. (1986). 237Np Mössbauer spectroscopy on neptunium doped borosilicate glasses. Hyperfine Interactions, 28, 765–767.Google Scholar
  56. Bogomolova, L. D., Jachkin, V. A., Prushinsky, S. A., Dmitriev, S. A., Stefanovsky, S. V., Teplyakov, Yu G, et al. (1997). Paramagnetic defects induced by ion implantation in oxide glasses. Journal of Non-crystalline Solids, 210, 101–118.CrossRefGoogle Scholar
  57. Bogomolova, L. D., Pavlushkina, T. K., Stefanovskii, S. V., Teplyakov, Yu. G., & Trul, O. A. (1993). ESR and IR spectroscopic studies of sodium and aluminosilicophosphate glasses. Glass Physics and Chemistry, 19, 222–227.Google Scholar
  58. Bogomolova, L. D., Stefanovsky, S. V., Troole, A. Y., & Vance, E. R. (2001). EPR spectra of V (IV) in zirconolite-rich ceramics. Journal of Materials Science, 36, 1213–1217.CrossRefGoogle Scholar
  59. Boizot, B., Petite, G., Ghaleb, D., & Calas, G. (1998). Radiation induced paramagnetic centres in nuclear glasses by EPR spectroscopy. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 141, 580–584.CrossRefGoogle Scholar
  60. Bojanowski, R., Holm, E., & Whitehead, N. E. (1987). Determination of 227Ac in environmental samples by ion-exchange and alpha spectrometry. Journal of Radioanalytical and Nuclear Chemistry, 115, 23–37.Google Scholar
  61. Borger, J. J., Hashemi-Nezhad, S. R., Alexiev, D., Brandt, R., Westmeier, W., Thomauske, B., et al. (2012). Spatial distribution of thorium fission rate in a fast spallation and fission neutron field: An experimental and Monte Carlo study. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 664, 103–110.CrossRefGoogle Scholar
  62. Bond, A. M., & O’Halloran, R. J. (1976). Fundamental and second harmonic alternative current cyclic voltametric theory and experimental results for simple electrode reactions involving solution-soluble redox couples. Analytical Chemistry, 48, 872–883.CrossRefGoogle Scholar
  63. Briggs, A. (Ed.). (1995). Advances in acoustic microscopy. Berlin: Springer.Google Scholar
  64. Bourgès, G., Lambertin, D., Rochefort, S., Delpech, S., & Picard, G. (2007). Electrochemical studies on plutonium in molten salts. Journal of Alloys and Compounds, 444–445, 404–409.CrossRefGoogle Scholar
  65. Boutchko, R., Rayz, V. L., Vandehey, N. T., O’Neil, J. P., Budinger, T. F., Nico, P. S., et al. (2012). Imaging and modeling of flow in porous media using clinical nuclear emission tomography systems and computational fluid dynamics. Journal of Applied Geophysics, 76, 74–81.CrossRefGoogle Scholar
  66. Buck, E. C., & Fortner, J. A. (1997). Detecting low levels of transuranics with electron energy loss spectroscopy. Ultramicroscopy, 67, 69–75.CrossRefGoogle Scholar
  67. Buckau, G., Stumpe, R., & Kim, J. I. (1986). Americium colloid generation in groundwaters and its speciation by laser-induced photoacoustic spectroscopy. Journal of the Less Common Metals, 122, 555–562.CrossRefGoogle Scholar
  68. Burchell, T. D., Rose, A. P. G., & McEnaney, B. (1986). Acoustic emission from irradiated nuclear graphite. Journal of Nuclear Materials, 140, 11–18.CrossRefGoogle Scholar
  69. Burghartz, M., Ledergerber, G., Ingold, F., Heimgartner, P., & Degueldre, C. (2001). X-ray diffraction and data interpretation of stabilised zirconia inert matrix fuel doped with plutonium. Progress in Nuclear Energy, 38, 247–250.CrossRefGoogle Scholar
  70. Bundschuh, T., Knopp, R., Müller, R., Kim, J. I., Neck, V., & Fanghänel, Th. (2000). Application of LIBD to the determination of the solubility product of thorium(IV)-colloids. Radiochimica Acta, 88, 625–629.CrossRefGoogle Scholar
  71. Bunton, J., Lenz, D., Olson, J., Thompson, K., Ulfig, R., Larson, D., et al. (2006). Instrumentation developments in atom probe tomography: Applications in semiconductor research. Microscopy and Microanalysis, 12, 1730–1731.CrossRefGoogle Scholar
  72. Bünzli, J.-C. G. (1989). Luminescent probes in lanthanide probes in life. Elsevier, Amsterdam: Chemical and Earth Sciences.Google Scholar
  73. Byrne, A. R. (1986). Determination of 237Np in Cumbrian (UK) sediments by neutron activation analysis: Preliminary results. Journal of Environmental Radioactivity, 4, 133–144.Google Scholar
  74. Byrne, A. R. (1993). Review of neutron activation analysis in the standardization and study of reference materials. Fresenius’ Journal of Analytical Chemistry, 345, 144–151.CrossRefGoogle Scholar
  75. Byrne, A. R., & Benedik, L. (1999). Applications of neutron activation analysis in determination of natural and man-made radionuclides including Pa-231. Czechoslovak Journal of Physics, 49, 263–270.CrossRefGoogle Scholar
  76. Cai, Z., & Liu, Sh. (Eds). (2013). Applications of MALDI-TOF spectroscopy. Berlin: Springer.Google Scholar
  77. Cao, J., & Luk, K.-B. (2016). An overview of the Daya Bay reactor neutrino experiment. Nuclear Physics B, 908, 62–73.CrossRefGoogle Scholar
  78. Cameron, L. T., Lang, M., Zhang, F., Park, S., Palomares, R. I., & Ewing, R. C. (2017). Review of recent experimental results on the behavior of actinide-bearing oxides and related materials in extreme environments. Progress in Nuclear Energy (in Press).Google Scholar
  79. Cammann, K. (1979). Working with ion-selective electrodes. Chemical laboratory practice. Berlin: Springer.CrossRefGoogle Scholar
  80. Canizarès, A., Guimbretière, G., Tobon, Y. A., Raimboux, N., Omnée, R., Perdicakis, M., et al. (2012). In situ Raman monitoring of materials under irradiation: Study of uranium dioxide alteration by water radiolysis. Journal of Raman Spectroscopy, 43, 1492–1497.CrossRefGoogle Scholar
  81. Casacuberta, N., Masqué, P., Henderson, G., Rutgers van-der-Loeff, M., Bauch, D., Vockenhuber, C., et al. (2016). First 236U data from the Artic Ocean and use of 236U/238U and 129I/236U as a new dual tracor. Earth and Planetary Science Letters, 440, 127–134.Google Scholar
  82. Capella, B., & Dietler, G. (1999). Force distance curves by atom force microscopy. Surface Science Reports, 4, 1–104.CrossRefGoogle Scholar
  83. Capote, R., Chen, Y.-J., Hambsch, F.-J., Kornilov, N. V., Lestone, J. P., Litaize, O., et al. (2016). Prompt fission neutron spectra of actinides. Nuclear Data Sheets, 131, 1–106.CrossRefGoogle Scholar
  84. Carretta, P., & Lascialfari, A. (Eds.). (2007). NMR-MRI, µSR and mössbauer spectroscopies in molecular magnets. Berlin: SpringerGoogle Scholar
  85. Chadwick, J. (1932). The existence of a neutron. In Proceedings of the Royal Society 136, 692–708.Google Scholar
  86. Chatni, M. R., Maier, D. E., & Porterfield, D. M. (2009). Evaluation of microparticle materials for enhancing the performance of fluorescence lifetime based optrodes. Sensors and Actuators B, 141, 471–477.CrossRefGoogle Scholar
  87. Chapman, C. H. (2004). Fundamentals of seismic wave propagation. Cambridge: Cambridge University Press.Google Scholar
  88. Chakarvarti, S. K., Lal, N., & Nagpaul, K. K. (1980). Uranium trace analysis of some materials using solid state nuclear track detectors. Solid State Nuclear Track Detectors, 701–715.Google Scholar
  89. Cherniak, D. J., & Lanford, W. A. (1992). 11.4—NRA nuclear reaction analysis. Encyclopedia of Materials Characterization, 680–694.Google Scholar
  90. Chen, J.-W., & Milnes, A. G. (1980). Energy levels in silicon. Annual Review of Materials Science, 10, 157–228.CrossRefGoogle Scholar
  91. Chen, Y., Wang, F., Zhao, Y.-G., Li, L.-L., Zhang, Y., Shen, Y., et al. (2015). An improved FT- TIMS method of measuring uranium isotope ratios in the uranium -bearing particles, Radiation Measurements, 83, 63–67.Google Scholar
  92. Christl, M., Casacuberta, N., Lachner, J., Maxeiner, S., Vockenhuber, C., Synal, H.-A., et al. (2015). Status of 236U analyses at ETH Zurich and the distribution of 236U and 129I in the North Sea in 2009. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 361, 510–516.Google Scholar
  93. Clough, R. B., & Wadley, H. N. G. (1982). Indentation loading studies of acoustic emission from temper and hydrogen embrittled A533B steel. Metallurgical Transactions A, 13(11), 1965–1975.Google Scholar
  94. Citrin, P. H., Eisenberger, P., & Hewitt, R. C. (1979). SEXAFS studies of iodine adsorbed on single crystal substrates. Surface Science, 89, 28–40.CrossRefGoogle Scholar
  95. Claassen, A., & Vissen, J. (1946). Determination of uranium with 8-hydroxyquinoline (oxine). Recueil des Travaux Chimiques des Pays-Bas, 65, 211–215.CrossRefGoogle Scholar
  96. Clayton, C. G. (1990). Some comments on the development of radiation and radioisotope measurement applications in industry. International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, 41, 917–934.CrossRefGoogle Scholar
  97. Close, F. (2012). Neutrino. Berlin: Springer.Google Scholar
  98. Collaboration, B. (2010). Observation of geo-neutrinos. Physics Letters B, 687, 299–304.Google Scholar
  99. Conradson, S. (1998). Application of X-ray absorption fine structure spectroscopy to materials and environmental science. Applied Spectroscopy, 52, 252A–279A.CrossRefGoogle Scholar
  100. Costarramone, N., Gleyzes, C., Castetbon, A., & Berger, M. (2000). Lithium ion selective electrodes: Application to the lithium measurements in PWR plants. In Proceedings of the Water Chemistry of Nuclear Reactor Systems, 8 BNES, 1, 259–261.Google Scholar
  101. Cottrell, F. G. (1903). Der Reststrom bei galvanischer Polarisation, betrachtet als ein. Diffusionsproblem. Zeitschrift für Physikalische Chemie, 42, 385–431.Google Scholar
  102. Couprie, M. E. (2014). New generation of light source: Present and future. Journal of Electron Spectroscopy and Related Phenomena, 196, 3–13.CrossRefGoogle Scholar
  103. Cox, S. F. J. (1987). Implanted muon studies in condensed matter science. Journal of Physics C: Solid State Physics, 20, 3187–3319.CrossRefGoogle Scholar
  104. Croft, W. L., Stone, J. A., & Pillinger, W. L. (1968). Mössbauer effect in 231Pa. Journal of Inorganic and Nuclear Chemistry, 30, 3203–3208.CrossRefGoogle Scholar
  105. Das, S. K., Kedari, C. S., & Tripathi, S. C. (2010). Spectrophotometric determination of trace amount of uranium (VI) in different aqueous and organic streams of nuclear fuel processing using 2-(5-bromo-2-pyridylazo-5-diethylaminophenol). Journal of Radioanalytical and Nuclear Chemistry, 285, 675–681.CrossRefGoogle Scholar
  106. Davis, J. L., & Annan, A. P. (1989). Ground penetrating radar for high resolution mapping of soil and rock stratigraphy. Geophysical Prospecting, 37, 531–551.CrossRefGoogle Scholar
  107. Davies, W., & Gray, W. (1964). A rapid and specific titrimetric method for the precise determination of uranium using iron(II) sulphate as reductant. Talanta, 11, 1203–1211.CrossRefGoogle Scholar
  108. David, A., Kögel, G., Sperr, P., & Triftshäuser, W. (2001). Lifetime measurements with a scanning positron microscope. Physical Review Letters, 87, 067402-1–4.Google Scholar
  109. Davies, W., Gray, W., & McLeod, K. C. (1970). Coulometric determination of uranium with a platinum working electrode. Talanta, 17, 937–944.CrossRefGoogle Scholar
  110. Davidovits, P., & Egger, M. D. (1969). Scanning laser microscope. Nature, 223, 831.CrossRefGoogle Scholar
  111. de Broglie, L.-V. (1923). Radiation—Waves and quanta [Translated from Comptes rendus] (Vol. 177, pp. 507–510).Google Scholar
  112. Debye, P., & Hückel, E. (1924). Bemerkungen zu einem Satze über die kataphoretische Wanderungsgeschwindigkeit suspendierter Teilchen. Physikalische Zeitschrift, 25, 49–52.Google Scholar
  113. De Geuser, F., & Deschamps, A. (2012). Precipitate characterisation in metallic system by small angle X-rays or neutron scattering. Comptes Rendus Physique, 13, 246–256.CrossRefGoogle Scholar
  114. Degueldre, C. (1978). Constant-current coulometric determination of uranium in the pure metal (Thesis). Université de Liège, Belgium.Google Scholar
  115. Degueldre, C., & Alekseev, E. V. (2015). Uranium trioxide behavior during electron energy loss spectroscopy analysis. Radiation Physics and Chemistry, 108, 7–12.CrossRefGoogle Scholar
  116. Degueldre, C., & Favarger, P.-Y. (2003). Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: A feasibility study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 217, 137–142.CrossRefGoogle Scholar
  117. Degueldre, C., & Favarger, P.-Y. (2004). Thorium colloid analysis by single particle inductively coupled plasma-mass spectrometry. Talanta, 62, 1051–1054.CrossRefGoogle Scholar
  118. Degueldre, C., & Fiorina, C. (2016). The proto-Earth geo-reactor: Reassessing the hypotheses. Solid Earth Sciences, 1, 49–63.Google Scholar
  119. Degueldre, C., & Hellwig, Ch. (2003). Study of a zirconia based inert matrix fuel under irradiation. Journal of Nuclear Materials, 320, 96–105.CrossRefGoogle Scholar
  120. Degueldre, C., & Laaksoharju, M. (2014). Ground water colloid properties from the Bangombé system. Applied Geochemistry, 45, 130–143.Google Scholar
  121. Degueldre, C. A., & Meklati, M. (1983). Polarographic behaviour of uranium (VI) in organic solutions. Journal of Radioanalytical Chemistry, 77, 87–96.CrossRefGoogle Scholar
  122. Degueldre, C. A., & Meklati, M. (1984a). Polarographic behaviour of uranium (VI) in tributyl phosphate organic solutions. Radiochimica Acta, 35, 53–56.CrossRefGoogle Scholar
  123. Degueldre, C. A., & Meklati, M. (1984b). Differential pulse polarographic behaviour of hexavalent uranium and molybdenum from its trioctylphosphine oxide extract. Journal of the Less Common Metals, 97, 11–20.CrossRefGoogle Scholar
  124. Degueldre, C., Bertsch, J., & Martin, M. (2016). Post irradiation examination of nuclear fuel: Toward a complete analysis. Progress in Nuclear Energy, 92, 242–253.CrossRefGoogle Scholar
  125. Degueldre, C., Borca, C., & Cozzo, C. (2013a). Curium analysis in plutonium uranium mixed oxide by x-ray fluorescence and absorption fine structure spectroscopy. Talanta, 115, 986–991.CrossRefGoogle Scholar
  126. Degueldre, C., Buckley, D., Dran, J. C., & Schenker, E. (1998b). Study of the oxide layer formed on stainless steel exposed to boiling water reactor conditions by ion beam techniques. Journal of Nuclear Materials, 252, 22–27.CrossRefGoogle Scholar
  127. Degueldre, C., Cozzo, C., Martin, M., Grolimund, D., & Mieszczynski, C. (2013b). Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide. Journal of Solid State Chemistry, 202, 315–319.CrossRefGoogle Scholar
  128. Degueldre, C., Conradson, St., Amato, A., & Campitelli, E. (2006a). Feeling defects in Zircaloy by extended X-ray absorption fine structure and muon spin relaxation analyses. Journal of Nuclear Materials, 352, 126–135.Google Scholar
  129. Degueldre, C., Favarger, P.-Y., & Rossé, S. (2006b). Wold, uranium colloid analysis by single particle inductively coupled plasma-mass spectrometry. Talanta, 68, 623–628.CrossRefGoogle Scholar
  130. Degueldre, C., Fuks, L., & Schenker, E. (1998a). In-line measurement of the oxide layer build-up on Zircaloy under Boiling Water Reactor conditions using diffuse reflection spectroscopy. Measurement Science and Technology, 9, 809–815.CrossRefGoogle Scholar
  131. Degueldre, C., Rocchiccioli, F., & Laube, A. (1999). Accelerated measurement of groundwater redox potentials: Method and application. Analytica Chimica Acta, 396, 23–31.CrossRefGoogle Scholar
  132. Degueldre, C., Kastoryano, M., & Dardenne, K. (2007). Variable incidence angle—X-ray absorption spectroscopy for the study of Zircaloy corrosion layers. Journal of Nuclear Materials, 362, 316–326.CrossRefGoogle Scholar
  133. Degueldre, C., Kuri, G., Borca, C. N., & Grolimund, D. (2009). X-ray micro- fluorescence, diffraction and absorption spectroscopy for local structure investigation of a radioactive zinc ferrite deposit. Corrosion Science, 51, 1690–1695.CrossRefGoogle Scholar
  134. Degueldre, C., Kuri, G., Martin, M., Froideval, A., Cammelli, S., Orlov, A., et al. (2010). Nuclear material investigations by advanced analytical techniques. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268, 3364–3370.CrossRefGoogle Scholar
  135. Degueldre, C., Martin, M., Kuri, G., Grolimund, D., & Borca, C. (2011a). Plutonium—uranium mixed oxide characterization by coupling micro-X-ray diffraction and absorption investigations. Journal of Nuclear Materials, 416, 142–150.CrossRefGoogle Scholar
  136. Degueldre, C., Schaeublin, R., Krbanjevic, J., & Minikus, E. (2013c). Electron energy loss spectroscopy investigation through a nano ablated uranium dioxide sample. Talanta, 106, 408–413.CrossRefGoogle Scholar
  137. Degueldre, C., Schenker, E., & Nhuis-Weda, H. (1996a). Investigation of colloid characteristics in the water of boiling water reactors. In Proceedings of the Water Chemistry of Reactor Systems, 7 BNES.Google Scholar
  138. Degueldre, C., O’Prey, S., & Francioni, W. (1996c, October). An in-line diffuse reflection spectroscopy study of the oxidation of stainless steel under boiling water reactor conditions. Corrosion Science, 38,(10), 1763–1782.CrossRefGoogle Scholar
  139. Degueldre, C., Pleinert, H., Maguire, P., Lehman, E., Missimer, J., Hammer, J., Leenders, K., Böck, H., & Townsend, D. (1996d, May). Porosity and pathway determination in crystalline rock by positron emission tomography and neutron radiography. Earth and Planetary Science Letters, 140,(1–4), 213–225.Google Scholar
  140. Degueldre, C., & Taibi, K. (1996). Polarographic behaviour and determination of uranium(VI) in alcoholic solutions from organic extraction phases. Analytica Chimica Acta, 321, 201–207.CrossRefGoogle Scholar
  141. Degueldre, C., Triay, I., Kim, J.-I., Vilks, P., Laaksoharju, M., & Miekeley, N. (2000). Groundwater colloids properties: A global approach. Applied Geochemistry, 15, 1043–1051.CrossRefGoogle Scholar
  142. Degueldre, C., Pouchon, M., Streit, M., Zaharko, O., & Di Michiel, M. (2001). Analysis of porous features in zirconia based inert matrix, impact on the material qualification. Progress in Nuclear Energy, 38, 241–246.CrossRefGoogle Scholar
  143. Degueldre, C., Reed, D., Kroft, A. J., & Mertz, C. (2004). XAFS study of americium sorbed onto groundwater colloids. Journal of Synchrotron Radiation, 11, 198–203.CrossRefGoogle Scholar
  144. Degueldre, C., Ulrich, H. J., & Silbi, H. (1994). Sorption of 241Am onto Montmorillonite, illite and hematite colloids. Radiochimica Acta, 65, 173–179.CrossRefGoogle Scholar
  145. Derjaguin, B. V., Muller, V. M., & Toporov, Y. P. (1975). Effect of contact deformations on the adhesion of particles. Journal of Colloid and Interface, 53, 314–325.CrossRefGoogle Scholar
  146. De Menibus, A. H, Auzoux, Q., Dieye, O., Macdonald, V., Besson, J., Crépin, J. (2012). Hydride blisters formation, characterization and effect on the fracture of Zircaloy-4 cladding tubes under reactivity initiated accident conditions. In 21st International conference Nuclear Energy for New Europe, September 2012, Ljubljana, Slovenia (hal-01057285).Google Scholar
  147. Denecke, M., Dardenne, K., & Macquard, Ch. (2004). Np(IV)/Np(V) valence determination from Np L3 edge XANES/EXAFS. Talanta, 65, 1008–1014.CrossRefGoogle Scholar
  148. Dodge, C. J., Francis, A. J., & Clayton, C. R. (1995). Application of synchrotron radiation techniques in industrial chemical and materials science. Emerging Technologies in Hazardous Waste Management ACS, CONF, 9509139, 1352–1377.Google Scholar
  149. Drescher, M., & Jeschke, G. (2012). EPR spectroscopy: Applications in chemistry and biology. Berlin: Springer.Google Scholar
  150. Drot, R., Simoni, E., Alnot, M., & Ehrhart, J. J. (1998). Structural environment of uranium (VI) and europium (III) species sorbed onto phosphate surfaces: XPS and optical spectroscopy studies. Journal of Colloid and Interface Science, 205, 410–416.CrossRefGoogle Scholar
  151. Dev, B., & Jain, B. D. (1961). Gravimetric determination of uranium and thorium with 1-hydroxy-xanthone. Proceedings of the Indian Academy of Sciences—Section A, 54, 341–344.Google Scholar
  152. Diggens, A. A., Lichtenstein, S., Synnott, J. C., & West, S. J. (1981). High-purity water quality monitoring based on ion-selective electrode technology. Power plant instrumentation for measurement of high-purity water. Lane Otten EDRS, American Society for Testing Materials, ASTM STP, 742, 131–138.Google Scholar
  153. Doyama, M., Kogure, Y., Inoue, M., Kurihara, T., Cao, X., Nishiyama, K., et al. (2009). Comparison between muon and positron images using imaging plates. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 600, 60–63.CrossRefGoogle Scholar
  154. Dutt, D. A., Higby, P. L., & Griscom, D. L. (1991). An electron spin resonance study of X-irradiated calcium aluminosilicate glasses. Journal of Non-crystalline Solids, 130, 41–51.CrossRefGoogle Scholar
  155. Dworak, V., Augustin, S., & Gebbers, R. (2011). Application of terahertz radiation to soil measurements: Initial results. Sensors, 11, 9973–9988.CrossRefGoogle Scholar
  156. Dye, St. T. (2007). Neutrino geophysics. In Proceedings of Neutrino Sciences 2005. Berlin: Springer.Google Scholar
  157. Edelson, M. C., & Fassel, V. A. (1981). Isotopic abundance determinations by inductively coupled plasma atomic emission atomic emission spectrometry. Analytical Chemistry, 53, 2345–2347.CrossRefGoogle Scholar
  158. Edelstein, N. M., Klenze, R., Fanghänel, T., & Hubert, S. (2006). Optical properties of Cm(III) in crystals and solutions and their application to Cm(III) speciation. Coordination Chemistry Reviews, 250, 948–973.CrossRefGoogle Scholar
  159. Egerton, R. (2011). Electron energy-loss spectroscopy in the electron microscope. Berlin: Springer.Google Scholar
  160. Egger, W., Kögel, G., Sperr, P., Triftshäuser, W., Rödling, S., Bär, J., et al. (2002). Vacancy clusters close to a fatigue crack observed with the München scanning positron microscope. Applied Surface Science, 194, 214–217.CrossRefGoogle Scholar
  161. Ehmann, W. D., & Vance D. E. (1991). Radiochemistry and nuclear methods of analysis. Hoboken: Wiley Interscience.Google Scholar
  162. Einstein, A. (1905a). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik, 322, 132–148.CrossRefGoogle Scholar
  163. Einstein, A. (1905b). Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik, 322, 549–560.CrossRefGoogle Scholar
  164. Einstein, A. (1917). Quantentheorie der Strahlung [On the quantum theory of radiation]. Physikalische Zeitschrift, 18, 121–128.Google Scholar
  165. Eldrup, M., Ligthbody, D., & Sherwood, J. N. (1981). The temperature dependence of positron lifetime in solid pivalic acid. Journal of Chemical Physics, 63, 51–58.Google Scholar
  166. Elliman, R. G., Timmers, H., Palmer, G. R., & Ophel, T. R. (1998). Limitations to depth resolution in high-energy, heavy-ion elastic recoil detection analysis. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 136–138, 649–653.CrossRefGoogle Scholar
  167. Erdmann, N., Nunnemann, M., Eberhardt, K., Herrmann, G., Huber, G., Köhler, S., et al. (1998). Determination of the first ionization potential of nine actinide elements by resonance ionization mass spectroscopy (RIMS). Journal of Alloys and Compounds, 271(3), 837–840.CrossRefGoogle Scholar
  168. Erdoğan, H., & Fessler, J. A. (1999). Ordered subsets algorithms for transmission tomography. Physics in Medicine and Biology, 44, 2835–2851.CrossRefGoogle Scholar
  169. Faisal, N. H., Ahmed, R., & Reuben, R. L. (2013). Indentation testing and its acoustic emission response: applications and emerging trends. International Materials Reviews, 56(2), 98–142.Google Scholar
  170. Feldhaus, J., Arthur, J., & Hastings, J. B. (2005). X-ray free-electron lasers. Journal of Physics B: Atomic, Molecular and Optical Physics, 38, S799–S819.CrossRefGoogle Scholar
  171. Fessler, J. A., & Hero, A. O. (1994). Space-alternating generalized expectation-maximization algorithm. IEEE Transaction on signal processing, 42, 2664–2677.CrossRefGoogle Scholar
  172. Fitch, F. R., & Rees, L. V. C. (1981). Mössbauer emission studies of zeolite A. Part 1—Effect of dehydration on 57Co2+ doped Na+ and Co2+ exchanged zeolite A. Zeolites, 1, 19–29.Google Scholar
  173. Fortner, J. A., Buck, E. C., Ellison, A. J. G., & Bates, J. K. (1997). EELS analysis of redox in glasses for plutonium immobilization. Ultramicroscopy, 67, 77–81.CrossRefGoogle Scholar
  174. Frégeau, M. O., Oberstedt, S., Brys’, T., Gamboni, Th., Geerts, W., Hambsch, F.-J., et al. (2015). First use of single-crystal diamonds as fission-fragment detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 791, 58–64.Google Scholar
  175. Friedlander, G., Kennedy, J. W., Macias, E. S., & Miller. J. M. (1981). Nuclear and radiochemistry (3rd ed.) Hoboken: Wiley Interscience.Google Scholar
  176. Freiser, H. (1980). Ion-selective electrodes in analytical chemistry. Berlin: Springer.Google Scholar
  177. Fritz, J. S., & Johnson-Richard, M. (1959). Colorimetric uranium determination with arsenazo. Analytica Chimica Acta, 20, 164–171.Google Scholar
  178. Fritzsche, H., Huot, J., & Fruchart, D. (Eds.). (2016). Neutron scattering and other nuclear techniques for hydrogen in materials. Berlin: Springer.Google Scholar
  179. Froideval, A., Badillo, A., Bertsch, J., Churakov, S., Dähn, R., Degueldre, C., et al. (2011). Towards possible opportunities in nuclear materials science and technology at an X-ray free electron laser research facility. Journal of Nuclear Materials, 416, 242–251.CrossRefGoogle Scholar
  180. Froideval, A., Iglesias, R., Samaras, M., Schuppler, S., Nagel, P., Grolimund, D., et al. (2007). Magnetic and structural properties of FeCr alloys. Physical Review Letters, 99, 237201–237204.CrossRefGoogle Scholar
  181. Fultz, B., & Howe, J. (2013). Transmission electron microscopy and diffractometry of materials. Berlin: Springer.Google Scholar
  182. Fukugita, M., & Yanagida, T. (2003). Physics of neutrinos. Berlin: Springer.Google Scholar
  183. Fukutani, K. (2002). Below-surface behavior of hydrogen studied by nuclear reaction analysis. Current Opinion in Solid State and Materials Science, 6, 153–161.CrossRefGoogle Scholar
  184. Gando, A., Gando, Y., Hanakago, H., Ikeda, H., Inoue, K., Ishidoshiro, K., et al. (2013). Reactor on-off antineutrino measurement with KamLAND. Physical Review D, 88, 033001–033010.Google Scholar
  185. Gault, B., Moody, M. P., Cairney, J. M., Ringer, & S. P. (2012). Atom probe microscopy. Springer series in materials science (Vol. 160). New York: Springer.Google Scholar
  186. Gaunt, J. (1956). The analysis of heavy water by infra-red spectroscopy. Spectrochimica Acta, 8, 57–65.CrossRefGoogle Scholar
  187. Gauthier, R., Ilmstädter, V., & Lieser, K. H. (1983). Simultaneous quantitative determination of the various oxidation states of neptunium at low concentrations by spectrophotometry. Radiochimica Acta, 33, 35–39.Google Scholar
  188. Glatter, O., & Kratky, O. (Eds.). (1982). Small angle X-ray scattering. London: Academic Press.Google Scholar
  189. Gehrels, N., Crannell, C. J., Forrest, D. J., Lin, R. P., Orwig, L. E., & Starr, R. (1988). Hard X-ray and low-energy gamma-ray spectrometers. Solar Physics, 118, 233–268.CrossRefGoogle Scholar
  190. Geipel, G., Bernhard, G., Brendle, V., & Nitsche, H. (1998). Complex formation between UO2 2+ and CO32-: Studied by Laser-Induced Photoacoustic Spectroscopy (LIPAS). Radiochimica Acta, 82, 59–62.CrossRefGoogle Scholar
  191. Geipel, G., Reich, T., Brendler, V., Bernard, G., & Nitsche, H. (1997). Laser and X-ray spectroscopic studies of uranium-calcite interface phenomena. Journal of Nuclear Materials, 248, 408–411.CrossRefGoogle Scholar
  192. George, E. P. (1955). Cosmic rays measure overburden of tunnel. Commonwealth Engineer, 1, 455–457.Google Scholar
  193. Guardincerri, E., Bacon, J., Borozdin, K., Durham, J. M., Fabritius, J., II, Hecht, A., et al. (2015). Detecting special nuclear material using muon-induced neutron emission. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 789, 109–113.CrossRefGoogle Scholar
  194. Griscom, D. (1984). Electron spin resonance studies of trapped hole centers in irradiated alkali silicate glasses: A critical comment on current models for HC1 and HC2. Journal of Non-crystalline Solids, 64, 229–247.CrossRefGoogle Scholar
  195. Griscom, D. L. (1974). E.S.R. studies of radiation damage and structure in oxide glasses not containing transition group ions: A contemporary overview with illustrations from the alkali borate system. Journal of Non-crystalline Solids, 13, 251–285.Google Scholar
  196. Grosse, Ch. U. & Ohtsu, M. (Eds.). (2008). Acoustic emission testing. Berlin: Springer.Google Scholar
  197. Grosse, M. K., Stuckert, J., Steinbrück, M., Kaestner, A. P., & Hartmann, S. (2013). Neutron radiography and Tomography Investigations of the Secondary Hydriding of Zircaloy-4 during Simulated Loss of Coolant Nuclear Accidents. Physics Procedia, 43, 294–306.CrossRefGoogle Scholar
  198. Ghosh, A., Patel, K. S., & Mishra, R. K. (1991). Extraction-spectrophotometric determination of uranium(VI) with PAR and N-octylacetamide. Journal of Radioanalytical and Nuclear Chemistry, 152, 243–249.CrossRefGoogle Scholar
  199. Kearley, G. J., & Peterson, V. K. (Eds.). (2015). Neutron applications in materials for energy. Berlin: Springer.Google Scholar
  200. Glans, P.-A., Szigethy, G., Demoin, D., Tyliszczak T., Xu, J., Guo, J., et al. (2010). Actinide science with a soft X-ray Scanning Transmission X-ray Microscope (STXM). In Materials research society symposium proceedings (Vol. 1264, pp. 137–149).Google Scholar
  201. Goldstein, J. I., Newbury, D. E., Echlin, P., Joy, D.C., Romig, A. D., Lyman, C. E. Jr, et al. (1992). Scanning electron microscopy and X-ray microanalysis (p. 820). New York: Plenum Press.Google Scholar
  202. Gouder, T. (1998). Thin layers in actinide research. Journal of Alloys and Compounds, 271(3), 841–845.CrossRefGoogle Scholar
  203. Grigoriev, M. S., Fedoseev, M., Gelis, A. V., Budantseva, N. A., Shilov, V. P., Perminov, V. P., et al. (2001). Study of the interaction of Pu(IV) and Np(IV, V, VI) with Fe hydroxides to predict the behavior of actinides in environmental media. Radiochimica Acta, 89, 95–100.CrossRefGoogle Scholar
  204. Gross, J. H. (2004). Mass spectrometry. Berlin: Springer.Google Scholar
  205. Guillot, L. (2001). Extraction of full absorption peaks in airborne gamma-spectrometry by filtering techniques coupled with a study of the derivatives. Journal of Environmental Radioactivity, 53, 381–398.CrossRefGoogle Scholar
  206. Günther-Leopold, I., Krois, M., Kobler Waldis, J., Linder, H., & Abolhassani, S. (2012). Investigation of fuel crud by means of ICP-MS and TEM. Procedia Chemistry, 7, 673–678.CrossRefGoogle Scholar
  207. Gurbic, A. F. (2014). Evaluation of cross-sections for particle induced gamma-ray emission (PIGE) spectroscopy. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 331, 31–33.Google Scholar
  208. Gutmacher, R. G., Cremers, D. A., Wachter, Z. (1987). Laser-induced breakdown spectroscopy: A new technique for nondestructive analysis of solutions Transactions of the American Nuclear Society Journal, 55, 19–20.Google Scholar
  209. Hadley, J. H., Hsu, F. H., Jr., Vance, E. R., & Begg, B. D. (2005). Positron annihilation lifetime spectroscopy of air-fired Ca(1-x)(La)xTiO3 Perovskites. Journal of the American Ceramic Society, 88, 246–248.Google Scholar
  210. Hamstad, M. A. (1986). A review: Acoustic emission, a tool for composite-materials studies. Experimental Mechanics, 26, 7–13.CrossRefGoogle Scholar
  211. Haschke, M. (2014). Laboratory micro X-ray fluorescence spectroscopy instrumentation and applications. Berlin: Springer.Google Scholar
  212. Havenith, M. H. (2002). An introduction to intermolecular forces. Berlin: Springer.Google Scholar
  213. Hébert, C., Schattschneider, P., Rubino, S., Novak, P., Rusz, J., & Stöger-Pollach, M. (2008). Magnetic circular dichroism in electron energy loss spectrometry. Ultramicroscopy, 108, 277–284.CrossRefGoogle Scholar
  214. Hecht, F., & Reich-Rohrwig, W. (1929). Über die Bestimmung von Uran und Thorium mittels 8-Oxychinolins [On the determination of uranium and thorium using 8-oxyquinone]. Monatshefte Fur Chemie, 53, 596–606.Google Scholar
  215. Hen, A., Magnani, N., Griveau, J.-C., Eloirdi, R., Colineau, E., Sanchez, J.-P., et al. (2015). Site-selective magnetic order of neptunium in Np2Ni17. Physical Review B, 92, 024410.CrossRefGoogle Scholar
  216. Hein, Ch., Sonder, J. M., & Kautenburger, R. (2017). New approach of a transient ICPMS measurement method for samples with high salinity. Talanta, 164, 477–482.CrossRefGoogle Scholar
  217. Heise, H., & Matthews, S. (Eds.). (2013). Modern NMR methodology. Berlin: SpringerGoogle Scholar
  218. Herman, G. T. & Frank, J. (Eds.). (2014). Computational methods for three-dimensional microscopy reconstruction. Berlin: Springer.Google Scholar
  219. Henze, G. (2001). Polarographie und voltammetrie. Heidelberg: Springer-verlag Berlin.CrossRefGoogle Scholar
  220. Hess, N. J., Felmy, A. R., Rai, D., & Conradson, S. D. (1997). Characterization of Th carbonate solutions using XAS and implications for thermodynamic modeling. In Materials Research Society Symposium Proceedings, 465, 729–734.Google Scholar
  221. Hess, P., & Pelzl, J. (Eds.). (1988). Photoacoustic and photothermal phenomena. In Proceedings of the 5th International Topical Meeting. Berlin: Springer.Google Scholar
  222. Heyrovský, J. (1922). Elektrolysa se rtuťovou kapkovou kathodou. Chemicke Listy, 16, 256–264.CrossRefGoogle Scholar
  223. Hiraoka, K. (Ed.). (2013). Fundamentals of mass spectrometry. Berlin: Springer.Google Scholar
  224. Hirose, M., Miyake, C., & Iida, M. (1993). “The third phase” of extraction processes in fuel reprocessing, (III) 31P-NMR study of coordination behavior of Zirconium Dibutylphosphates. Journal of Nuclear Science and Technology 30, 232–238.Google Scholar
  225. Hofmann, S. (2013). Auger- and X- photoelectron spectroscopy in materials science. Berlin: Springer.Google Scholar
  226. Ho, C. S., Lam, C. W. K., Chan, M. H. M., Cheung, R. C. K., Law, L. K., Lit, L. C. W., et al. (2003). Electrospray ionisation mass spectrometry: Principles and clinical applications. Clinical Biochemist Reviews, 24, 3–12.Google Scholar
  227. Holliday, K. S., Babelot, C., Walther, C., Neumeier, S., Bosbach, D., & Stumpf, Th. (2012). Site selective time resolved laser fluorescence spectroscopy of Eu and Cm dopted LaPO4. Radiochimica Acta, 100, 189–195.CrossRefGoogle Scholar
  228. Hong-Yan, G., Chang-Chun, G., Min, X., Li-Ping, G., Ji-Hong, C., & Qing-Zhi, Y. (2015). Effect of helium implantation on SiC and graphite. Chinese Physics B, 24, 037803.CrossRefGoogle Scholar
  229. Horn, I., Rudnick, R. L., & McDonough, W. F. (2000). Precise elemental and isotopic ratio determination by combined solution nebulisation and laser ablation ICP-MS: Application to U/Pb geochronology. Chemical Geology, 164, 283–301.CrossRefGoogle Scholar
  230. Horvath, M., Guillong, M., Izmer, A., Kivel, N., Restani, R., Günther-Leopold, I., et al. (2007). Analysis of xenon gas inclusions in nuclear fuel using laser ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 22, 1266–1274.CrossRefGoogle Scholar
  231. Hori, F., Takenaka, M., Kuramoto, E., & Aono, U. (1993). Positron annihilation study of electron-irradiation FeCu and FeCuc alloys. Scripta Metallurgica, 29, 243–248.CrossRefGoogle Scholar
  232. Hosten, E., & Rohwer, H. E. (1997). Complexation reactions of uranyl with arsenazo III. Analytica Chimica Acta, 355, 95–100.CrossRefGoogle Scholar
  233. Hotchkis, M., Child, D., & Tumlz, C. (2002). Application of accelerator mass spectrometry for 236U analysis. Journal of Nuclear Science and Technology, 39, 532–536.Google Scholar
  234. Hrdlička, A., Zaorálková, L., Galiová, M., Čtvrtníčková, T., Kanický, V., Otruba, V., et al. (2009). Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laser-induced breakdown spectroscopy (LIBS) of glazed wall tiles. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 74–78.CrossRefGoogle Scholar
  235. Huang, J., Li, Z., Liaw, B. Y., & Zhang, J. (2016). Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations. Journal of Power Sources, 309, 82–98.CrossRefGoogle Scholar
  236. Hues, A. D., Henicksman, A. L., Ashley, W. H., & Romero, D. (1977). Fluorometric determination of uranium in natural waters. In Inorganic, organic, physical and analytical chemistry (B1100) Los Alamos report 15 p; LA–6683-MS; GJBX–24(77). Google Scholar
  237. Hunter, D. B., & Bertsch, P. M. (1998). In situ examination of uranium contaminated soil particles by micro-X-ray absorption and micro-fluorescence spectroscopies. Journal of Radioanalytical and Nuclear Chemistry, 234, 237–242.CrossRefGoogle Scholar
  238. Ice, G. E., & Specht, E. D. (2012). Microbeam, timing and signal-resolved studies of nuclear materials with synchrotron X-ray sources. Journal of Nuclear Materials, 425, 233–237.CrossRefGoogle Scholar
  239. Ilkovič, D. (1934). Polarographic studies with the dropping mercury kathode. Part XLIV. The dependence of limiting currents on the diffusion constant, on the rate of dropping and on the size of drops. Collection of Czechoslovak Chemical Communications, 6, 498–513.CrossRefGoogle Scholar
  240. Iizuka, M., Inoue, T., Shirai, O., Iwai, T., & Arai, Y. (2001). Application of normal pulse voltammetry to on-line monitoring of actinide concentrations in molten salt electrolyte. Journal of Nuclear Materials, 297, 43–51.CrossRefGoogle Scholar
  241. Ionescu, S., Uţă, O., Pârvan, M., & Ohâi, D. (2009). Pressurized heavy water reactor fuel behaviour in power ramp conditions. Journal of Nuclear Materials, 385, 387–391.Google Scholar
  242. Imam, M., Gaul, K., Stegmüller, A., Höglund, C., Jensen, J., Hultman, L., et al. (2015). Gas phase chemical vapor deposition chemistry of triethylboron probed by boron–carbon thin film deposition and quantum chemical calculations. Journal of Materials Chemistry C, 3, 10898–10906.CrossRefGoogle Scholar
  243. Ireland, T. R. (2014). 15.21Ion microscopes and microprobes, reference module in earth systems and environmental sciences, from treatise on geochemistry (2nd ed.), 15, 385–409.Google Scholar
  244. Issa, I. M., Issa, R. M., & Ahmed, Y. Z. (1978). Complexometric and spectrophotometric determination of thorium(IV), cerium(III), and uranium(VI), using quinizarin sulphonic acid after separation with ion-exchange resins. Microchemical Journal, 18, 569–576.Google Scholar
  245. Ishigure, K. (1996). State of the art of water chemistry of Japanese BWRs. Nuclear Engineering and Design, 160, 171–183.CrossRefGoogle Scholar
  246. Ivanova, B., & Spiteller, M. (2014). Uranyl-water containing complexes: solid-state UV-MALDI mass spectrometric and IR spectroscopic approachs for selective quantitation. Environmental Science and Pollution Research, 21, 1548–1563.Google Scholar
  247. Jaeschke, E. J., Khan, S., Schneider, J. R., & Hastings, J. B. (Eds.). (2016). Synchrotron light sources and free-electron lasers, accelerator physicsinstrumentation and science applications. Berlin: Springer.Google Scholar
  248. Jaiswal, D. D., Dang, V. R., Pullat, H. S., & Sharma, R. C. (1994). Ultra-Trace Analytical Techniques for Internal Dosimetry of Actinides: An Appraisal. Bulletin of Radiation Protection, 17, 44–47.Google Scholar
  249. Jarvis, K. E. (1992). Handbook of inductively coupled plasma mass spectrometry. Berlin: Springer.Google Scholar
  250. James, D., Pandey, A. K., Naidu, G. R. K., & Rao, T. P. (2008). Design of two-dimensional biomimetic uranyl optrode and its application to the analysis of natural waters. Talanta, 74, 1420–1427.CrossRefGoogle Scholar
  251. Jameson, C. J. (2004). Xe Chemical Shift Tensor in Silicalite and SSZ-24. Journal of the American Chemical Society, 126, 10450–10456.CrossRefGoogle Scholar
  252. Jeong, Y. H., & Hwang, S. S. (2013). Materials management strategies for pressurized water reactors (PWRs). Materials Ageing and Degradation in Light Water Reactors, 315–334.Google Scholar
  253. Jia, G., Belli, M., Sansone, U., Rosamilia, S., Ocone, R., & Gaudino, S. (2002). Determination of uranium isotopes in environmental samples by alpha-spectrometry. Journal of Radioanalytical and Nuclear Chemistry, 253, 395–406.CrossRefGoogle Scholar
  254. Jiang, C., Müller-Petke, M., Lin, J., & Yaramanci, U. (2015). Imaging shallow three dimensional water-bearing structures using magnetic resonance tomography. Journal of Applied Geophysics, 116, 17–27.CrossRefGoogle Scholar
  255. Johansson, S. A., Campbell, J. L., & Malmqvist, K. G. (1995). Particle Induced X-ray Emission Spectroscopy (PIXE). Hoboken: Wiley.Google Scholar
  256. Johnson, D. A., & Florence, T. M. (1971). Spectrophotometric determination of uranium (vi) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol. Analytica Chimica Acta, 53, 73–79.CrossRefGoogle Scholar
  257. Johnson, S. G., & Feary, B. L. (1993). Spectroscopic study of thorium using continuous-wave resonance ionization mass spectrometry with ultraviolet ionization. Spectrochimica Acta, 48B, 1065–1077.CrossRefGoogle Scholar
  258. Jonkmans, G., Anghel, V. N. P., Jewett, C., & Thompson, M. (2013). Nuclear waste imaging and spent fuel verification by muon tomography. Annals of Nuclear Energy, 53, 267–273.CrossRefGoogle Scholar
  259. Jol, H. M. (1995). Ground penetrating antennae frequencies and transmitter powers compared for penetration depth, resolution and reflection continuity. Geophysical Prospecting, 43, 693–709.CrossRefGoogle Scholar
  260. Jones, R. B., Younes, C. M., Heard, P. J., Wild, R. K., & Flewitt, P. E. J. (2002). The effect of the microscale distribution of boron on the yield strength of C-Mn steels subjected to neutron irradiation. Acta Materialia, 50, 4395–4417.CrossRefGoogle Scholar
  261. Juhojuntti, N., Wood, G., Juhlin, C., O'Dowd, C., & Cosma, C. (2012). 3D seismic survey at the Millennium uranium deposit, Saskatchewan, Canada: Mapping depth to basement and imaging post-Athabasca structure near the orebody. Geophysics, 77, 245–258.CrossRefGoogle Scholar
  262. Kalinin, S. V., & Gruverman, A. (2007). Scanning probe microscopy electrical and electromechanical phenomena at the nanoscale. Berlin: Springer.Google Scholar
  263. Kalmykov, St. N., Aliev, R. A., Sapozhnikov, D. Yu., Sapozhnikov, Yu. A., & Afinogenov, A. M. (2004). Determination of 237Np by radiochemical neutron activation analysis combined with extraction chromatography. Applied Radiation and Isotopes, 60, 595–599.Google Scholar
  264. Kamat, R. V., Sawant, R. M., Mhatre, H. R., Chaudhuri, N. K., & Vaidya, V. N. (1998). Development of a pH titration method for the simultaneous determination of uranium, nitrate and free-acid in the feed solution of the sol-gel process of nuclear fuel fabrication. Journal of Radioanalytical and Nuclear Chemistry, 238, 33–41.CrossRefGoogle Scholar
  265. Kansy, J. (1996). Microcomputer program for analysis of positron annihilation lifetime spectra. Nuclear Instruments and Methods A, 374, 235–244.CrossRefGoogle Scholar
  266. Kato, Y., & Takahashi, M. (1976). Determination of uranium and plutonium by sequential potentiometric titration. Bunseki Kagaku, 25, 841–846.CrossRefGoogle Scholar
  267. Keil, R. (1979). Hochselektive spektralphotometrische Spurenbestimmung von Uran(VI) mit Arsenazo III nach Extraktionstrennung. Fresenius’ Zeitschrift für analytische Chemie, 297, 384–387.CrossRefGoogle Scholar
  268. Keil, R. (1981). Selektive spektralphotometrische Spurenbestimmung von Uran(VI) mit Arsenazo III nach Extraktionstrennung. ‘Fresenius’ Zeitschrift für analytische Chemie, 305, 374–378.CrossRefGoogle Scholar
  269. Kerbelov, L. M., & Rangelov, R. (1997). Airborne gamma ray spectroscopy—An efficient method for finding and mapping pollution with radioactive elements from uranium extraction and ore mining. In Uranium exploration data and techniques applied to the preparation of radioelement maps. IAEA TECDOC (Vol. 980, pp. 299–304).Google Scholar
  270. Keeler, J. (2010). Understanding NMR spectroscopy. Hoboken: Wiley.Google Scholar
  271. Keil, R. (1978). Highly selective trace determination of uranium by differential pulse polarography (catalytic nitrate reduction) following extraction separation. Fresenius’ Zeitschrift für analytische Chemie, 292, 13–19.CrossRefGoogle Scholar
  272. Khan, M. H., Warwick, P., & Evans, N. (2006). Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere, 63, 1165–1169.CrossRefGoogle Scholar
  273. Kikawa, T. (2016). Measurement of neutrino interactions and three flavor neutrino oscillations in the T2K experiment. Berlin: Springer.Google Scholar
  274. Kim, J. I., Buckau, G., & Klenze, R. (1987). Natural colloids and generation of actinide pseudocolloids in groundwater. In B. Come & N. Chapman (Eds.), Natural analogues in radioactive waste disposal. London: Graham & Trottman.Google Scholar
  275. Kim, B. C., Chang, K. O., Choi, S.-P., & Lee, S. L. (1997). Nondestructive evaluation techniques on the radiation damage of reactor pressure vessel steel due to neutron irradiation. Journal of the Korean Society for Nondestructive Testing, 17, 31–40.Google Scholar
  276. Kimura, T., Serrano, J., Nakayama, S., Takahashi, K., & Takeishi, H. (1992). Speciation of uranium in aqueous solutions and in precipitates by photoacoustic spectroscopy. Radiochimica Acta, 58(9), 173–178.Google Scholar
  277. Kissinger, P. T., & Heineman, W. R. (1983). Cyclic voltammetry. Journal of Chemical Education, 60, 702–706.CrossRefGoogle Scholar
  278. Klenze, R., & Kim, J. I. (1988). A direct speciation of transuranium elements in natural aquatic systems by laser-induced photoacoustic spectroscopy. Radiochimica Acta, 44,(5), 77–85.Google Scholar
  279. Klenze, R., Kim, J. I., & Wimmer, H. (1991). Speciation of aquatic actinide ions by pulsed laser spectroscopy. Radiochimica Acta, 52(3), 97–103.Google Scholar
  280. Klett, A. (1999). Plutonium detection with a new fission neutron survey meter. IEEE Transactions on Nuclear Science, 46, 877–879.Google Scholar
  281. Knyazev, O. A., & Stefanovsky, S. V. (1997). EPR of paramagnetic ions in synthetic zirconolite. In Proceedings of Sixth International Conference on Radioactive Waste Management and Environmental Restoration ASME-1997, October 12–16, 1997 (pp. 333–335). Singapore.Google Scholar
  282. Krachler, M., Alvarez-Sarandes, R., Souček, P., & Carbol, P. (2014). High resolution ICP-OES analysis of neptunium-237 in samples from pyrochemical treatment of spent nuclear fuel. Microchemical Journal, 117, 225–232.CrossRefGoogle Scholar
  283. Krachler, M., Alvarez-Sarandes, R., & Van Winckel, St. (2015). Challenges in the quality assurance of elemental and isotopic analyses in the nuclear domain benefitting from high resolution ICP-OES and sector field ICP-MS. Journal of Radioanalytical and Nuclear Chemistry, 304, 1201–1209.CrossRefGoogle Scholar
  284. Kohli, R. (2012). Chapter 5—Developments in imaging and analysis techniques for micro- and nanosize particles and surface features. Developments in surface contamination and cleaning (pp. 215–306).Google Scholar
  285. Korpel, A., & Kessler, L. W. (1971). Comparison of methods of acoustic microscopy. In A. F. Metherell (Ed.), Acoustical Holography, 3 (pp. 23–43). New York: Plenum.CrossRefGoogle Scholar
  286. Koopmans, Tj. (1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica, 1, 104–113.Google Scholar
  287. Kordas, G., Camara, B., & Oel, H. J. (1982). Electron spin resonance studies of radiation damage in silicate glasses. Journal of Non-crystalline Solids, 50, 79–95.CrossRefGoogle Scholar
  288. Kosterev, A. A. (2014). Photo-acoustic spectroscopy laser spectroscopy for sensing (pp. 208–234).Google Scholar
  289. Kubelka, P., & Munk, Fr. (1931). Ein Beitrag zur Optik der Farbanstriche. Zeitschrift für technische Physik, 12, 593–601.Google Scholar
  290. Kubota, N., Kondo, K., Ochiai, K., & Nishitani, T. (2007). Neutron elastic recoil detection for hydrogen isotope analysis in fusion materials. Journal of Nuclear Materials, 367–370, 1596–1600.CrossRefGoogle Scholar
  291. Kubota, N., Ochiai, K., Kutsukake, C., Kondo, K., Shu, W., Nishi, M., et al. (2006). Ion and neutron beam analyses of hydrogen isotopes. Fusion Engineering and Design, 81, 227–231.CrossRefGoogle Scholar
  292. Kuhn, E., & Hartmut, I. K. (1944) Neutron image convertor, Patent US 2344042A Google Scholar
  293. Kulenkampff, J., Gründig, M., Richter, M., & Enzmann, F. (2008). Evaluation of positron-emission-tomography for visualisation of migration processes in geomaterials. Physics and Chemistry of the Earth, Parts A/B/C, 33, 937–942.CrossRefGoogle Scholar
  294. Kumar, Ch. S. S. R. (Ed.). (2013). UV-VIS and photoluminescence spectroscopy for nanomaterials characterization. Berlin: Springer.Google Scholar
  295. Kuperman, A. Ya., Smirnov, Yu. A., Fedotov, S. N., Nikol’skaya, T. L., & Efimova, N. S. (1989). Potentiostatic voltammetric method for determination of submicrogram quantities of neptunium and plutonium. Soviet Radiochemistry, 30, 750–755.Google Scholar
  296. Laborda, F., Bolea, E., & Jiménez-Lamana, J. (2016). Post hoc interlaboratory comparison of single particle ICP-MS size. Trend in Environemental Analytical Chemistry, 9, 15–23.CrossRefGoogle Scholar
  297. Landman, U., & Adams, D. L. (1976). Extended x-ray-absorption fine structure—Auger process for surface structure analysis: Theoretical considerations of a proposed experiment In Proceedings of the National Academy of Sciences, USA (Vol. 73, pp. 2550–2553).Google Scholar
  298. LaBreque, J. J. (1994). Distribution of 137Cs, 40K, 238U and 232Th in soils from Northern Venezuela. Journal of Radioanalytical and Nuclear Chemistry, 178, 327–336.Google Scholar
  299. Lachner, J., Christl, M., Vockenhuber, C., & Synal, H.-A. (2013). Detection of UH3+ and ThH3+ molecules and 236U background studies with low-energy AMS. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 294, 364–368.Google Scholar
  300. Laux, D., Baron, D., Despaux, G., Kellerbauer, A., & Kinoshita, M. (2012). Determination of high burn-up nuclear fuel elastic properties with acoustic microscopy. Journal of Nuclear Materials, 420, 94–100.CrossRefGoogle Scholar
  301. Le Guillou, M., Toulhoat, N., Pipon, Y., Moncoffre, N., & Khodja, H. (2015). Deuterium migration in nuclear graphite: Consequences for the behavior of tritium in CO2-cooled reactors and for the decontamination of irradiated graphite waste. Journal of Nuclear Materials, 461, 72–77.CrossRefGoogle Scholar
  302. Lenz, D. (1954). Zur stenung mittelschneller Elektronen in kleinste Winkel. Zeitschrift für Naturforschung A, 9, 185–204.CrossRefGoogle Scholar
  303. Li, B., Wang, M., Lu, B., & Wu, J. (1991). Determination of eight trace elements in U3O8 standard reference material by isotope dilution spark source mass spectrometry. Atomic Energy Science and Technology 25, 66–70.Google Scholar
  304. Linge, K. L., & Jarvis, K. E. (2009). Quadrupole ICPMS introduction to instrumentation, measurement techniques and analytical capabilities. Geostandards and Geoanalytical Research, 33, 445–467.CrossRefGoogle Scholar
  305. Linsmeier, Ch., Fu, C.-C., Kaprolat, A., Nielsen, S. F., Mergia, K., Schäublin, R. et al. (2013). Advanced materials characterization and modeling using synchrotron, neutron, TEM, and novel micro-mechanical techniques—A European effort to accelerate fusion materials development. Journal of Nuclear Materials, 442, S834–S845.Google Scholar
  306. Litherland, A. E. (1980). Ultrasensitive mass spectrometry with accelerators. Annual Review of Nuclear and Particle Science, 30(1980), 437–473.CrossRefGoogle Scholar
  307. Long, G. G., Fischer, D. A., Kruger, J., Black, D. R., Tanaka, D. K., & Danko, G. A. (1989). Surface-extended x-ray-absorption fine-structure experiments at atmospheric pressure by means of a photocathode proportional counter with monolayer sensitivity. Physical Review B, 39, 10651–10655.CrossRefGoogle Scholar
  308. Lumpkin, G. R. (1999). Physical and chemical characteristics of baddeleyite (monoclinic zirconia) in natural environments: An overview and case study. Journal of Nuclear Materials, 274, 206–217.CrossRefGoogle Scholar
  309. Lunney, D., Audi, G. M., & Kluge, H. J. (Eds). (2001). Atomic physics at accelerators: Mass spectrometry. In Proceedings of the APAC 2000. Berlin: Springer.Google Scholar
  310. Lund, A., & Shiotani, M. (Eds.). (2014). Applications of EPR in radiation research.Google Scholar
  311. Lumpkin, G. R. (1999). Physical and chemical characteristics of baddeleyite (monoclinic zirconia) in natural environments: An overview and case study. Journal of Nuclear Materials, 274, 206–217.CrossRefGoogle Scholar
  312. Lyons, P. C., Hercules, D. M., Morelli, J. J., Sellers, G. A., Mattern, D., Thomson Rizer, C. L., et al. (1987). Application of laser microprobe (LAMMA 1000) to “fingerprinting” of coal constituents in bituminous coal. International Journal of Coal Geology, 7, 185–194.Google Scholar
  313. Macdonald, D. D., Scott, A. C., & Wentrcek, P. (1981). Redox potential measurements in high temperature aqueous systems. Journal of the Electrochemical Society, 128, 250–257.CrossRefGoogle Scholar
  314. Madey, J. M. J. (1971). Stimulated emission of bremsstrahlung in a periodic magnetic field. Journal of Applied Physics, 42, 1906–1913.CrossRefGoogle Scholar
  315. Maeda, N., Nakamura, N., Uchida, M., Ohta, Y., & Yoshida, K. (1996). Application of positron annihilation line-shape analysis to fatigue damage for nuclear plant materials. Nuclear Engineering and Design, 167, 169–174.CrossRefGoogle Scholar
  316. Magilin, D., Ponomarev, A., Rebrov, V., & Ponomarov, A. (2015). High-voltage scanning ion microscope: Beam optics and design. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 350, 32–35.Google Scholar
  317. Maheswari, M. A., & Subramanian, M. S. (2005). Selective extraction of actinides using EEBEHBA grafted polymer: A green process for nuclear reprocessing program. Separation Science and Technology, 39, 3621–3638.CrossRefGoogle Scholar
  318. Malchukova, E., & Boizot, B. (2010). Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses under ionizing radiation. Materials Research Bulletin, 45, 1299–1303.Google Scholar
  319. Marinello, F., Passeri, D., & Savio, E. (Eds.). (2013). Acoustic scanning probe microscopy. Berlin: Springer.Google Scholar
  320. Manning, D. L., & Mamantov, G. (1968). Disproportionation of electrochemically-generated uranium(V) in molten LiF-BeF2-ZrF4 at 500 °C. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 18, 137–141.CrossRefGoogle Scholar
  321. Marks, N. (1995). Synchrotron radiation sources. Radiation Physics and Chemistry, 45, 315–331.CrossRefGoogle Scholar
  322. Marquis, E. A., Hyde, J. M., Saxey, D. W., Lozano-Perez, S., de Castro, V., Hudson, D., et al. (2009). Nuclear reactor materials at the atomic scale. Materials Today, 12, 30–37.CrossRefGoogle Scholar
  323. Martin, P., Hancock, G. J., Paulka, & Akber, S. R. A. (1995). Determination of 227Ac by α-particle spectrometry. Applied Radiation and Isotopes, 46, 1065–1070.Google Scholar
  324. Marschall, R. (1990). Aspects of seismic reflection data processing. Berlin: Springer.Google Scholar
  325. Marschall, P., & Lunati, I. (Eds.). (2011). GAM—Gas Migration Experiments in a heterogeneous shear zone of the Grimsel Test Site (Nagra NTB 03-11) (p. 135).Google Scholar
  326. Mauchien, P., Pailloux, A., & Vercouter, T. (2014). 17—Applications of laser spectroscopy in nuclear research and industry. Laser Spectroscopy for Sensing, 522–543.Google Scholar
  327. Mavko, G., Mukerji, T., & Dvorkin, J. (1998). The rock physics handbook—tool for seismic analysis in porous media. Cambridge: Cambridge University Press.Google Scholar
  328. May, L. (1971). An introduction to Mössbauer spectroscopy. Berlin: Springer.Google Scholar
  329. Maya, L., & Begun, G. M. (1981). A Raman spectroscopic study of hydroxo and carbonato species of the uranyl (VI) ion. Journal of Inorganic and Nuclear Chemistry, 43, 2827–2832.CrossRefGoogle Scholar
  330. McDonald, R. S. (1986). Review: infrared spectrometry. Analytical Chemistry, 58, 1906–1925.CrossRefGoogle Scholar
  331. Mennecart, Th., Cachoir, C., Lemmens, K., Govers, K., Dobney, A., & Adriaensen, L. (2016). Repartition of the uranium isotopes within the Belgian UOX spent fuel. In Proceedings of MRS symposium. SBNWM, 2016.Google Scholar
  332. Merciny, E., Pattyn-fauville, G., Swennen, L., & Duyckaerts, G. (1981). Constant-current coulometric determination of uranium in the pure metal. Analytica Chimica Acta, 129, 113–124.CrossRefGoogle Scholar
  333. Mieszczynski, C., Degueldre, C., Kuri, G., Bertsch, J., & Borca, C. N. (2012). Investigation of irradiated uranium-plutonium mixed oxide fuel by synchrotron based micro X-ray diffraction. Progress in Nuclear Energy, 57, 130–137.CrossRefGoogle Scholar
  334. Miller, M. K., & Forbes, R. G. (2014). Atom-probe tomography, The local electrode atom probe. Berlin: Springer.Google Scholar
  335. Miller, K. M., Shebell, P., & Klemic, G. A. (1994). In situ gamma-ray spectrometry for the measurement of uranium in surface soils. Health Physics, 67, 140–150.CrossRefGoogle Scholar
  336. Misaelides, P, Samara, C., Noli, F., Kouimtzis, Th., & Anousis, I. (1993). Toxic element concentrations in airborne particulate matter in the area of Thessaloniki, Greece. Science of the Total Environment, 130–131, 139–146.Google Scholar
  337. Miziolek, A., Palleschi, V., & Schechter, I. (2006). Laser induced breakdown spectroscopy. Cambridge: Cambridge University Press.Google Scholar
  338. Mogensen, O. E. (2004). Positron annihilation in chemistry. Berlin: Springer.Google Scholar
  339. Moharram, B. M., Lamaze, G., Elfiki, M., & Khalil, N. (2002). Neutron-based analysis of fission rates and ultra-trace concentrations of 235U using gamma spectrometry and CR-39 (plastic track detector). Radiation Measurements, 35, 113–117.CrossRefGoogle Scholar
  340. Molina, A., & González, J. (2007). Pulse voltammetry in physical electrochemistry and electroanalysis theory and applications. Berlin: SpringerGoogle Scholar
  341. Monteith, J. L., & Unsworth, M. H. (2013). Transport of radiant energy. Principles of Environmental Physics—Chapter 4 (4th ed., pp. 37–48).Google Scholar
  342. Morita, S., Giessibl, F. J., Meyer, E., & Wiesendanger, R. (Eds.). (2015). Noncontact atomic force microscopy (Vol. 3). Berlin: Springer.Google Scholar
  343. Morse, D. H., Antolak, A. J., & Doyle, B. L. (2007). Photofission in uranium by nuclear reaction gamma-rays. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 261, 378–381.CrossRefGoogle Scholar
  344. Moseley, H. G. J. (1913). The high frequency spectra of the elements. Philosophical Magazine Series 6, 26, 1024–1034.Google Scholar
  345. Mössbauer, R. L. (1958). Kernresonanzfluoreszenz von Gammastrahlung in Ir191 . Zeitschrift für Physik, 151, 124–143.Google Scholar
  346. Mössbauer, R. L., Seelbach, H. E., Persson, B., Bent, M., & Longworth, G. (1968). Self-inversion of gamma lines. Physics Letters A, 28, 94–95.CrossRefGoogle Scholar
  347. Moulin, C., Charron, N., Plancque, G., & Virelizier, H. (2000). Speciation of uranium by ES-MS: comparison with TRLIF. Applied Spectroscopy, 54, 843–848.CrossRefGoogle Scholar
  348. Moulin, C., Amekraz, B., Hubert, S., & Moulin, V. (2001). Study of thorium hydrolysis species by electrospray-ionization mass spectrometry. Analytica Chimica Acta, 21, 1–11.Google Scholar
  349. Moulin, C., Decambox, P., Mauchien, P., Moulin, V., & Theyssier, M. (1991). On the use of laser-induced time-resolved Spectrofluorometry: Application to curium. Radiochimica Acta, 52/3, 119–125.Google Scholar
  350. Moulin, C., Decambox, P., & Mauchien, P. (1997). State-of-the-art in time resolved laser fluorescence for actinides analysis applications and trends. Journal of Radioanalytical and Nuclear Chemistry, 226, 135–138.CrossRefGoogle Scholar
  351. Moulin, C., Decambox, P., Moulin, V., & Decaillon, J. G. (1995). Uranium speciation in solution by time- resolved laser-induced fluorescence. Analytical Chemistry, 67, 348–353.CrossRefGoogle Scholar
  352. Musazzi, S., & Perini, U. (Eds.). (2014). Laser-induced breakdown spectroscopy theory and applications. Berlin: Springer.Google Scholar
  353. Müller, E. W. (1951). Das Feldionenmikroskop. Zeitschrift für Physik, 131, 136Google Scholar
  354. Müller, E. W. (1970). The atom-probe field ion microscope. Naturwissenschaften, 5, 222–230.CrossRefGoogle Scholar
  355. Müller, E. W., MacLane, S. B., Panitz, J. A. (1969) Field adsorption and desorption of helium and neon. Surface Science, 17, 430–438.Google Scholar
  356. Müller, W., Worrack, M., & Zapara, M. (2011). Analysis of nanoidentation experiment by mean of atom force microscopy. In Proceedings in Applied Mathematics and Mechanics (Vol. 11, pp. 413–414).Google Scholar
  357. Mundschau, M. (1991). Photoelectron emission microscopy. Synchrotron Radiation News, 4, 29–34.CrossRefGoogle Scholar
  358. Mwenifumbo, C. J., & Kjarsgaard, B. A. (1999). Gamma-ray logging and radioelement distribution in the Fort à la Corne kimberlite pipe 169. Exploration and Mining Geology, 8, 137–147.Google Scholar
  359. Nagra. (1991) Sondierbohrung Leuggern (Technischer Bericht 88-10, Beilage Band 5.16). Wettingen, Switzerland.Google Scholar
  360. Nakada, M., Saeki, M., Masaki, N. M., & Tsutsui, S. (1998). Mössbauer spectroscopy of 237Np. Journal of Radioanalytical and Nuclear Chemistry, 232, 201–207.Google Scholar
  361. Nakashima, S. (1992). Complexation and reduction of uranium by lignite. Science of the Total Environment, 117(8), 425–437.CrossRefGoogle Scholar
  362. Nasu, S. (2012). Chapter: General introduction to mössbauer spectroscopy. In Mössbauer spectroscopy (pp. 1–22). Berlin: Springer.Google Scholar
  363. Néher-Neumann, E. (2009). Advanced potentiometr, potentiometric titrations and their systematic errors. Berlin: Springer.Google Scholar
  364. Neudecker, D., Taddeucci, T. N., Haight, R. C., Lee, H. Y., White, M. C., & Rising, M. E. (2016). The need for precise and well-documented experimental data on prompt fission neutron spectra from neutron -induced fission of 239Pu. Nuclear Data Sheets, 131, 289–318.CrossRefGoogle Scholar
  365. Nernst, W. (1888) zur Kinetik der in Lösung befindlichen Körper 1.Theorie der Diffusion, Zeitschrift für Physikalische Chemie, 2, 613–637; Ueber freie lonen. (1889). ibid, 3, 120–130.Google Scholar
  366. Neu, M., Hoffman, D., Roberts, K. E., Nitsche, H., & Silva, R. J. (1994). Comparision of extractions and laser photoacoustic spectroscopy for the determination of plutonium species in carbonate solution IV. Radiochim.ica Acta, 66(7), 251–258.Google Scholar
  367. Neuville, D. R., Cormier, L., Boizot, B., & Flank, A. M. (2003). Structure of β-irradiated glasses studied by X-ray absorption and Raman spectroscopies. Journal of Non-crystalline Solids, 323, 207–213.CrossRefGoogle Scholar
  368. Nicholson, R. S., & Shain, I. (1964). Theory of stationary electrode polarography. Analytical Chemistry, 36, 706–723.CrossRefGoogle Scholar
  369. Nitsche, H. (1995). Synchrotron X-ray absorption spectroscopy: A new tool for actinide and lanthanide speciation in solids and solution. Journal of Alloys and Compounds, 223, 274–279.CrossRefGoogle Scholar
  370. Noller, B. N., & Hart, B. T. (1993). Uranium in sediments from the Magela Creek catchment, northern territory. Environmental Technology, 14, 649–656.CrossRefGoogle Scholar
  371. Ohkubo, Y., Kobayashi, Y., Harasawa, K., Ambe, S., Okada, T., Ambe, F., et al. (1995). Time-differential perturbed-angular-correlation and emission Moessbauer studies on 99Ru dispersed in YBa2Cu3O6.8 and YBa2Cu3O6. The Journal of Physical Chemistry, 99, 10629–10634.Google Scholar
  372. Ohtani, T. (1986). 129Te Mössbauer emission spectroscopic study of the V-Te system: V3Te4, V5Te8 and VTe2 phases. Solid State Communication, 57, 81–83.Google Scholar
  373. Onsager, L. (1927). Zur Theorie der Elektrolyte. II. Physikalische Zeitschrift, 28, 277–298.Google Scholar
  374. Orlov, A. V., Restani, R., Kuri, G., Degueldre, C., & Valizadeh, S. (2010). Investigation on a corrosion product deposit layer on a boiling water reactor fuel cladding. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268, 297–305.CrossRefGoogle Scholar
  375. Ortega Paredes, V. I., Neyra Astudillo, M. R., Nu–ez, N., Ruzzante, J. E., Lopez Pumarega, M. I., Gomez, M. P., et al. (2012). Analysis of barkhausen noise signals of samples Fe–1 wt % Cu. Procedia Materials Science, 1, 651–658.Google Scholar
  376. Okajima, S., Reed, D. T., Beitz, J. V., Sabau, C. A., & Bowers, D. L. (1991). Speciation of Pu (VI) in near-neutral solutions via laser photoacoustic spectroscopy. Radiochimica Acta, 52(3), 111–117.Google Scholar
  377. Onsager, L. (1926). Zur Theorie der Elektrolyte. Physikalische Zeitschrift, 27, 388–392.Google Scholar
  378. Opilik, L., Schmid, Th, & Zenobi, R. (2013). Modern Raman imaging: Vibrational spectroscopy on the micrometer and nanometer scales. Annual Review of Analytical Chemistry, 6, 379–398.CrossRefGoogle Scholar
  379. Page, A. G., Godbole, S. V., Kulkarni, Madhuri J., Porwal, N. K., Shelar, S. S., & Joshi, B. D. (1983). Trace metal assay of U3O8 powder by electrothermal AAS. Talanta, 30, 783–786.CrossRefGoogle Scholar
  380. Papadopulos, N. N., & Tsagas, N. F. (1994). Rapid nondestructive isotopic uranium analysis by neutron activation delayed neutron counting. Journal of Radioanalytical and Nuclear Chemistry, 179, 35–43.CrossRefGoogle Scholar
  381. Pareto, V. (1965). La courbe de répartition de la richesse. In G. Busino (Ed.), Œuvres completes de Vilfredo Pareto. Geneva: Librairie Droz (Originally published in 1896).Google Scholar
  382. Park, J. S., Zhang, X., Sharma, H., Kenesei, P., Hoelzer, D., Li, M., et al. (2015). High-energy synchrotron x-ray techniques for studying irradiated materials. Journal of Materials Research, 30, 1380–1391.CrossRefGoogle Scholar
  383. Parker, H. M., & Joyce, M. J. (2015). The use of ionising radiation to image nuclear fuel: A review. Progress in Nuclear Energy, 85, 297–318.CrossRefGoogle Scholar
  384. Parry, E. P., & Osteryoung, R. A. (1965). Evaluation of analytical pulse polarography. Analytical Chemistry, 37, 1634–1637.CrossRefGoogle Scholar
  385. Pedersen, H., Höglund, C., Birch, J., Jensen, J., & Henry, A. (2012). Chemical Vapor Deposition, 18, 221–224.CrossRefGoogle Scholar
  386. Perkampus, H. H. (1992). UV-VIS spectroscopy and its applications. Berlin: Springer.Google Scholar
  387. Perkins, W. T., Pearce, N. J. G., & Jefferies, T. E. (1993). Laser ablation inductively coupled plasma mass spectrometry: A new technique for the determination of trace and ultra-trace elements in silicates Geochim. Cosmochimica Acta, 57, 475–482.CrossRefGoogle Scholar
  388. Petersen, T. B. (2009). Acoustic emission from impact on rigid body, Journal of Acoustic Emission, 27, 98–113.Google Scholar
  389. Pfennig, G., Klewe-Nebenius, H., & Seelmann-Eggebert, W. (1995). Chart of the nuclides, Forschungszentrum Karlsruhe. Google Scholar
  390. Pike, E. R. & Abbiss, J. B. (Eds.). (1997). Light scattering and photon correlation spectroscopy. Berlin: Springer.Google Scholar
  391. Pleniceany, M., Isvoranu, M., & Spinu, C. (2005). Liquid membrane ion-selectve electrodes for potentiometric dosage of coper and nickel. Journal of the Serbian Chemical Society, 70, 269–276.CrossRefGoogle Scholar
  392. Pollard, P. M., Liezers, M., McMillan, J. W., Phillips, G., Thomason, H. P., & Ewart, F. T. (1988). Some actinide speciation using laser induced photoacoustic spectroscopy. Radiochimica Acta, 44(5), 95–101.Google Scholar
  393. Portier, S., Degueldre, C., & Kivel, N. (2012). Solving isobaric interferences in secondary ion mass spectrometry: The case of Am and Pu in irradiated thorium-based fuel. Spectrochimica Acta B, 73, 35–38.CrossRefGoogle Scholar
  394. Pouchon, M. A., Chen, J., & Hoffelner, W. (2009). He implantation induced microstructure- and hardness-modification of the intermetallic γ-TiAl. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267, 1500–1504.CrossRefGoogle Scholar
  395. Pozsgai, S. (2007). Mass thickness determination and microanalysis of thin films in the TEM-revisited. Ultramicroscopy, 107, 191–195.CrossRefGoogle Scholar
  396. Probst, T., Zeh, P., & Kim, J. I. (1995). Multielement determinations in ground water. Fresenius’ Journal of Analytical Chemistry, 351, 745–751.CrossRefGoogle Scholar
  397. Quaim, S. M., Bisinger, T., Hilgers, K., Nayak, D., & Coenen, H. H. (2007). Positron emission intensities in the decay of 64Cu, 76Br and 124I. Radiochimica Acta, 95, 67–73.Google Scholar
  398. Raman, C. V. (1928). A new radiation. Indian Journal of Physics, 2, 387–398.Google Scholar
  399. Randles, J. E. B. (1948). A cathode ray polarograph. Transactions of the Faraday Society, 44, 322–327.Google Scholar
  400. Rapkin, E. (1964). Liquid scintillation counting 1957–1963: A review. The International Journal of Applied Radiation and Isotopes, 15, 69–87.CrossRefGoogle Scholar
  401. Rao, T. S., Shriwastwa, B. B., Dubey, J. N., Patil, B. P., Chandrasekharan, K. N., Pandey, V. D., et al. (2003). Quantitative estimation of plutonium-rich areas in thorium-based MOX fuels using alpha autoradiography technique. Radiation Measurements, 36, 747–750.CrossRefGoogle Scholar
  402. Ray, A. K. (1963). 3-Oximinomethylsalicylic acid as a reagent for the gravimetric determination of thoriumAnalytica Chimica Acta, 28, 580–583.Google Scholar
  403. Rehr, J. J., & Albers, R. C. (2000). Theoretical approaches to X-ray absorption fine structure. Reviews of Modern Physics, 72, 621–654.CrossRefGoogle Scholar
  404. Reimer, L. (1998). Scanning electron microscopy, physics of image formation and microanalysis. Berlin: Springer.CrossRefGoogle Scholar
  405. Restani, R., Martin, M., Kivel, N., & Gavillet, D. (2009). Analytical investigations of irradiated inert matrix fuel. Journal of Nuclear Materials, 385, 435–442.CrossRefGoogle Scholar
  406. Riggi, S., Antonuccio-Delogu, V., Bandieramonte, M., Becciani, U., & Costa, A. (2013). Muon tomography imaging algorithms for nuclear threat detection inside large volume containers with the Muon Portal detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 728, 59–68.CrossRefGoogle Scholar
  407. Riley, K. J., & Harling, O. K. (1998). An improved prompt gamma neutron activation analysis facility using a focused diffracted neutron beam. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 143, 414–421.CrossRefGoogle Scholar
  408. Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of applied Crystallography, 2, 65–71.CrossRefGoogle Scholar
  409. Robertson, C., Panigrahi, B. K., Balaji, S., Kataria, S., Serruys, Y., Mathon, M.-H., et al. (2012). Particle stability in model ODS steel irradiated up to 100 dpa at 600 & #xB0;C: TEM and nano-indentation investigation. Journal of Nuclear Materials, 426, 240–246.CrossRefGoogle Scholar
  410. Rogers, A. W. (1979). Techniques of autoradiography (3rd ed.). New York: Elsevier North Holland.Google Scholar
  411. Roncal-Herrero, J. D., Rodríguez-Blanco, E. H., Oelkers, L. G., & Benning, L. G. J. (2011). The direct precipitation of rhabdophane (REEPO4∙nH2O) nano-rods from acidic aqueous solutions at 5–100 ℃. Journal of Nanoparticle Research, 13, 4049–4062.Google Scholar
  412. Ronchi, C., Ottaviani, J. P., Degueldre, C., & Calabrese, R. (2003). Thermophysical properties of inert matrix fuels for actinide transmutation. Journal of Nuclear Materials, 320, 54–65.CrossRefGoogle Scholar
  413. Rothchild, S. (1963). Advances in tracer methodology (Vol. 1). Berlin: LSC, Springer.Google Scholar
  414. Rudenko, A., & Rolles, D. (2015). Time-resolved studies with FELs. Journal of Electron Spectroscopy and Related Phenomena, 204, 228–236.CrossRefGoogle Scholar
  415. Sah, D. N., Viswanathan, U. K., Ramadasan, E., Unnikrishnan, K., & Anantharaman, S. (2008). Post irradiation examination of thermal reactor fuels. Journal of Nuclear Materials, 383, 45–53.CrossRefGoogle Scholar
  416. Sahoo, P., Mallika, C., Ananthanarayanan, R., Lawrence, F., Murali, N., & Kamachi, U. (2012). Mudali, Potentiometric titration in a low volume of solution for rapid assay of uranium. Application to quantitative electro-reduction of uranium(VI). Journal of Radioanalytical and Nuclear Chemistry, 292, 1401–1409.CrossRefGoogle Scholar
  417. Sarma, D. V. N., & Raghava Rao, Bh S V. (1955). Alizarin-s, a reagent for thorium. A gravimetric, colorimetric, and spectrophotometric study. Analytica Chimica Acta, 13, 142–149.CrossRefGoogle Scholar
  418. Sarott, F. A. (2005). Water chemistry in boiling water reactor—a Leibstadt—specific overview. CHIMIA International Journal for Chemistry, 59, 923–928.CrossRefGoogle Scholar
  419. Savvin S. B. (1961). Analytical use of arsenazoIII, determination of thorium, zirconium, uranium and rare earth elements. Talanta, 8, 673–585.Google Scholar
  420. Ševčík, A. (1948). Oscillographic polarography with periodical triangular voltage. Collection of Czechoslovak Chemical, 13, 349–377.CrossRefGoogle Scholar
  421. Sharma, A., & Schulman, St. G. (1999). Introduction to fluorescence spectroscopy. Hoboken: Wiley.Google Scholar
  422. Shamsipur, M., Ghiasvand, A. R., & Yamini, Y. (1999). Solid-phase extraction of ultratrace uranium(VI) in natural waters using octadecyl silica membrane disks modified by tri-n-octylphosphine oxide and its spectrophotometric determination with dibenzoylmethane. Analytical Chemistry, 71, 4892–4895.CrossRefGoogle Scholar
  423. Sheng, Z., Zhao, Y., & Gu, D. (1985). NAA determination of the 235U/238U ratio of uranium in geological samples. Geochimica, 18, 188–195.Google Scholar
  424. Shimizu, I. (2013, September). In Proceeding of 13th Conference Astroparticle & Underground Physics.Google Scholar
  425. Scholz, F. (2010). Electroanalytical methods. Berlin: Springer.Google Scholar
  426. Schlemmer, G. (1999). Analytical graphite furnace atomic absorption spectrometry a laboratory guide. Berlin: Springer.Google Scholar
  427. Schlichting, I., & Miao, J. (2012). Emerging opportunities in structural biology with X-ray free-electron lasers. Current Opinion in Structural Biology, 22, 613–626.CrossRefGoogle Scholar
  428. Schoonover, J. R., & Havrilla, G. J. (1999). Combining X-ray fluorescence spectrometry and vibrational microscopy to assess highly heterogeneous, actinide-contaminated materials. Applied Spectroscopy, 53, 257–265.CrossRefGoogle Scholar
  429. Scott, D. B. (2013). Internal inspection of reinforced concrete for nuclear structures using shear wave tomography. Energy Conversion and Management, 74, 582–586.CrossRefGoogle Scholar
  430. Schmüser, P., Dohlus, M., & Rossbach, J. (2009). Ultraviolet and soft x-ray free-electron lasers introduction to physical principles, experimental results, technological challenges, springer tracts in modern physics (p. 229).Google Scholar
  431. Scott, M. C., Chen, C. C., Mecklenburg, M., Zhu, C., Xu, R., Ercius, P., et al. (2012). Electron tomography at 2.4-ångström resolution. Nature, 483, 444–447.CrossRefGoogle Scholar
  432. Seidman, D. N. (2007). Three-dimensional atom-probe tomography: Advances and applications. Annual Review of Materials Research, 37, 127–158.CrossRefGoogle Scholar
  433. Sekine, T., Yoshihara, K., Lakosi, L., Németh, Z., & Veres, A. (1991). Integral cross section of the 99Tc(γ, γ′)99mTc reaction in the 15–50 MeV energy region. International Journal of Radiation Applications and Instrumentation. A., 42, 149–153.Google Scholar
  434. Sheriff, R. E., & Geldart, L. P. (1995). Exploration seismology. Cambridge: Cambridge University Press (2nd ed).Google Scholar
  435. Silverman, L., Billings, C. E., & First, M. W. (1971). 5—Automatic particle counting and sizing instruments. Particle Size Analysis in Industrial Hygiene, 196–234.Google Scholar
  436. Singh, J. P., Gautam, S., Srivastava, R. C., Asokan, K., & Chae, K. H. (2015). XAS and XMCD investigation of zinc ferrite nanoparticles irradiated with 100 MeV O beam. In Proceedings of Magnetics Conference (INTERMAG), 2015 IEEE. Google Scholar
  437. Siren, T., Hakala, M., Valli, J., Kantia, P., Hudson, J. A., & Johansson, E. (2015). In situ strength and failure mechanisms of migmatitic gneiss and pegmatitic granite at the nuclear waste disposal site in Olkiluoto, Western Finland. International Journal of Rock Mechanics and Mining Sciences, 79, 135–148.CrossRefGoogle Scholar
  438. Sim, C.-M., Park, S.-S., Song, Y.-Y., Park, D.-G., & Chang, K.-O. (2000). Harmonic frequency analysis of acoustic Barkhausen noise on neutron irradiated material. In Springer 15th World Conference on Non-Destructive Testing 15–21 October 2000, Rome.Google Scholar
  439. Slichter, Ch. P. (1996). Principles of magnetic resonance, springer series in solid-state sciences.Google Scholar
  440. Simeone, D., Mallet, C., Dubuisson, P., Baldinozzi, G., Gervais, C., & Maquet, J. (2000). Study of boron carbide evolution under neutron irradiation by Raman spectroscopy. Journal of Nuclear Materials, 277, 1–10.CrossRefGoogle Scholar
  441. Song, D., Wang, Z., & Zhu, J. (2015). Effect of the asymmetry of dynamical electron diffraction on intensity of acquired EMCD signals. Ultramicroscopy, 148, 42–51.CrossRefGoogle Scholar
  442. Soto-Guerrero, J., Gajdosova, D., & Havel, J. (2001). Uranium oxide clusters by laser desorption ionization during MALDI-TOF MS analysis of uranium(VI). Journal of Radioanalytical and Nuclear Chemistry, 249, 139–143.CrossRefGoogle Scholar
  443. Smedley, S. (1980). The interpretation of ionic conductivity in liquids. Berlin: Springer.Google Scholar
  444. Smith, A. L., Raison, P. E., Hen, A., Bykov, D., Colineau, E., Sanchez, J.-P., et al. (2015). Structural investigation of Na3NpO4 and Na3PuO4 using X-ray diffraction and 237Np Mössbauer spectroscopy. Dalton Transactions, 44, 18370–18377.CrossRefGoogle Scholar
  445. Stefanovsky, S. V., & Stefanovskaya, O. I. (2014). EPR of radiation-induced paramagnetic centers in irradiated sodium silicate glass for immobilization of solid radioactive wastes synthesized in various conditions. Inorganic Materials: Applied Research, 3, 271–277.Google Scholar
  446. Stefanovsky, S. V., Stefanovsky, O. I., Kadyko, M. I., Zhachkin, V. A., & Bogomolova, L. D. (2016). The effect of electron irradiation on the structure of sodium aluminum-iron phosphate glasses. Materials Research Society Symposium: the Japanese Society for Non-Destructive Inspection. 1, 4227–4234.Google Scholar
  447. Steinhausen, Ch., Dobler, M., Glückler, H., & Weidinger, A. (1994). Elastic recoil detection analysis with heavy ions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 89, 131–139.CrossRefGoogle Scholar
  448. Suekane, F., & Junqueira de Castro Bezerra, Th. (2016). Double Chooz and a history of reactor θ 13 experiments. Nuclear Physics B, 908, 74–93.CrossRefGoogle Scholar
  449. Szöghy, I. M., Simon, J., & Kish, L. (1981). Si(Li) detector efficiency in standard X-ray fluorescence geometries. X-Ray Spectrometry, 10, 168–170.CrossRefGoogle Scholar
  450. Szymanski, H. (1970). Raman spectroscopy—Theory and practice. Berlin: Springer.Google Scholar
  451. Tao, S. J. (1972). Positronium annihilation in molecular substances. The Journal of Chemical Physics, 56, 5499–5510.CrossRefGoogle Scholar
  452. Taylor, J. E. L., Hall, G. N., & Mummery, P. M. (2016). Investigating the effects of stress on the pore structures of nuclear grade graphites. Journal of Nuclear Materials, 470, 216–228.CrossRefGoogle Scholar
  453. Takamatsu, K., Takegami, H., Ito, C., Suzuki, K., Ohnuma, H., Hino, R., et al. (2015). Cosmic-ray muon radiography for reactor core observation. Annals of Nuclear Energy, 78, 166–175.CrossRefGoogle Scholar
  454. Taurines,T., & Boizot, B. (2011). Synthesis of powellite-rich glasses for high level waste immobilization. Journal of Non-crystalline Solids, 357, 2723–2725.Google Scholar
  455. Teixeira, L. S. G., Costa, A. C. S., Ferreira, S. L. C., Freitas, M. D. L., & Carvalho, M. S. D. (1999). Spectrophotometric determination of uranium using 2-(2-Thiazolylazo)-p-cresol (TAC) in the presence of surfactants. Journal of the Brazilian Chemical Society, 10 (On-line). ISSN 1678-4790.Google Scholar
  456. Teo, B.-K. (1986). EXAFS: Basic principles and data analysis. Berlin: SpringerGoogle Scholar
  457. Theisen, R. (1965). Quantitative electron microprobe analysis. Berlin: Springer.Google Scholar
  458. The Japanese, Society for Non-Destructive Inspection. (Ed.). (2016). Practical acoustic emission testing. Berlin: Springer.Google Scholar
  459. Theophanides. (Ed). (1984). Fourier transform infrared spectroscopy industrial chemical and biochemical applications. Berlin: Springer.Google Scholar
  460. Theuwissen, A. J. P. (1995). Solid-state imaging with charge-coupled device. Dordrecht: Kluwer Academic Publisher.Google Scholar
  461. Thieme, J., Schmahl, G., Rudolph, D. & Umbach, E. (Eds). (1998). X-Ray microscopy and spectromicroscopy—status report from the Fifth International Conference, Wüzburg, August 19–23, 1996. Berlin: Springer.Google Scholar
  462. Thomson, J. J. (1923). The electron in chemistry. Journal of the Franklin Institute, 195, 737–785.CrossRefGoogle Scholar
  463. Thompson, M. (Ed). (1989). Handbook of inductively coupled plasma spectrometry (2nd ed.). Berlin: Springer.Google Scholar
  464. Trautmann, N., Peuser, P., Rimke, H., Sattelberger, P., Herrmann, G., Ames, F., et al. (1986). A resonance ionization mass spectrometer as an analytical instrument for trace analysis. Journal of the Less Common Metals, 122, 533–538.CrossRefGoogle Scholar
  465. Triay, I., Hobart, D. E., Mitchell, A. J., Newton, T. W., Ott, M. A., Palmer, P. D., et al. (1991). Size distribution of plutonium colloids using autocorrelation photon spectroscopy. Radiochimica Acta, 52(53), 127–131.Google Scholar
  466. Tycko, R. (Ed.). (1994). Nuclear magnetic resonance probes of molecular dynamics. Berlin: Springer.Google Scholar
  467. Tylka, M. M., Willit, J. L., Prakash, J., & Williamson, M. A. (2015a). Method development for quantitative analysis of actinides in molten salts. Journal of the Electrochemical Society, 162, H1. doi: 10.1149/2.0401509jes
  468. Tylka, M. M., Willit, J. L., Prakash, J., & Williamson, M. A. (2015b). Application of voltammetry for quantitative analysis of actinides in molten salts. Journal of The Electrochemical Society, 162, H852–H859.CrossRefGoogle Scholar
  469. Uchida, S., Satoh, T., & Tsukada, T. (2008). High temperature water chemistry sensors related to nuclear power plant. Preprint ICPWS XV (p. 10).Google Scholar
  470. Upadhyay, S. K. (2004). Seismic reflection processing, with special reference to anisotropy. Berlin: Springer.CrossRefGoogle Scholar
  471. Usman, S. M., Jocher, G. R., Dye, S. T., McDonough, W. F., & Learned J. G. (2015a). Corrigendum: AGM2015: Antineutrino global map 2015. Scientific Reports, 5, 15308.Google Scholar
  472. Usman, S. M., Jocher, G. R., Dye, S. T., McDonough, W. F., & Learned, J. G. (2015b). Corrigendum: AGM2015: Antineutrino global map 2015. Scientific Reports, 5, 15308.Google Scholar
  473. Valeur, B., & Brochon, J.-C. (Eds.). (2001). New Trends in fluorescence spectroscopy applications to chemical and life sciences. Berlin: Springer.Google Scholar
  474. Vegard, L. (1921). Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Zeitschrift für Physik, 5, 17–26.CrossRefGoogle Scholar
  475. Verbeeck, J., Hébert, C., Rubino, S., Novak, P., Rusz, J., et al. (2008). Optimal aperture sizes and positions for EMCD experiments. Ultramicroscopy, 108, 865–872.CrossRefGoogle Scholar
  476. Veleva, L., Schäublin, R., Plocinski, T., Walter, M., & Baluc, N. (2011). Processing and characterization of a W–2Y material for fusion power reactors. Fusion Engineering and Design, 86, 2450–2453.CrossRefGoogle Scholar
  477. Veselsky, J. C., & Degueldre, C. A. (1986). Quenching behaviour of lanthanides on the ultraviolet fluorescence of uranium(VI). Analyst, 111, 535–538.CrossRefGoogle Scholar
  478. Veselsky, J. C., & Ratsimandresy, Y. (1979). An investigation of quenching effects in the direct fluorimetric determination of uranium in minerals. Analytica Chimica Acta, 104, 345–353.CrossRefGoogle Scholar
  479. Vizkelethy, G. (2003). Nuclear reaction analysis and proton-induced gamma ray emission. In Characterisation of materials. Hoboken: Wiley.Google Scholar
  480. von Laue, M. (1913). Röntgenstrahlinterferenzen. Physikalische Zeitschrift, 14, 1075–1079.Google Scholar
  481. Xu, H., & Wang, Y. (1999). Electron energy-loss spectroscopy (EELS) study of oxidation states of Ce and U in pyrochlore and uraninite—natural analogues for Pu- and U-bearing waste forms. Journal of Nuclear Materials, 265, 117–123.CrossRefGoogle Scholar
  482. Xu, J., & Shi, S.-Q. (2004). Investigation of mechanical properties of ε-zirconium hydride using micro- and nano-indentation techniques. Journal of Nuclear Materials, 327, 165–170.CrossRefGoogle Scholar
  483. Walker, C. T., Bremier, S., Portier, S., Hasnaoui, R., & Goll, W. (2009). SIMS analysis of an UO2 fuel irradiated at low temperature to 65 MWd/kgHM. Journal of Nuclear Materials, 393, 212–223.CrossRefGoogle Scholar
  484. Walstedt, R. E., Tokunaga, Y., & Kambe, Sh. (2014). NMR studies of actinide oxides—A review. Comptes Rendus Physique, 15, 563–572.CrossRefGoogle Scholar
  485. Wanga, Zh, Morrisa, C. L., Makelaa, M. F., Bacona, J. D., Baera, E. E., Brockwella, M. I., et al. (2009). Inexpensive and practical sealed drift-tube neutron detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 605, 430–432.CrossRefGoogle Scholar
  486. Ward, J. D., Bowden, M., Resch, C. T., Smith, St., McNamara, Br. K., Buck, & E. C. (2015). Identification of uranyl minerals using oxygen K-edge X-ray absorption spectroscopy. Geostandards and Geoanalytical Research, 02. doi: 10.1111/j.1751-908X.2015.00337.x
  487. Waseda, Y., Matsubara, E., & Shinoda, K. (2011). X-Ray diffraction crystallography. introduction, examples and solved problems. Berlin: Springer.Google Scholar
  488. Weeks, R. A. (1994). The many varieties of E′ centers: A review. Journal of Non-crystalline Solids, 179, 1–9.Google Scholar
  489. Weisenburger, S., & Sandoghdar, V. (2015). Light Microscopy: An ongoing contemporary revolution. Contemporary Physics, 52, 123–143.CrossRefGoogle Scholar
  490. Weiland, E., Springuel-Huet, M.-A., Nossov, A., & Gédéon, A. (2016). 129Xenon NMR: Review of recent insights into porous materials. Microporous and Mesoporous Materials, 225, 41–65.CrossRefGoogle Scholar
  491. Wevers, M. (1997). Listening to the sound of materials: Acoustic emission for the analysis of material behaviour. NDT & E International, 30, 99–106.CrossRefGoogle Scholar
  492. Weyer, G. (1976). Applications of parallel-plate avalanche counters in Mössbauer spectroscopy, chapter. In Mössbauer effect methodology (pp. 301–319). Berlin: Springer PublisherGoogle Scholar
  493. Wilbraham, R. J., Boxall, C., Goddard, D. T., Taylor, R. J., & Woodbury, S. E. (2015). The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel. Journal of Nuclear Materials, 464, 86–96.CrossRefGoogle Scholar
  494. Winkelmann, I., Thomas, M., & Vogl, K. (2001). Aerial measurements on uranium ore mining, milling and processing areas in Germany. Journal of Environmental Radioactivity, 53, 301–311.CrossRefGoogle Scholar
  495. Whitehouse, A. I., Young, J., Botheroyd, I. M., Lawson, S., Evans, C. P., & Wright, J. (2001). Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy. Spectrochimica Acta B, 56, 821–830.CrossRefGoogle Scholar
  496. Xiong, Q., Baychev, T. G., & Jivkov, A. P. (2016). Review of porenetwork modeling of porous media: Experimental characterizations, network constructions and application to reactive transport. Journal of Contaminant Hydrology, 192, 101–117.CrossRefGoogle Scholar
  497. Yakshin, V. V., & Krokhin, M. N. (2011). Determination of small amounts of uranium by redox potentiometric titration. Radiochemistry, 53, 327–331.CrossRefGoogle Scholar
  498. Yang, Ch.-H, & Huang, M.-F. (2004). Characterization of hydrogen concentration in Zircaloy claddings using a low-frequency acoustic microscope with a PVDF/LFB transducer. Journal of Nuclear Materials, 335, 359–365.CrossRefGoogle Scholar
  499. Yang, F., & Li, J. C. M. (Eds.). (2008). Micro and nano mechanical testing of materials and devices. Berlin: Springer.Google Scholar
  500. Yang, K. J., Wang, T. S., Zhang, G. F., Peng, H. B., Chen, L., Zhang, L. M., et al. (2013). Study of irradiation damage in borosilicate glass induced by He ions and electrons. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 307, 541–544.CrossRefGoogle Scholar
  501. Yasuoka, H., Koutroulakis, G., Chudo, H., Richmond, S., Veirs, D. K., Smith, A. I., et al. (2012). Observation of 239Pu nuclear magnetic resonance. Science, 336, 901–904.Google Scholar
  502. Yoe, J. H., Will, F., III, & Black, R. A. (1953). Colorimetric determination of uranium with dibenzoylmethane. Analytical Chemistry, 25, 1200–1204.CrossRefGoogle Scholar
  503. Yoshida, Y., & Langouche, G. (Eds.). (2013). Mössbauer spectroscopy, tutorial book springer. Berlin: Springer.Google Scholar
  504. Yu-fu, Y., Salbu, B., Bjørnstad, H. E., & Lien, H. (1990). Improvement for α-energy resolution in determination of low level plutonium by liquid scintillation counting. Journal of Radioanalytical and Nuclear Chemistry, 145, 345–353.CrossRefGoogle Scholar
  505. Zeeman, P. (1897). On the influence of magnetism on the nature of light emitted by a substance. Philosophical Magazine, 43, 226.Google Scholar
  506. Zelenty, J., Smith, G. D. W., Wilford, K., Hyde, J. M., & Moody, M. P. (2016). Secondary precipitation within the cementite phase of reactor pressure vessel steels. Scripta Materialia, 115, 118–122.CrossRefGoogle Scholar
  507. Zhang, F., & Juhlin, Ch. (2014). Full waveform inversion of seismic reflection data from the Forsmark planned repository for spent nuclear fuel, eastern central Sweden. Geophys. J. Int., 192, 1106–1122.CrossRefGoogle Scholar
  508. Zhang, W., Yi, J., Mekarski, P., Ungar, K., Hauck, B., & Kramer, G. H. (2011). Quantification of 235U and 238U activity concentrations for undeclared nuclear materials by a digital gamma—gamma coincidence spectroscopy. Applied Radiation and Isotopes, 69, 904–907.CrossRefGoogle Scholar
  509. Zheng, Y., Maev, R Gr, & Solodov, I Yu. (2000). Review/Sythèse nonlinear acoustic applications for material characterization: A review. Canadian Journal of Physics, 77, 927–967.CrossRefGoogle Scholar
  510. Ziebold, Th O. (1967). Precision and sensitivity in electron microprobe analysis. Analytical Chemistry, 39, 858–861.CrossRefGoogle Scholar
  511. Zink, F. E. (1997). X-ray tubes. Radiographic, 17, 1257–1268.CrossRefGoogle Scholar
  512. Zschornack, G. H. (2007). Handbook of X-ray data. Berlin: Springer.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Engineering DepartmentLancaster UniversityLancasterUK
  2. 2.Department of Analytical and Mineral ChemistryUniversity of GenevaGenevaSwitzerland
  3. 3.Nuclear Energy DivisionPaul Scherrer InstituteAargauSwitzerland

Personalised recommendations