Skip to main content

Characterization Using Passive or Interactive Techniques

  • Chapter
  • First Online:
The Analysis of Nuclear Materials and Their Environments
  • 806 Accesses

Abstract

Analytical techniques can be distinguished between passive ones, taking profit of the inherent activity of the sample, and those which are interactive in character.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla, A. M., Ashraf, O., Rammah, Y. S., Ashry, A. H., Eisa, M., & Tsuruta, T. (2015). Fast neutron detection in CR-39 and DAM–ADC nuclear track detectors. Radiation Physics and Chemistry, 108, 24–28.

    Article  Google Scholar 

  • Agarwal, B. K. (1991). X-Ray spectroscopy: An introduction. In Springer series in optical sciences (2nd ed.).

    Google Scholar 

  • Aggarwal, S. K. (2016a). Alpha-particle spectrometry for the determination of alpha emitting isotopes in nuclear, environmental and biological samples: Past, present and future. Analytical Methods.

    Google Scholar 

  • Aggarwal, S. K. (2016b). Thermal ionisation mass spectrometry (TIMS) in nuclear science and technology—a review. Analytical Methods, 8, 942–957.

    Article  Google Scholar 

  • Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., et al. (2003). Geant4 a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506, 250–303.

    Article  Google Scholar 

  • Akopov, G. A., Krinitsyn, A. P., & Tikhonova, A. E. (1988). Radiokhim, 30, 578–583.

    Google Scholar 

  • Alfassi, Z. B. (1990) Activation analysis (Vol. 1, pp. 97–109). Boca Raton, Fl: CRC Press.

    Google Scholar 

  • Almqvist, N., Rubel, M., Fredriksson, S., Emmoth, B., Wienhold, P., & Ilyinsky, Lev S. (1995). AFM and STM characterization of surfaces exposed to high flux deuterium plasma. Journal Nuclear Materials, 220, 917–921.

    Article  Google Scholar 

  • Amemiya, S., Asawa, A., Tanaka, K., Tsurita, Y., Masuda, T., Katoh, T., et al. (1984). Application of PIXE to the study of nuclear fusion materials. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 3, 549–552.

    Google Scholar 

  • Apostol, A. I., Pantelica, A, Ortega-Feliu, I, Margineau, M., Sima, O., Straticiuc, M., et al. (2016). Ion beam analysis of elemental sugnatures in uranium dioxide samples: importance for nuclear forensics, Journal of Radioanalytical and Nuclear Chemistry, 310, 1–8.

    Google Scholar 

  • Al Haj, O., Peres, V., Serris, E., Grosjean, F., Kittel, J., Ropital, F., & Cournil, M (2015). In situ high temperature oxidation analysis of Zircaloy-4 using acoustic emission coupled with thermogravimetry; Proc. Conference on Contribution of Materials Investigations and Operating Experience to LWRs’ Safety; Avignon (France) 2014; INIS-FR--15-0411 Vol. 46

    Google Scholar 

  • Allen, G. C., Butler, I. S., & Tuan, N. A. (1987). Characterisation of uranium oxides by micro-Raman spectroscopy. Journal Nuclear Materials, 144, 17–19.

    Article  Google Scholar 

  • Allen, G. C., Tucker, P. M., & Tyler, J. W. (1982). The behaviour of uranium oxides in low partial pressures of O2 studied using X-ray photoelectron spectroscopy. Vacuum, 32, 481–486.

    Article  Google Scholar 

  • Ambe, F., & Ambe, S. (1973). Mössbauer spectroscopic verification of two different states of impurity 119Sn atoms in Sb2Te3. Physics Letters A, 43, 399–400.

    Google Scholar 

  • Ambe, S., & Ambe, F. (1975). Mössbauer emission spectrum of 121Sb after the β decay of 121m Sn in SnS2: Nuclear decay synthesis of antimony (V) sulfide. The Journal of Chemical Physics, 63, 4077–4078.

    Google Scholar 

  • Ambe, F., Ambe, S., Shoji, H., & Saito, N. (1974) Mössbauer emission spectra of 119Sn after the EC decay of 119Sb in metals, oxides, and chalcogenides of antimony and tellurium. The Journal of Chemical Physics 60, 3773–3778.

    Google Scholar 

  • Ammar, M. R., Galy, N., Rouzaud, J. N., Toulhoat, N., Vaudey, C. E., Simon, P., et al. (2015). Characterizing various types of defects in nuclear graphite using Raman scattering: Heat treatment, ion irradiation and polishing. Carbon, 95, 364–373.

    Article  Google Scholar 

  • Anderson, I. S., Hurd, A. J., & McGreevy, R. (Eds). (2016). Neutron scattering applications and techniques. Springer series.

    Google Scholar 

  • Anderson, I. S., McGreevy, R., & Bilheux, H. Z. (Eds.). (2009). Neutron imaging and applications: A reference for the imaging community. Berlin: Springer.

    Google Scholar 

  • Anderson, J. A., Eberhard, C. D., Byrd, M. J., Carroll, J. J., Collins, C. B., Scarbrough, E. C., et al. (1989). Nuclear photoactivation cross sections for short-lived isomeric states excited with a 6 MeV linac. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 40, 452–454.

    Article  Google Scholar 

  • Anderson, W., Kozak, D., Coleman, V. A., Jämting, Å. K., & Trau, M. (2013). A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions. Journal of Colloid and Interface Science, 405, 322–330.

    Article  Google Scholar 

  • Antonio, M. R., Soderholm, L., Williams, C. W., Blaudeau, J.-Ph., & Bursten, B. E. (2001). Neptunium redox speciation. Radiochimica Acta, 89, 17–25.

    Article  Google Scholar 

  • Apperley, D. C., Harris, R. K., & Hodgkinson, P. (2012). Solid state NMR: Basic principles and practice. Momentum: Press LLC.

    Book  Google Scholar 

  • Araki, T., Enomoto, S., Furuno, K., Gando, Y., Ichimura, K., Ikeda, H., et al. (2005). Experimental investigation of geologically produced antineutrinos with KamLAND. Nature, 436, 499–503.

    Article  Google Scholar 

  • Arinicheva, Y. (2016). Private communication.

    Google Scholar 

  • Armstrong, D. E. J., Hardie, C. D., Gibson, J. S. K. L., Bushby, A. J., Edmondson, P. D., & Roberts, S. G. (2015). Small-scale characterisation of irradiated nuclear materials: Part II nanoindentation and micro-cantilever testing of ion irradiated nuclear material. Journal of Nuclear Materials, 462, 374–381.

    Article  Google Scholar 

  • Asner, D. M., Burns, K., Campbell, L. W., Greenfield, B., Kos, M. S., Orrell, J. L., et al. (2015). Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 776, 75–82.

    Article  Google Scholar 

  • Assenheim, H. M. (2014). Introduction to electron spin resonance. Berlin: Springer.

    Google Scholar 

  • Aston, F. W. (1919). Philosophical Magazine Series 6, 3, 709.

    Google Scholar 

  • Baechler, S., Materna, Th, Jolie, J., Cauwels, P., Crittin, M., Honkimaki, V., et al. (2001). Non-destructive analysis of a bulky sample from a natural fossil reactor. Journal of Radioanalytical and Nuclear Chemistry, 250, 39–45.

    Google Scholar 

  • Barker, G. C. (1958). Pulse polarography. Analytica Chimica Acta, 18, 118–131.

    Article  Google Scholar 

  • Barker, G. C., & Gardner, A. W. (1958). Pulse polarography (pp. 79–83). Atomic Energy Research Establishment, AERE Harwell 2297.

    Google Scholar 

  • Barkhausen, H. (1919). Zwei mit Hilfe der neuen Verstärker entdeckte Erscheinungen. Physikalische Zeitschrift, 20, 401–403.

    Google Scholar 

  • Barnes, R. M. (1974). Chapter 21—Emission spectroscopy: Arc, spark, laser and plamas. Systematic Materials Analysis, 23–83.

    Google Scholar 

  • Barzilov, A., & Novikov, I. (2015). Material classification by analysis of prompt photon spectra induced by 14-Mev neutrons. Physics Procedia, 66, 396–402.

    Article  Google Scholar 

  • Banerjee, S., Chen, Sh., Powers, N., Haden, D., Liu, C., Golovin, G., et al. (2015). Compact source of narrowband and tunable X-rays for radiography. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 350, 106–111.

    Google Scholar 

  • Basile, L. J., Ferraro, J. R., Mitchell, M. L., & Sullivan, J. C. (1978). The Raman scattering of actinide (VI) ions in carbonate media. Applied Spectroscopy, 32, 535–537.

    Article  Google Scholar 

  • Beaurepaire, E., Bulou, H., Scheurer, F., & Kappler, J. P. (Eds.). (2008). Magnetism: A synchrotron radiation approach. Berlin: Springer.

    Google Scholar 

  • Becker, J. S. (2007). Inorganic mass spectroscopy, principles and applications. Hoboken: Wiley.

    Google Scholar 

  • Beckhoff, B., Kanngießer, B., Langhoff, N., Wedell, R., & Wolff, H. (Eds.). (2006). Handbook of practical X-ray fluorescence analysis. Berlin: Springer.

    Google Scholar 

  • Beer, A (1852). Bestimmung der Absorption des rothen Lichts in farbigen Flussigheiten [Determination of the absorption of red light in colored liquids], Annual Review of Physical Chemistry, 86, 78–88.

    Google Scholar 

  • Beitz, J. V., & Hessler, J. P. (1980). Oxidation state specific detection of transuranic ions in solution. Nuclear Technology, 51, 169–177.

    Article  Google Scholar 

  • Beitz, J. V., Bowers, D. L., Doxater, M. M., Maroni, V. A., & Reed, D. T. (1988). Detection and speciation of transuranium elements in synthetic groundwater via pulsed-laser excitation. Radiochimica Acta, 44(45), 87–93.

    Google Scholar 

  • Bellin, R. C., Strach, M., Truphémus, Th., Guéneau, Ch., Richaud, J.-Ch., & Rogez, J. (2015). In situ high temperature X-ray diffraction study of the phase equilibria in the UO2–PuO2–Pu2O3 system, Journal of Nuclear Materials, 465, 407–417.

    Google Scholar 

  • Benson, S., & Madey, J. M. J. (1985). Shot and quantum noise in free electron lasers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 237, 55–60.

    Article  Google Scholar 

  • Benedetto, A., & Pajewski, L. (Eds.). (2015). Civil engineering applications of ground penetrating radar. Berlin: Springer.

    Google Scholar 

  • Benninghoven, A., Colton, R. J., Simons, D. S., & Werner, H. W. (Eds.). (1986). Secondary Ion Mass Spectrometry (SIMS) V, Proceedings of the fifth International Conference.

    Google Scholar 

  • Bertsch, P. M., Hunter, D. B., Sutton, S. R., Bajt, S., & Rivers, M. L. (1994). In situ chemical speciation of uranium in soils and sediments by micro x-ray absorption spectroscopy. Environmental Science & Technology, 28, 980–984.

    Article  Google Scholar 

  • Bickel, M. (1997). The Davies-Gray titration for the assay of uranium in nuclear materials: A performance study. Journal of Nuclear Materials, 246, 30–36.

    Article  Google Scholar 

  • Binnemans, K. (2015). Interpretation of europium(III) spectra. Coordination Chemistry Reviews, 295, 1–45.

    Article  Google Scholar 

  • Bitea, C., Müller, R., Neck, V., Walther, C., & Kim, J. I. (2003). Study of the generation and stability of thorium(IV) colloids by LIBD combined with ultrafiltration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 217, 63–70.

    Article  Google Scholar 

  • Blümich, B., Casanova, F., & Appelt, S. (2009). NMR at low magnetic field. Chemical Physics Letters, 477, 231–240.

    Article  Google Scholar 

  • Boolchand, P., Bresser, W., & Ehrhart, G. J. (1981). 129I nuclear quadrupole interaction in trigonal Te and the role of oxygen contamination. Physical Review B, 23, 3669–3672.

    Google Scholar 

  • Bragg, W. H. (1908). The nature of γ- and X-rays. Nature, 77(1995), 270.

    Article  Google Scholar 

  • Bogé, M., Blaise, A., Bonnisseau, D., Fournier, J. M., Thérond, P. G., Poirot, I., et al. (1986). 237Np Mössbauer spectroscopy on neptunium doped borosilicate glasses. Hyperfine Interactions, 28, 765–767.

    Google Scholar 

  • Bogomolova, L. D., Jachkin, V. A., Prushinsky, S. A., Dmitriev, S. A., Stefanovsky, S. V., Teplyakov, Yu G, et al. (1997). Paramagnetic defects induced by ion implantation in oxide glasses. Journal of Non-crystalline Solids, 210, 101–118.

    Article  Google Scholar 

  • Bogomolova, L. D., Pavlushkina, T. K., Stefanovskii, S. V., Teplyakov, Yu. G., & Trul, O. A. (1993). ESR and IR spectroscopic studies of sodium and aluminosilicophosphate glasses. Glass Physics and Chemistry, 19, 222–227.

    Google Scholar 

  • Bogomolova, L. D., Stefanovsky, S. V., Troole, A. Y., & Vance, E. R. (2001). EPR spectra of V (IV) in zirconolite-rich ceramics. Journal of Materials Science, 36, 1213–1217.

    Article  Google Scholar 

  • Boizot, B., Petite, G., Ghaleb, D., & Calas, G. (1998). Radiation induced paramagnetic centres in nuclear glasses by EPR spectroscopy. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 141, 580–584.

    Article  Google Scholar 

  • Bojanowski, R., Holm, E., & Whitehead, N. E. (1987). Determination of 227Ac in environmental samples by ion-exchange and alpha spectrometry. Journal of Radioanalytical and Nuclear Chemistry, 115, 23–37.

    Google Scholar 

  • Borger, J. J., Hashemi-Nezhad, S. R., Alexiev, D., Brandt, R., Westmeier, W., Thomauske, B., et al. (2012). Spatial distribution of thorium fission rate in a fast spallation and fission neutron field: An experimental and Monte Carlo study. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 664, 103–110.

    Article  Google Scholar 

  • Bond, A. M., & O’Halloran, R. J. (1976). Fundamental and second harmonic alternative current cyclic voltametric theory and experimental results for simple electrode reactions involving solution-soluble redox couples. Analytical Chemistry, 48, 872–883.

    Article  Google Scholar 

  • Briggs, A. (Ed.). (1995). Advances in acoustic microscopy. Berlin: Springer.

    Google Scholar 

  • Bourgès, G., Lambertin, D., Rochefort, S., Delpech, S., & Picard, G. (2007). Electrochemical studies on plutonium in molten salts. Journal of Alloys and Compounds, 444–445, 404–409.

    Article  Google Scholar 

  • Boutchko, R., Rayz, V. L., Vandehey, N. T., O’Neil, J. P., Budinger, T. F., Nico, P. S., et al. (2012). Imaging and modeling of flow in porous media using clinical nuclear emission tomography systems and computational fluid dynamics. Journal of Applied Geophysics, 76, 74–81.

    Article  Google Scholar 

  • Buck, E. C., & Fortner, J. A. (1997). Detecting low levels of transuranics with electron energy loss spectroscopy. Ultramicroscopy, 67, 69–75.

    Article  Google Scholar 

  • Buckau, G., Stumpe, R., & Kim, J. I. (1986). Americium colloid generation in groundwaters and its speciation by laser-induced photoacoustic spectroscopy. Journal of the Less Common Metals, 122, 555–562.

    Article  Google Scholar 

  • Burchell, T. D., Rose, A. P. G., & McEnaney, B. (1986). Acoustic emission from irradiated nuclear graphite. Journal of Nuclear Materials, 140, 11–18.

    Article  Google Scholar 

  • Burghartz, M., Ledergerber, G., Ingold, F., Heimgartner, P., & Degueldre, C. (2001). X-ray diffraction and data interpretation of stabilised zirconia inert matrix fuel doped with plutonium. Progress in Nuclear Energy, 38, 247–250.

    Article  Google Scholar 

  • Bundschuh, T., Knopp, R., Müller, R., Kim, J. I., Neck, V., & Fanghänel, Th. (2000). Application of LIBD to the determination of the solubility product of thorium(IV)-colloids. Radiochimica Acta, 88, 625–629.

    Article  Google Scholar 

  • Bunton, J., Lenz, D., Olson, J., Thompson, K., Ulfig, R., Larson, D., et al. (2006). Instrumentation developments in atom probe tomography: Applications in semiconductor research. Microscopy and Microanalysis, 12, 1730–1731.

    Article  Google Scholar 

  • Bünzli, J.-C. G. (1989). Luminescent probes in lanthanide probes in life. Elsevier, Amsterdam: Chemical and Earth Sciences.

    Google Scholar 

  • Byrne, A. R. (1986). Determination of 237Np in Cumbrian (UK) sediments by neutron activation analysis: Preliminary results. Journal of Environmental Radioactivity, 4, 133–144.

    Google Scholar 

  • Byrne, A. R. (1993). Review of neutron activation analysis in the standardization and study of reference materials. Fresenius’ Journal of Analytical Chemistry, 345, 144–151.

    Article  Google Scholar 

  • Byrne, A. R., & Benedik, L. (1999). Applications of neutron activation analysis in determination of natural and man-made radionuclides including Pa-231. Czechoslovak Journal of Physics, 49, 263–270.

    Article  Google Scholar 

  • Cai, Z., & Liu, Sh. (Eds). (2013). Applications of MALDI-TOF spectroscopy. Berlin: Springer.

    Google Scholar 

  • Cao, J., & Luk, K.-B. (2016). An overview of the Daya Bay reactor neutrino experiment. Nuclear Physics B, 908, 62–73.

    Article  Google Scholar 

  • Cameron, L. T., Lang, M., Zhang, F., Park, S., Palomares, R. I., & Ewing, R. C. (2017). Review of recent experimental results on the behavior of actinide-bearing oxides and related materials in extreme environments. Progress in Nuclear Energy (in Press).

    Google Scholar 

  • Cammann, K. (1979). Working with ion-selective electrodes. Chemical laboratory practice. Berlin: Springer.

    Book  Google Scholar 

  • Canizarès, A., Guimbretière, G., Tobon, Y. A., Raimboux, N., Omnée, R., Perdicakis, M., et al. (2012). In situ Raman monitoring of materials under irradiation: Study of uranium dioxide alteration by water radiolysis. Journal of Raman Spectroscopy, 43, 1492–1497.

    Article  Google Scholar 

  • Casacuberta, N., Masqué, P., Henderson, G., Rutgers van-der-Loeff, M., Bauch, D., Vockenhuber, C., et al. (2016). First 236U data from the Artic Ocean and use of 236U/238U and 129I/236U as a new dual tracor. Earth and Planetary Science Letters, 440, 127–134.

    Google Scholar 

  • Capella, B., & Dietler, G. (1999). Force distance curves by atom force microscopy. Surface Science Reports, 4, 1–104.

    Article  Google Scholar 

  • Capote, R., Chen, Y.-J., Hambsch, F.-J., Kornilov, N. V., Lestone, J. P., Litaize, O., et al. (2016). Prompt fission neutron spectra of actinides. Nuclear Data Sheets, 131, 1–106.

    Article  Google Scholar 

  • Carretta, P., & Lascialfari, A. (Eds.). (2007). NMR-MRI, µSR and mössbauer spectroscopies in molecular magnets. Berlin: Springer

    Google Scholar 

  • Chadwick, J. (1932). The existence of a neutron. In Proceedings of the Royal Society 136, 692–708.

    Google Scholar 

  • Chatni, M. R., Maier, D. E., & Porterfield, D. M. (2009). Evaluation of microparticle materials for enhancing the performance of fluorescence lifetime based optrodes. Sensors and Actuators B, 141, 471–477.

    Article  Google Scholar 

  • Chapman, C. H. (2004). Fundamentals of seismic wave propagation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Chakarvarti, S. K., Lal, N., & Nagpaul, K. K. (1980). Uranium trace analysis of some materials using solid state nuclear track detectors. Solid State Nuclear Track Detectors, 701–715.

    Google Scholar 

  • Cherniak, D. J., & Lanford, W. A. (1992). 11.4—NRA nuclear reaction analysis. Encyclopedia of Materials Characterization, 680–694.

    Google Scholar 

  • Chen, J.-W., & Milnes, A. G. (1980). Energy levels in silicon. Annual Review of Materials Science, 10, 157–228.

    Article  Google Scholar 

  • Chen, Y., Wang, F., Zhao, Y.-G., Li, L.-L., Zhang, Y., Shen, Y., et al. (2015). An improved FT- TIMS method of measuring uranium isotope ratios in the uranium -bearing particles, Radiation Measurements, 83, 63–67.

    Google Scholar 

  • Christl, M., Casacuberta, N., Lachner, J., Maxeiner, S., Vockenhuber, C., Synal, H.-A., et al. (2015). Status of 236U analyses at ETH Zurich and the distribution of 236U and 129I in the North Sea in 2009. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 361, 510–516.

    Google Scholar 

  • Clough, R. B., & Wadley, H. N. G. (1982). Indentation loading studies of acoustic emission from temper and hydrogen embrittled A533B steel. Metallurgical Transactions A, 13(11), 1965–1975.

    Google Scholar 

  • Citrin, P. H., Eisenberger, P., & Hewitt, R. C. (1979). SEXAFS studies of iodine adsorbed on single crystal substrates. Surface Science, 89, 28–40.

    Article  Google Scholar 

  • Claassen, A., & Vissen, J. (1946). Determination of uranium with 8-hydroxyquinoline (oxine). Recueil des Travaux Chimiques des Pays-Bas, 65, 211–215.

    Article  Google Scholar 

  • Clayton, C. G. (1990). Some comments on the development of radiation and radioisotope measurement applications in industry. International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, 41, 917–934.

    Article  Google Scholar 

  • Close, F. (2012). Neutrino. Berlin: Springer.

    Google Scholar 

  • Collaboration, B. (2010). Observation of geo-neutrinos. Physics Letters B, 687, 299–304.

    Google Scholar 

  • Conradson, S. (1998). Application of X-ray absorption fine structure spectroscopy to materials and environmental science. Applied Spectroscopy, 52, 252A–279A.

    Article  Google Scholar 

  • Costarramone, N., Gleyzes, C., Castetbon, A., & Berger, M. (2000). Lithium ion selective electrodes: Application to the lithium measurements in PWR plants. In Proceedings of the Water Chemistry of Nuclear Reactor Systems, 8 BNES, 1, 259–261.

    Google Scholar 

  • Cottrell, F. G. (1903). Der Reststrom bei galvanischer Polarisation, betrachtet als ein. Diffusionsproblem. Zeitschrift für Physikalische Chemie, 42, 385–431.

    Google Scholar 

  • Couprie, M. E. (2014). New generation of light source: Present and future. Journal of Electron Spectroscopy and Related Phenomena, 196, 3–13.

    Article  Google Scholar 

  • Cox, S. F. J. (1987). Implanted muon studies in condensed matter science. Journal of Physics C: Solid State Physics, 20, 3187–3319.

    Article  Google Scholar 

  • Croft, W. L., Stone, J. A., & Pillinger, W. L. (1968). Mössbauer effect in 231Pa. Journal of Inorganic and Nuclear Chemistry, 30, 3203–3208.

    Article  Google Scholar 

  • Das, S. K., Kedari, C. S., & Tripathi, S. C. (2010). Spectrophotometric determination of trace amount of uranium (VI) in different aqueous and organic streams of nuclear fuel processing using 2-(5-bromo-2-pyridylazo-5-diethylaminophenol). Journal of Radioanalytical and Nuclear Chemistry, 285, 675–681.

    Article  Google Scholar 

  • Davis, J. L., & Annan, A. P. (1989). Ground penetrating radar for high resolution mapping of soil and rock stratigraphy. Geophysical Prospecting, 37, 531–551.

    Article  Google Scholar 

  • Davies, W., & Gray, W. (1964). A rapid and specific titrimetric method for the precise determination of uranium using iron(II) sulphate as reductant. Talanta, 11, 1203–1211.

    Article  Google Scholar 

  • David, A., Kögel, G., Sperr, P., & Triftshäuser, W. (2001). Lifetime measurements with a scanning positron microscope. Physical Review Letters, 87, 067402-1–4.

    Google Scholar 

  • Davies, W., Gray, W., & McLeod, K. C. (1970). Coulometric determination of uranium with a platinum working electrode. Talanta, 17, 937–944.

    Article  Google Scholar 

  • Davidovits, P., & Egger, M. D. (1969). Scanning laser microscope. Nature, 223, 831.

    Article  Google Scholar 

  • de Broglie, L.-V. (1923). Radiation—Waves and quanta [Translated from Comptes rendus] (Vol. 177, pp. 507–510).

    Google Scholar 

  • Debye, P., & Hückel, E. (1924). Bemerkungen zu einem Satze über die kataphoretische Wanderungsgeschwindigkeit suspendierter Teilchen. Physikalische Zeitschrift, 25, 49–52.

    Google Scholar 

  • De Geuser, F., & Deschamps, A. (2012). Precipitate characterisation in metallic system by small angle X-rays or neutron scattering. Comptes Rendus Physique, 13, 246–256.

    Article  Google Scholar 

  • Degueldre, C. (1978). Constant-current coulometric determination of uranium in the pure metal (Thesis). Université de Liège, Belgium.

    Google Scholar 

  • Degueldre, C., & Alekseev, E. V. (2015). Uranium trioxide behavior during electron energy loss spectroscopy analysis. Radiation Physics and Chemistry, 108, 7–12.

    Article  Google Scholar 

  • Degueldre, C., & Favarger, P.-Y. (2003). Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: A feasibility study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 217, 137–142.

    Article  Google Scholar 

  • Degueldre, C., & Favarger, P.-Y. (2004). Thorium colloid analysis by single particle inductively coupled plasma-mass spectrometry. Talanta, 62, 1051–1054.

    Article  Google Scholar 

  • Degueldre, C., & Fiorina, C. (2016). The proto-Earth geo-reactor: Reassessing the hypotheses. Solid Earth Sciences, 1, 49–63.

    Google Scholar 

  • Degueldre, C., & Hellwig, Ch. (2003). Study of a zirconia based inert matrix fuel under irradiation. Journal of Nuclear Materials, 320, 96–105.

    Article  Google Scholar 

  • Degueldre, C., & Laaksoharju, M. (2014). Ground water colloid properties from the Bangombé system. Applied Geochemistry, 45, 130–143.

    Google Scholar 

  • Degueldre, C. A., & Meklati, M. (1983). Polarographic behaviour of uranium (VI) in organic solutions. Journal of Radioanalytical Chemistry, 77, 87–96.

    Article  Google Scholar 

  • Degueldre, C. A., & Meklati, M. (1984a). Polarographic behaviour of uranium (VI) in tributyl phosphate organic solutions. Radiochimica Acta, 35, 53–56.

    Article  Google Scholar 

  • Degueldre, C. A., & Meklati, M. (1984b). Differential pulse polarographic behaviour of hexavalent uranium and molybdenum from its trioctylphosphine oxide extract. Journal of the Less Common Metals, 97, 11–20.

    Article  Google Scholar 

  • Degueldre, C., Bertsch, J., & Martin, M. (2016). Post irradiation examination of nuclear fuel: Toward a complete analysis. Progress in Nuclear Energy, 92, 242–253.

    Article  Google Scholar 

  • Degueldre, C., Borca, C., & Cozzo, C. (2013a). Curium analysis in plutonium uranium mixed oxide by x-ray fluorescence and absorption fine structure spectroscopy. Talanta, 115, 986–991.

    Article  Google Scholar 

  • Degueldre, C., Buckley, D., Dran, J. C., & Schenker, E. (1998b). Study of the oxide layer formed on stainless steel exposed to boiling water reactor conditions by ion beam techniques. Journal of Nuclear Materials, 252, 22–27.

    Article  Google Scholar 

  • Degueldre, C., Cozzo, C., Martin, M., Grolimund, D., & Mieszczynski, C. (2013b). Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide. Journal of Solid State Chemistry, 202, 315–319.

    Article  Google Scholar 

  • Degueldre, C., Conradson, St., Amato, A., & Campitelli, E. (2006a). Feeling defects in Zircaloy by extended X-ray absorption fine structure and muon spin relaxation analyses. Journal of Nuclear Materials, 352, 126–135.

    Google Scholar 

  • Degueldre, C., Favarger, P.-Y., & Rossé, S. (2006b). Wold, uranium colloid analysis by single particle inductively coupled plasma-mass spectrometry. Talanta, 68, 623–628.

    Article  Google Scholar 

  • Degueldre, C., Fuks, L., & Schenker, E. (1998a). In-line measurement of the oxide layer build-up on Zircaloy under Boiling Water Reactor conditions using diffuse reflection spectroscopy. Measurement Science and Technology, 9, 809–815.

    Article  Google Scholar 

  • Degueldre, C., Rocchiccioli, F., & Laube, A. (1999). Accelerated measurement of groundwater redox potentials: Method and application. Analytica Chimica Acta, 396, 23–31.

    Article  Google Scholar 

  • Degueldre, C., Kastoryano, M., & Dardenne, K. (2007). Variable incidence angle—X-ray absorption spectroscopy for the study of Zircaloy corrosion layers. Journal of Nuclear Materials, 362, 316–326.

    Article  Google Scholar 

  • Degueldre, C., Kuri, G., Borca, C. N., & Grolimund, D. (2009). X-ray micro- fluorescence, diffraction and absorption spectroscopy for local structure investigation of a radioactive zinc ferrite deposit. Corrosion Science, 51, 1690–1695.

    Article  Google Scholar 

  • Degueldre, C., Kuri, G., Martin, M., Froideval, A., Cammelli, S., Orlov, A., et al. (2010). Nuclear material investigations by advanced analytical techniques. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268, 3364–3370.

    Article  Google Scholar 

  • Degueldre, C., Martin, M., Kuri, G., Grolimund, D., & Borca, C. (2011a). Plutonium—uranium mixed oxide characterization by coupling micro-X-ray diffraction and absorption investigations. Journal of Nuclear Materials, 416, 142–150.

    Article  Google Scholar 

  • Degueldre, C., Schaeublin, R., Krbanjevic, J., & Minikus, E. (2013c). Electron energy loss spectroscopy investigation through a nano ablated uranium dioxide sample. Talanta, 106, 408–413.

    Article  Google Scholar 

  • Degueldre, C., Schenker, E., & Nhuis-Weda, H. (1996a). Investigation of colloid characteristics in the water of boiling water reactors. In Proceedings of the Water Chemistry of Reactor Systems, 7 BNES.

    Google Scholar 

  • Degueldre, C., O’Prey, S., & Francioni, W. (1996c, October). An in-line diffuse reflection spectroscopy study of the oxidation of stainless steel under boiling water reactor conditions. Corrosion Science, 38,(10), 1763–1782.

    Article  Google Scholar 

  • Degueldre, C., Pleinert, H., Maguire, P., Lehman, E., Missimer, J., Hammer, J., Leenders, K., Böck, H., & Townsend, D. (1996d, May). Porosity and pathway determination in crystalline rock by positron emission tomography and neutron radiography. Earth and Planetary Science Letters, 140,(1–4), 213–225.

    Google Scholar 

  • Degueldre, C., & Taibi, K. (1996). Polarographic behaviour and determination of uranium(VI) in alcoholic solutions from organic extraction phases. Analytica Chimica Acta, 321, 201–207.

    Article  Google Scholar 

  • Degueldre, C., Triay, I., Kim, J.-I., Vilks, P., Laaksoharju, M., & Miekeley, N. (2000). Groundwater colloids properties: A global approach. Applied Geochemistry, 15, 1043–1051.

    Article  Google Scholar 

  • Degueldre, C., Pouchon, M., Streit, M., Zaharko, O., & Di Michiel, M. (2001). Analysis of porous features in zirconia based inert matrix, impact on the material qualification. Progress in Nuclear Energy, 38, 241–246.

    Article  Google Scholar 

  • Degueldre, C., Reed, D., Kroft, A. J., & Mertz, C. (2004). XAFS study of americium sorbed onto groundwater colloids. Journal of Synchrotron Radiation, 11, 198–203.

    Article  Google Scholar 

  • Degueldre, C., Ulrich, H. J., & Silbi, H. (1994). Sorption of 241Am onto Montmorillonite, illite and hematite colloids. Radiochimica Acta, 65, 173–179.

    Article  Google Scholar 

  • Derjaguin, B. V., Muller, V. M., & Toporov, Y. P. (1975). Effect of contact deformations on the adhesion of particles. Journal of Colloid and Interface, 53, 314–325.

    Article  Google Scholar 

  • De Menibus, A. H, Auzoux, Q., Dieye, O., Macdonald, V., Besson, J., Crépin, J. (2012). Hydride blisters formation, characterization and effect on the fracture of Zircaloy-4 cladding tubes under reactivity initiated accident conditions. In 21st International conference Nuclear Energy for New Europe, September 2012, Ljubljana, Slovenia (hal-01057285).

    Google Scholar 

  • Denecke, M., Dardenne, K., & Macquard, Ch. (2004). Np(IV)/Np(V) valence determination from Np L3 edge XANES/EXAFS. Talanta, 65, 1008–1014.

    Article  Google Scholar 

  • Dodge, C. J., Francis, A. J., & Clayton, C. R. (1995). Application of synchrotron radiation techniques in industrial chemical and materials science. Emerging Technologies in Hazardous Waste Management ACS, CONF, 9509139, 1352–1377.

    Google Scholar 

  • Drescher, M., & Jeschke, G. (2012). EPR spectroscopy: Applications in chemistry and biology. Berlin: Springer.

    Google Scholar 

  • Drot, R., Simoni, E., Alnot, M., & Ehrhart, J. J. (1998). Structural environment of uranium (VI) and europium (III) species sorbed onto phosphate surfaces: XPS and optical spectroscopy studies. Journal of Colloid and Interface Science, 205, 410–416.

    Article  Google Scholar 

  • Dev, B., & Jain, B. D. (1961). Gravimetric determination of uranium and thorium with 1-hydroxy-xanthone. Proceedings of the Indian Academy of Sciences—Section A, 54, 341–344.

    Google Scholar 

  • Diggens, A. A., Lichtenstein, S., Synnott, J. C., & West, S. J. (1981). High-purity water quality monitoring based on ion-selective electrode technology. Power plant instrumentation for measurement of high-purity water. Lane Otten EDRS, American Society for Testing Materials, ASTM STP, 742, 131–138.

    Google Scholar 

  • Doyama, M., Kogure, Y., Inoue, M., Kurihara, T., Cao, X., Nishiyama, K., et al. (2009). Comparison between muon and positron images using imaging plates. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 600, 60–63.

    Article  Google Scholar 

  • Dutt, D. A., Higby, P. L., & Griscom, D. L. (1991). An electron spin resonance study of X-irradiated calcium aluminosilicate glasses. Journal of Non-crystalline Solids, 130, 41–51.

    Article  Google Scholar 

  • Dworak, V., Augustin, S., & Gebbers, R. (2011). Application of terahertz radiation to soil measurements: Initial results. Sensors, 11, 9973–9988.

    Article  Google Scholar 

  • Dye, St. T. (2007). Neutrino geophysics. In Proceedings of Neutrino Sciences 2005. Berlin: Springer.

    Google Scholar 

  • Edelson, M. C., & Fassel, V. A. (1981). Isotopic abundance determinations by inductively coupled plasma atomic emission atomic emission spectrometry. Analytical Chemistry, 53, 2345–2347.

    Article  Google Scholar 

  • Edelstein, N. M., Klenze, R., Fanghänel, T., & Hubert, S. (2006). Optical properties of Cm(III) in crystals and solutions and their application to Cm(III) speciation. Coordination Chemistry Reviews, 250, 948–973.

    Article  Google Scholar 

  • Egerton, R. (2011). Electron energy-loss spectroscopy in the electron microscope. Berlin: Springer.

    Google Scholar 

  • Egger, W., Kögel, G., Sperr, P., Triftshäuser, W., Rödling, S., Bär, J., et al. (2002). Vacancy clusters close to a fatigue crack observed with the München scanning positron microscope. Applied Surface Science, 194, 214–217.

    Article  Google Scholar 

  • Ehmann, W. D., & Vance D. E. (1991). Radiochemistry and nuclear methods of analysis. Hoboken: Wiley Interscience.

    Google Scholar 

  • Einstein, A. (1905a). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik, 322, 132–148.

    Article  Google Scholar 

  • Einstein, A. (1905b). Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik, 322, 549–560.

    Article  Google Scholar 

  • Einstein, A. (1917). Quantentheorie der Strahlung [On the quantum theory of radiation]. Physikalische Zeitschrift, 18, 121–128.

    Google Scholar 

  • Eldrup, M., Ligthbody, D., & Sherwood, J. N. (1981). The temperature dependence of positron lifetime in solid pivalic acid. Journal of Chemical Physics, 63, 51–58.

    Google Scholar 

  • Elliman, R. G., Timmers, H., Palmer, G. R., & Ophel, T. R. (1998). Limitations to depth resolution in high-energy, heavy-ion elastic recoil detection analysis. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 136–138, 649–653.

    Article  Google Scholar 

  • Erdmann, N., Nunnemann, M., Eberhardt, K., Herrmann, G., Huber, G., Köhler, S., et al. (1998). Determination of the first ionization potential of nine actinide elements by resonance ionization mass spectroscopy (RIMS). Journal of Alloys and Compounds, 271(3), 837–840.

    Article  Google Scholar 

  • Erdoğan, H., & Fessler, J. A. (1999). Ordered subsets algorithms for transmission tomography. Physics in Medicine and Biology, 44, 2835–2851.

    Article  Google Scholar 

  • Faisal, N. H., Ahmed, R., & Reuben, R. L. (2013). Indentation testing and its acoustic emission response: applications and emerging trends. International Materials Reviews, 56(2), 98–142.

    Google Scholar 

  • Feldhaus, J., Arthur, J., & Hastings, J. B. (2005). X-ray free-electron lasers. Journal of Physics B: Atomic, Molecular and Optical Physics, 38, S799–S819.

    Article  Google Scholar 

  • Fessler, J. A., & Hero, A. O. (1994). Space-alternating generalized expectation-maximization algorithm. IEEE Transaction on signal processing, 42, 2664–2677.

    Article  Google Scholar 

  • Fitch, F. R., & Rees, L. V. C. (1981). Mössbauer emission studies of zeolite A. Part 1—Effect of dehydration on 57Co2+ doped Na+ and Co2+ exchanged zeolite A. Zeolites, 1, 19–29.

    Google Scholar 

  • Fortner, J. A., Buck, E. C., Ellison, A. J. G., & Bates, J. K. (1997). EELS analysis of redox in glasses for plutonium immobilization. Ultramicroscopy, 67, 77–81.

    Article  Google Scholar 

  • Frégeau, M. O., Oberstedt, S., Brys’, T., Gamboni, Th., Geerts, W., Hambsch, F.-J., et al. (2015). First use of single-crystal diamonds as fission-fragment detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 791, 58–64.

    Google Scholar 

  • Friedlander, G., Kennedy, J. W., Macias, E. S., & Miller. J. M. (1981). Nuclear and radiochemistry (3rd ed.) Hoboken: Wiley Interscience.

    Google Scholar 

  • Freiser, H. (1980). Ion-selective electrodes in analytical chemistry. Berlin: Springer.

    Google Scholar 

  • Fritz, J. S., & Johnson-Richard, M. (1959). Colorimetric uranium determination with arsenazo. Analytica Chimica Acta, 20, 164–171.

    Google Scholar 

  • Fritzsche, H., Huot, J., & Fruchart, D. (Eds.). (2016). Neutron scattering and other nuclear techniques for hydrogen in materials. Berlin: Springer.

    Google Scholar 

  • Froideval, A., Badillo, A., Bertsch, J., Churakov, S., Dähn, R., Degueldre, C., et al. (2011). Towards possible opportunities in nuclear materials science and technology at an X-ray free electron laser research facility. Journal of Nuclear Materials, 416, 242–251.

    Article  Google Scholar 

  • Froideval, A., Iglesias, R., Samaras, M., Schuppler, S., Nagel, P., Grolimund, D., et al. (2007). Magnetic and structural properties of FeCr alloys. Physical Review Letters, 99, 237201–237204.

    Article  Google Scholar 

  • Fultz, B., & Howe, J. (2013). Transmission electron microscopy and diffractometry of materials. Berlin: Springer.

    Google Scholar 

  • Fukugita, M., & Yanagida, T. (2003). Physics of neutrinos. Berlin: Springer.

    Google Scholar 

  • Fukutani, K. (2002). Below-surface behavior of hydrogen studied by nuclear reaction analysis. Current Opinion in Solid State and Materials Science, 6, 153–161.

    Article  Google Scholar 

  • Gando, A., Gando, Y., Hanakago, H., Ikeda, H., Inoue, K., Ishidoshiro, K., et al. (2013). Reactor on-off antineutrino measurement with KamLAND. Physical Review D, 88, 033001–033010.

    Google Scholar 

  • Gault, B., Moody, M. P., Cairney, J. M., Ringer, & S. P. (2012). Atom probe microscopy. Springer series in materials science (Vol. 160). New York: Springer.

    Google Scholar 

  • Gaunt, J. (1956). The analysis of heavy water by infra-red spectroscopy. Spectrochimica Acta, 8, 57–65.

    Article  Google Scholar 

  • Gauthier, R., Ilmstädter, V., & Lieser, K. H. (1983). Simultaneous quantitative determination of the various oxidation states of neptunium at low concentrations by spectrophotometry. Radiochimica Acta, 33, 35–39.

    Google Scholar 

  • Glatter, O., & Kratky, O. (Eds.). (1982). Small angle X-ray scattering. London: Academic Press.

    Google Scholar 

  • Gehrels, N., Crannell, C. J., Forrest, D. J., Lin, R. P., Orwig, L. E., & Starr, R. (1988). Hard X-ray and low-energy gamma-ray spectrometers. Solar Physics, 118, 233–268.

    Article  Google Scholar 

  • Geipel, G., Bernhard, G., Brendle, V., & Nitsche, H. (1998). Complex formation between UO2 2+ and CO 2-3 : Studied by Laser-Induced Photoacoustic Spectroscopy (LIPAS). Radiochimica Acta, 82, 59–62.

    Article  Google Scholar 

  • Geipel, G., Reich, T., Brendler, V., Bernard, G., & Nitsche, H. (1997). Laser and X-ray spectroscopic studies of uranium-calcite interface phenomena. Journal of Nuclear Materials, 248, 408–411.

    Article  Google Scholar 

  • George, E. P. (1955). Cosmic rays measure overburden of tunnel. Commonwealth Engineer, 1, 455–457.

    Google Scholar 

  • Guardincerri, E., Bacon, J., Borozdin, K., Durham, J. M., Fabritius, J., II, Hecht, A., et al. (2015). Detecting special nuclear material using muon-induced neutron emission. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 789, 109–113.

    Article  Google Scholar 

  • Griscom, D. (1984). Electron spin resonance studies of trapped hole centers in irradiated alkali silicate glasses: A critical comment on current models for HC1 and HC2. Journal of Non-crystalline Solids, 64, 229–247.

    Article  Google Scholar 

  • Griscom, D. L. (1974). E.S.R. studies of radiation damage and structure in oxide glasses not containing transition group ions: A contemporary overview with illustrations from the alkali borate system. Journal of Non-crystalline Solids, 13, 251–285.

    Google Scholar 

  • Grosse, Ch. U. & Ohtsu, M. (Eds.). (2008). Acoustic emission testing. Berlin: Springer.

    Google Scholar 

  • Grosse, M. K., Stuckert, J., Steinbrück, M., Kaestner, A. P., & Hartmann, S. (2013). Neutron radiography and Tomography Investigations of the Secondary Hydriding of Zircaloy-4 during Simulated Loss of Coolant Nuclear Accidents. Physics Procedia, 43, 294–306.

    Article  Google Scholar 

  • Ghosh, A., Patel, K. S., & Mishra, R. K. (1991). Extraction-spectrophotometric determination of uranium(VI) with PAR and N-octylacetamide. Journal of Radioanalytical and Nuclear Chemistry, 152, 243–249.

    Article  Google Scholar 

  • Kearley, G. J., & Peterson, V. K. (Eds.). (2015). Neutron applications in materials for energy. Berlin: Springer.

    Google Scholar 

  • Glans, P.-A., Szigethy, G., Demoin, D., Tyliszczak T., Xu, J., Guo, J., et al. (2010). Actinide science with a soft X-ray Scanning Transmission X-ray Microscope (STXM). In Materials research society symposium proceedings (Vol. 1264, pp. 137–149).

    Google Scholar 

  • Goldstein, J. I., Newbury, D. E., Echlin, P., Joy, D.C., Romig, A. D., Lyman, C. E. Jr, et al. (1992). Scanning electron microscopy and X-ray microanalysis (p. 820). New York: Plenum Press.

    Google Scholar 

  • Gouder, T. (1998). Thin layers in actinide research. Journal of Alloys and Compounds, 271(3), 841–845.

    Article  Google Scholar 

  • Grigoriev, M. S., Fedoseev, M., Gelis, A. V., Budantseva, N. A., Shilov, V. P., Perminov, V. P., et al. (2001). Study of the interaction of Pu(IV) and Np(IV, V, VI) with Fe hydroxides to predict the behavior of actinides in environmental media. Radiochimica Acta, 89, 95–100.

    Article  Google Scholar 

  • Gross, J. H. (2004). Mass spectrometry. Berlin: Springer.

    Google Scholar 

  • Guillot, L. (2001). Extraction of full absorption peaks in airborne gamma-spectrometry by filtering techniques coupled with a study of the derivatives. Journal of Environmental Radioactivity, 53, 381–398.

    Article  Google Scholar 

  • Günther-Leopold, I., Krois, M., Kobler Waldis, J., Linder, H., & Abolhassani, S. (2012). Investigation of fuel crud by means of ICP-MS and TEM. Procedia Chemistry, 7, 673–678.

    Article  Google Scholar 

  • Gurbic, A. F. (2014). Evaluation of cross-sections for particle induced gamma-ray emission (PIGE) spectroscopy. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 331, 31–33.

    Google Scholar 

  • Gutmacher, R. G., Cremers, D. A., Wachter, Z. (1987). Laser-induced breakdown spectroscopy: A new technique for nondestructive analysis of solutions Transactions of the American Nuclear Society Journal, 55, 19–20.

    Google Scholar 

  • Hadley, J. H., Hsu, F. H., Jr., Vance, E. R., & Begg, B. D. (2005). Positron annihilation lifetime spectroscopy of air-fired Ca(1-x)(La)xTiO3 Perovskites. Journal of the American Ceramic Society, 88, 246–248.

    Google Scholar 

  • Hamstad, M. A. (1986). A review: Acoustic emission, a tool for composite-materials studies. Experimental Mechanics, 26, 7–13.

    Article  Google Scholar 

  • Haschke, M. (2014). Laboratory micro X-ray fluorescence spectroscopy instrumentation and applications. Berlin: Springer.

    Google Scholar 

  • Havenith, M. H. (2002). An introduction to intermolecular forces. Berlin: Springer.

    Google Scholar 

  • Hébert, C., Schattschneider, P., Rubino, S., Novak, P., Rusz, J., & Stöger-Pollach, M. (2008). Magnetic circular dichroism in electron energy loss spectrometry. Ultramicroscopy, 108, 277–284.

    Article  Google Scholar 

  • Hecht, F., & Reich-Rohrwig, W. (1929). Über die Bestimmung von Uran und Thorium mittels 8-Oxychinolins [On the determination of uranium and thorium using 8-oxyquinone]. Monatshefte Fur Chemie, 53, 596–606.

    Google Scholar 

  • Hen, A., Magnani, N., Griveau, J.-C., Eloirdi, R., Colineau, E., Sanchez, J.-P., et al. (2015). Site-selective magnetic order of neptunium in Np2Ni17. Physical Review B, 92, 024410.

    Article  Google Scholar 

  • Hein, Ch., Sonder, J. M., & Kautenburger, R. (2017). New approach of a transient ICPMS measurement method for samples with high salinity. Talanta, 164, 477–482.

    Article  Google Scholar 

  • Heise, H., & Matthews, S. (Eds.). (2013). Modern NMR methodology. Berlin: Springer

    Google Scholar 

  • Herman, G. T. & Frank, J. (Eds.). (2014). Computational methods for three-dimensional microscopy reconstruction. Berlin: Springer.

    Google Scholar 

  • Henze, G. (2001). Polarographie und voltammetrie. Heidelberg: Springer-verlag Berlin.

    Book  Google Scholar 

  • Hess, N. J., Felmy, A. R., Rai, D., & Conradson, S. D. (1997). Characterization of Th carbonate solutions using XAS and implications for thermodynamic modeling. In Materials Research Society Symposium Proceedings, 465, 729–734.

    Google Scholar 

  • Hess, P., & Pelzl, J. (Eds.). (1988). Photoacoustic and photothermal phenomena. In Proceedings of the 5th International Topical Meeting. Berlin: Springer.

    Google Scholar 

  • Heyrovský, J. (1922). Elektrolysa se rtuťovou kapkovou kathodou. Chemicke Listy, 16, 256–264.

    Article  Google Scholar 

  • Hiraoka, K. (Ed.). (2013). Fundamentals of mass spectrometry. Berlin: Springer.

    Google Scholar 

  • Hirose, M., Miyake, C., & Iida, M. (1993). “The third phase” of extraction processes in fuel reprocessing, (III) 31P-NMR study of coordination behavior of Zirconium Dibutylphosphates. Journal of Nuclear Science and Technology 30, 232–238.

    Google Scholar 

  • Hofmann, S. (2013). Auger- and X- photoelectron spectroscopy in materials science. Berlin: Springer.

    Google Scholar 

  • Ho, C. S., Lam, C. W. K., Chan, M. H. M., Cheung, R. C. K., Law, L. K., Lit, L. C. W., et al. (2003). Electrospray ionisation mass spectrometry: Principles and clinical applications. Clinical Biochemist Reviews, 24, 3–12.

    Google Scholar 

  • Holliday, K. S., Babelot, C., Walther, C., Neumeier, S., Bosbach, D., & Stumpf, Th. (2012). Site selective time resolved laser fluorescence spectroscopy of Eu and Cm dopted LaPO4. Radiochimica Acta, 100, 189–195.

    Article  Google Scholar 

  • Hong-Yan, G., Chang-Chun, G., Min, X., Li-Ping, G., Ji-Hong, C., & Qing-Zhi, Y. (2015). Effect of helium implantation on SiC and graphite. Chinese Physics B, 24, 037803.

    Article  Google Scholar 

  • Horn, I., Rudnick, R. L., & McDonough, W. F. (2000). Precise elemental and isotopic ratio determination by combined solution nebulisation and laser ablation ICP-MS: Application to U/Pb geochronology. Chemical Geology, 164, 283–301.

    Article  Google Scholar 

  • Horvath, M., Guillong, M., Izmer, A., Kivel, N., Restani, R., Günther-Leopold, I., et al. (2007). Analysis of xenon gas inclusions in nuclear fuel using laser ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 22, 1266–1274.

    Article  Google Scholar 

  • Hori, F., Takenaka, M., Kuramoto, E., & Aono, U. (1993). Positron annihilation study of electron-irradiation FeCu and FeCuc alloys. Scripta Metallurgica, 29, 243–248.

    Article  Google Scholar 

  • Hosten, E., & Rohwer, H. E. (1997). Complexation reactions of uranyl with arsenazo III. Analytica Chimica Acta, 355, 95–100.

    Article  Google Scholar 

  • Hotchkis, M., Child, D., & Tumlz, C. (2002). Application of accelerator mass spectrometry for 236U analysis. Journal of Nuclear Science and Technology, 39, 532–536.

    Google Scholar 

  • Hrdlička, A., Zaorálková, L., Galiová, M., Čtvrtníčková, T., Kanický, V., Otruba, V., et al. (2009). Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laser-induced breakdown spectroscopy (LIBS) of glazed wall tiles. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 74–78.

    Article  Google Scholar 

  • Huang, J., Li, Z., Liaw, B. Y., & Zhang, J. (2016). Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations. Journal of Power Sources, 309, 82–98.

    Article  Google Scholar 

  • Hues, A. D., Henicksman, A. L., Ashley, W. H., & Romero, D. (1977). Fluorometric determination of uranium in natural waters. In Inorganic, organic, physical and analytical chemistry (B1100) Los Alamos report 15 p; LA–6683-MS; GJBX–24(77).

    Google Scholar 

  • Hunter, D. B., & Bertsch, P. M. (1998). In situ examination of uranium contaminated soil particles by micro-X-ray absorption and micro-fluorescence spectroscopies. Journal of Radioanalytical and Nuclear Chemistry, 234, 237–242.

    Article  Google Scholar 

  • Ice, G. E., & Specht, E. D. (2012). Microbeam, timing and signal-resolved studies of nuclear materials with synchrotron X-ray sources. Journal of Nuclear Materials, 425, 233–237.

    Article  Google Scholar 

  • Ilkovič, D. (1934). Polarographic studies with the dropping mercury kathode. Part XLIV. The dependence of limiting currents on the diffusion constant, on the rate of dropping and on the size of drops. Collection of Czechoslovak Chemical Communications, 6, 498–513.

    Article  Google Scholar 

  • Iizuka, M., Inoue, T., Shirai, O., Iwai, T., & Arai, Y. (2001). Application of normal pulse voltammetry to on-line monitoring of actinide concentrations in molten salt electrolyte. Journal of Nuclear Materials, 297, 43–51.

    Article  Google Scholar 

  • Ionescu, S., Uţă, O., Pârvan, M., & Ohâi, D. (2009). Pressurized heavy water reactor fuel behaviour in power ramp conditions. Journal of Nuclear Materials, 385, 387–391.

    Google Scholar 

  • Imam, M., Gaul, K., Stegmüller, A., Höglund, C., Jensen, J., Hultman, L., et al. (2015). Gas phase chemical vapor deposition chemistry of triethylboron probed by boron–carbon thin film deposition and quantum chemical calculations. Journal of Materials Chemistry C, 3, 10898–10906.

    Article  Google Scholar 

  • Ireland, T. R. (2014). 15.21Ion microscopes and microprobes, reference module in earth systems and environmental sciences, from treatise on geochemistry (2nd ed.), 15, 385–409.

    Google Scholar 

  • Issa, I. M., Issa, R. M., & Ahmed, Y. Z. (1978). Complexometric and spectrophotometric determination of thorium(IV), cerium(III), and uranium(VI), using quinizarin sulphonic acid after separation with ion-exchange resins. Microchemical Journal, 18, 569–576.

    Google Scholar 

  • Ishigure, K. (1996). State of the art of water chemistry of Japanese BWRs. Nuclear Engineering and Design, 160, 171–183.

    Article  Google Scholar 

  • Ivanova, B., & Spiteller, M. (2014). Uranyl-water containing complexes: solid-state UV-MALDI mass spectrometric and IR spectroscopic approachs for selective quantitation. Environmental Science and Pollution Research, 21, 1548–1563.

    Google Scholar 

  • Jaeschke, E. J., Khan, S., Schneider, J. R., & Hastings, J. B. (Eds.). (2016). Synchrotron light sources and free-electron lasers, accelerator physicsinstrumentation and science applications. Berlin: Springer.

    Google Scholar 

  • Jaiswal, D. D., Dang, V. R., Pullat, H. S., & Sharma, R. C. (1994). Ultra-Trace Analytical Techniques for Internal Dosimetry of Actinides: An Appraisal. Bulletin of Radiation Protection, 17, 44–47.

    Google Scholar 

  • Jarvis, K. E. (1992). Handbook of inductively coupled plasma mass spectrometry. Berlin: Springer.

    Google Scholar 

  • James, D., Pandey, A. K., Naidu, G. R. K., & Rao, T. P. (2008). Design of two-dimensional biomimetic uranyl optrode and its application to the analysis of natural waters. Talanta, 74, 1420–1427.

    Article  Google Scholar 

  • Jameson, C. J. (2004). Xe Chemical Shift Tensor in Silicalite and SSZ-24. Journal of the American Chemical Society, 126, 10450–10456.

    Article  Google Scholar 

  • Jeong, Y. H., & Hwang, S. S. (2013). Materials management strategies for pressurized water reactors (PWRs). Materials Ageing and Degradation in Light Water Reactors, 315–334.

    Google Scholar 

  • Jia, G., Belli, M., Sansone, U., Rosamilia, S., Ocone, R., & Gaudino, S. (2002). Determination of uranium isotopes in environmental samples by alpha-spectrometry. Journal of Radioanalytical and Nuclear Chemistry, 253, 395–406.

    Article  Google Scholar 

  • Jiang, C., Müller-Petke, M., Lin, J., & Yaramanci, U. (2015). Imaging shallow three dimensional water-bearing structures using magnetic resonance tomography. Journal of Applied Geophysics, 116, 17–27.

    Article  Google Scholar 

  • Johansson, S. A., Campbell, J. L., & Malmqvist, K. G. (1995). Particle Induced X-ray Emission Spectroscopy (PIXE). Hoboken: Wiley.

    Google Scholar 

  • Johnson, D. A., & Florence, T. M. (1971). Spectrophotometric determination of uranium (vi) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol. Analytica Chimica Acta, 53, 73–79.

    Article  Google Scholar 

  • Johnson, S. G., & Feary, B. L. (1993). Spectroscopic study of thorium using continuous-wave resonance ionization mass spectrometry with ultraviolet ionization. Spectrochimica Acta, 48B, 1065–1077.

    Article  Google Scholar 

  • Jonkmans, G., Anghel, V. N. P., Jewett, C., & Thompson, M. (2013). Nuclear waste imaging and spent fuel verification by muon tomography. Annals of Nuclear Energy, 53, 267–273.

    Article  Google Scholar 

  • Jol, H. M. (1995). Ground penetrating antennae frequencies and transmitter powers compared for penetration depth, resolution and reflection continuity. Geophysical Prospecting, 43, 693–709.

    Article  Google Scholar 

  • Jones, R. B., Younes, C. M., Heard, P. J., Wild, R. K., & Flewitt, P. E. J. (2002). The effect of the microscale distribution of boron on the yield strength of C-Mn steels subjected to neutron irradiation. Acta Materialia, 50, 4395–4417.

    Article  Google Scholar 

  • Juhojuntti, N., Wood, G., Juhlin, C., O'Dowd, C., & Cosma, C. (2012). 3D seismic survey at the Millennium uranium deposit, Saskatchewan, Canada: Mapping depth to basement and imaging post-Athabasca structure near the orebody. Geophysics, 77, 245–258.

    Article  Google Scholar 

  • Kalinin, S. V., & Gruverman, A. (2007). Scanning probe microscopy electrical and electromechanical phenomena at the nanoscale. Berlin: Springer.

    Google Scholar 

  • Kalmykov, St. N., Aliev, R. A., Sapozhnikov, D. Yu., Sapozhnikov, Yu. A., & Afinogenov, A. M. (2004). Determination of 237Np by radiochemical neutron activation analysis combined with extraction chromatography. Applied Radiation and Isotopes, 60, 595–599.

    Google Scholar 

  • Kamat, R. V., Sawant, R. M., Mhatre, H. R., Chaudhuri, N. K., & Vaidya, V. N. (1998). Development of a pH titration method for the simultaneous determination of uranium, nitrate and free-acid in the feed solution of the sol-gel process of nuclear fuel fabrication. Journal of Radioanalytical and Nuclear Chemistry, 238, 33–41.

    Article  Google Scholar 

  • Kansy, J. (1996). Microcomputer program for analysis of positron annihilation lifetime spectra. Nuclear Instruments and Methods A, 374, 235–244.

    Article  Google Scholar 

  • Kato, Y., & Takahashi, M. (1976). Determination of uranium and plutonium by sequential potentiometric titration. Bunseki Kagaku, 25, 841–846.

    Article  Google Scholar 

  • Keil, R. (1979). Hochselektive spektralphotometrische Spurenbestimmung von Uran(VI) mit Arsenazo III nach Extraktionstrennung. Fresenius’ Zeitschrift für analytische Chemie, 297, 384–387.

    Article  Google Scholar 

  • Keil, R. (1981). Selektive spektralphotometrische Spurenbestimmung von Uran(VI) mit Arsenazo III nach Extraktionstrennung. ‘Fresenius’ Zeitschrift für analytische Chemie, 305, 374–378.

    Article  Google Scholar 

  • Kerbelov, L. M., & Rangelov, R. (1997). Airborne gamma ray spectroscopy—An efficient method for finding and mapping pollution with radioactive elements from uranium extraction and ore mining. In Uranium exploration data and techniques applied to the preparation of radioelement maps. IAEA TECDOC (Vol. 980, pp. 299–304).

    Google Scholar 

  • Keeler, J. (2010). Understanding NMR spectroscopy. Hoboken: Wiley.

    Google Scholar 

  • Keil, R. (1978). Highly selective trace determination of uranium by differential pulse polarography (catalytic nitrate reduction) following extraction separation. Fresenius’ Zeitschrift für analytische Chemie, 292, 13–19.

    Article  Google Scholar 

  • Khan, M. H., Warwick, P., & Evans, N. (2006). Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere, 63, 1165–1169.

    Article  Google Scholar 

  • Kikawa, T. (2016). Measurement of neutrino interactions and three flavor neutrino oscillations in the T2K experiment. Berlin: Springer.

    Google Scholar 

  • Kim, J. I., Buckau, G., & Klenze, R. (1987). Natural colloids and generation of actinide pseudocolloids in groundwater. In B. Come & N. Chapman (Eds.), Natural analogues in radioactive waste disposal. London: Graham & Trottman.

    Google Scholar 

  • Kim, B. C., Chang, K. O., Choi, S.-P., & Lee, S. L. (1997). Nondestructive evaluation techniques on the radiation damage of reactor pressure vessel steel due to neutron irradiation. Journal of the Korean Society for Nondestructive Testing, 17, 31–40.

    Google Scholar 

  • Kimura, T., Serrano, J., Nakayama, S., Takahashi, K., & Takeishi, H. (1992). Speciation of uranium in aqueous solutions and in precipitates by photoacoustic spectroscopy. Radiochimica Acta, 58(9), 173–178.

    Google Scholar 

  • Kissinger, P. T., & Heineman, W. R. (1983). Cyclic voltammetry. Journal of Chemical Education, 60, 702–706.

    Article  Google Scholar 

  • Klenze, R., & Kim, J. I. (1988). A direct speciation of transuranium elements in natural aquatic systems by laser-induced photoacoustic spectroscopy. Radiochimica Acta, 44,(5), 77–85.

    Google Scholar 

  • Klenze, R., Kim, J. I., & Wimmer, H. (1991). Speciation of aquatic actinide ions by pulsed laser spectroscopy. Radiochimica Acta, 52(3), 97–103.

    Google Scholar 

  • Klett, A. (1999). Plutonium detection with a new fission neutron survey meter. IEEE Transactions on Nuclear Science, 46, 877–879.

    Google Scholar 

  • Knyazev, O. A., & Stefanovsky, S. V. (1997). EPR of paramagnetic ions in synthetic zirconolite. In Proceedings of Sixth International Conference on Radioactive Waste Management and Environmental Restoration ASME-1997, October 12–16, 1997 (pp. 333–335). Singapore.

    Google Scholar 

  • Krachler, M., Alvarez-Sarandes, R., Souček, P., & Carbol, P. (2014). High resolution ICP-OES analysis of neptunium-237 in samples from pyrochemical treatment of spent nuclear fuel. Microchemical Journal, 117, 225–232.

    Article  Google Scholar 

  • Krachler, M., Alvarez-Sarandes, R., & Van Winckel, St. (2015). Challenges in the quality assurance of elemental and isotopic analyses in the nuclear domain benefitting from high resolution ICP-OES and sector field ICP-MS. Journal of Radioanalytical and Nuclear Chemistry, 304, 1201–1209.

    Article  Google Scholar 

  • Kohli, R. (2012). Chapter 5—Developments in imaging and analysis techniques for micro- and nanosize particles and surface features. Developments in surface contamination and cleaning (pp. 215–306).

    Google Scholar 

  • Korpel, A., & Kessler, L. W. (1971). Comparison of methods of acoustic microscopy. In A. F. Metherell (Ed.), Acoustical Holography, 3 (pp. 23–43). New York: Plenum.

    Chapter  Google Scholar 

  • Koopmans, Tj. (1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica, 1, 104–113.

    Google Scholar 

  • Kordas, G., Camara, B., & Oel, H. J. (1982). Electron spin resonance studies of radiation damage in silicate glasses. Journal of Non-crystalline Solids, 50, 79–95.

    Article  Google Scholar 

  • Kosterev, A. A. (2014). Photo-acoustic spectroscopy laser spectroscopy for sensing (pp. 208–234).

    Google Scholar 

  • Kubelka, P., & Munk, Fr. (1931). Ein Beitrag zur Optik der Farbanstriche. Zeitschrift für technische Physik, 12, 593–601.

    Google Scholar 

  • Kubota, N., Kondo, K., Ochiai, K., & Nishitani, T. (2007). Neutron elastic recoil detection for hydrogen isotope analysis in fusion materials. Journal of Nuclear Materials, 367–370, 1596–1600.

    Article  Google Scholar 

  • Kubota, N., Ochiai, K., Kutsukake, C., Kondo, K., Shu, W., Nishi, M., et al. (2006). Ion and neutron beam analyses of hydrogen isotopes. Fusion Engineering and Design, 81, 227–231.

    Article  Google Scholar 

  • Kuhn, E., & Hartmut, I. K. (1944) Neutron image convertor, Patent US 2344042A

    Google Scholar 

  • Kulenkampff, J., Gründig, M., Richter, M., & Enzmann, F. (2008). Evaluation of positron-emission-tomography for visualisation of migration processes in geomaterials. Physics and Chemistry of the Earth, Parts A/B/C, 33, 937–942.

    Article  Google Scholar 

  • Kumar, Ch. S. S. R. (Ed.). (2013). UV-VIS and photoluminescence spectroscopy for nanomaterials characterization. Berlin: Springer.

    Google Scholar 

  • Kuperman, A. Ya., Smirnov, Yu. A., Fedotov, S. N., Nikol’skaya, T. L., & Efimova, N. S. (1989). Potentiostatic voltammetric method for determination of submicrogram quantities of neptunium and plutonium. Soviet Radiochemistry, 30, 750–755.

    Google Scholar 

  • Laborda, F., Bolea, E., & Jiménez-Lamana, J. (2016). Post hoc interlaboratory comparison of single particle ICP-MS size. Trend in Environemental Analytical Chemistry, 9, 15–23.

    Article  Google Scholar 

  • Landman, U., & Adams, D. L. (1976). Extended x-ray-absorption fine structure—Auger process for surface structure analysis: Theoretical considerations of a proposed experiment In Proceedings of the National Academy of Sciences, USA (Vol. 73, pp. 2550–2553).

    Google Scholar 

  • LaBreque, J. J. (1994). Distribution of 137Cs, 40K, 238U and 232Th in soils from Northern Venezuela. Journal of Radioanalytical and Nuclear Chemistry, 178, 327–336.

    Google Scholar 

  • Lachner, J., Christl, M., Vockenhuber, C., & Synal, H.-A. (2013). Detection of UH3+ and ThH3+ molecules and 236U background studies with low-energy AMS. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 294, 364–368.

    Google Scholar 

  • Laux, D., Baron, D., Despaux, G., Kellerbauer, A., & Kinoshita, M. (2012). Determination of high burn-up nuclear fuel elastic properties with acoustic microscopy. Journal of Nuclear Materials, 420, 94–100.

    Article  Google Scholar 

  • Le Guillou, M., Toulhoat, N., Pipon, Y., Moncoffre, N., & Khodja, H. (2015). Deuterium migration in nuclear graphite: Consequences for the behavior of tritium in CO2-cooled reactors and for the decontamination of irradiated graphite waste. Journal of Nuclear Materials, 461, 72–77.

    Article  Google Scholar 

  • Lenz, D. (1954). Zur stenung mittelschneller Elektronen in kleinste Winkel. Zeitschrift für Naturforschung A, 9, 185–204.

    Article  Google Scholar 

  • Li, B., Wang, M., Lu, B., & Wu, J. (1991). Determination of eight trace elements in U3O8 standard reference material by isotope dilution spark source mass spectrometry. Atomic Energy Science and Technology 25, 66–70.

    Google Scholar 

  • Linge, K. L., & Jarvis, K. E. (2009). Quadrupole ICPMS introduction to instrumentation, measurement techniques and analytical capabilities. Geostandards and Geoanalytical Research, 33, 445–467.

    Article  Google Scholar 

  • Linsmeier, Ch., Fu, C.-C., Kaprolat, A., Nielsen, S. F., Mergia, K., Schäublin, R. et al. (2013). Advanced materials characterization and modeling using synchrotron, neutron, TEM, and novel micro-mechanical techniques—A European effort to accelerate fusion materials development. Journal of Nuclear Materials, 442, S834–S845.

    Google Scholar 

  • Litherland, A. E. (1980). Ultrasensitive mass spectrometry with accelerators. Annual Review of Nuclear and Particle Science, 30(1980), 437–473.

    Article  Google Scholar 

  • Long, G. G., Fischer, D. A., Kruger, J., Black, D. R., Tanaka, D. K., & Danko, G. A. (1989). Surface-extended x-ray-absorption fine-structure experiments at atmospheric pressure by means of a photocathode proportional counter with monolayer sensitivity. Physical Review B, 39, 10651–10655.

    Article  Google Scholar 

  • Lumpkin, G. R. (1999). Physical and chemical characteristics of baddeleyite (monoclinic zirconia) in natural environments: An overview and case study. Journal of Nuclear Materials, 274, 206–217.

    Article  Google Scholar 

  • Lunney, D., Audi, G. M., & Kluge, H. J. (Eds). (2001). Atomic physics at accelerators: Mass spectrometry. In Proceedings of the APAC 2000. Berlin: Springer.

    Google Scholar 

  • Lund, A., & Shiotani, M. (Eds.). (2014). Applications of EPR in radiation research.

    Google Scholar 

  • Lumpkin, G. R. (1999). Physical and chemical characteristics of baddeleyite (monoclinic zirconia) in natural environments: An overview and case study. Journal of Nuclear Materials, 274, 206–217.

    Article  Google Scholar 

  • Lyons, P. C., Hercules, D. M., Morelli, J. J., Sellers, G. A., Mattern, D., Thomson Rizer, C. L., et al. (1987). Application of laser microprobe (LAMMA 1000) to “fingerprinting” of coal constituents in bituminous coal. International Journal of Coal Geology, 7, 185–194.

    Google Scholar 

  • Macdonald, D. D., Scott, A. C., & Wentrcek, P. (1981). Redox potential measurements in high temperature aqueous systems. Journal of the Electrochemical Society, 128, 250–257.

    Article  Google Scholar 

  • Madey, J. M. J. (1971). Stimulated emission of bremsstrahlung in a periodic magnetic field. Journal of Applied Physics, 42, 1906–1913.

    Article  Google Scholar 

  • Maeda, N., Nakamura, N., Uchida, M., Ohta, Y., & Yoshida, K. (1996). Application of positron annihilation line-shape analysis to fatigue damage for nuclear plant materials. Nuclear Engineering and Design, 167, 169–174.

    Article  Google Scholar 

  • Magilin, D., Ponomarev, A., Rebrov, V., & Ponomarov, A. (2015). High-voltage scanning ion microscope: Beam optics and design. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 350, 32–35.

    Google Scholar 

  • Maheswari, M. A., & Subramanian, M. S. (2005). Selective extraction of actinides using EEBEHBA grafted polymer: A green process for nuclear reprocessing program. Separation Science and Technology, 39, 3621–3638.

    Article  Google Scholar 

  • Malchukova, E., & Boizot, B. (2010). Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses under ionizing radiation. Materials Research Bulletin, 45, 1299–1303.

    Google Scholar 

  • Marinello, F., Passeri, D., & Savio, E. (Eds.). (2013). Acoustic scanning probe microscopy. Berlin: Springer.

    Google Scholar 

  • Manning, D. L., & Mamantov, G. (1968). Disproportionation of electrochemically-generated uranium(V) in molten LiF-BeF2-ZrF4 at 500 °C. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 18, 137–141.

    Article  Google Scholar 

  • Marks, N. (1995). Synchrotron radiation sources. Radiation Physics and Chemistry, 45, 315–331.

    Article  Google Scholar 

  • Marquis, E. A., Hyde, J. M., Saxey, D. W., Lozano-Perez, S., de Castro, V., Hudson, D., et al. (2009). Nuclear reactor materials at the atomic scale. Materials Today, 12, 30–37.

    Article  Google Scholar 

  • Martin, P., Hancock, G. J., Paulka, & Akber, S. R. A. (1995). Determination of 227Ac by α-particle spectrometry. Applied Radiation and Isotopes, 46, 1065–1070.

    Google Scholar 

  • Marschall, R. (1990). Aspects of seismic reflection data processing. Berlin: Springer.

    Google Scholar 

  • Marschall, P., & Lunati, I. (Eds.). (2011). GAM—Gas Migration Experiments in a heterogeneous shear zone of the Grimsel Test Site (Nagra NTB 03-11) (p. 135).

    Google Scholar 

  • Mauchien, P., Pailloux, A., & Vercouter, T. (2014). 17—Applications of laser spectroscopy in nuclear research and industry. Laser Spectroscopy for Sensing, 522–543.

    Google Scholar 

  • Mavko, G., Mukerji, T., & Dvorkin, J. (1998). The rock physics handbook—tool for seismic analysis in porous media. Cambridge: Cambridge University Press.

    Google Scholar 

  • May, L. (1971). An introduction to Mössbauer spectroscopy. Berlin: Springer.

    Google Scholar 

  • Maya, L., & Begun, G. M. (1981). A Raman spectroscopic study of hydroxo and carbonato species of the uranyl (VI) ion. Journal of Inorganic and Nuclear Chemistry, 43, 2827–2832.

    Article  Google Scholar 

  • McDonald, R. S. (1986). Review: infrared spectrometry. Analytical Chemistry, 58, 1906–1925.

    Article  Google Scholar 

  • Mennecart, Th., Cachoir, C., Lemmens, K., Govers, K., Dobney, A., & Adriaensen, L. (2016). Repartition of the uranium isotopes within the Belgian UOX spent fuel. In Proceedings of MRS symposium. SBNWM, 2016.

    Google Scholar 

  • Merciny, E., Pattyn-fauville, G., Swennen, L., & Duyckaerts, G. (1981). Constant-current coulometric determination of uranium in the pure metal. Analytica Chimica Acta, 129, 113–124.

    Article  Google Scholar 

  • Mieszczynski, C., Degueldre, C., Kuri, G., Bertsch, J., & Borca, C. N. (2012). Investigation of irradiated uranium-plutonium mixed oxide fuel by synchrotron based micro X-ray diffraction. Progress in Nuclear Energy, 57, 130–137.

    Article  Google Scholar 

  • Miller, M. K., & Forbes, R. G. (2014). Atom-probe tomography, The local electrode atom probe. Berlin: Springer.

    Google Scholar 

  • Miller, K. M., Shebell, P., & Klemic, G. A. (1994). In situ gamma-ray spectrometry for the measurement of uranium in surface soils. Health Physics, 67, 140–150.

    Article  Google Scholar 

  • Misaelides, P, Samara, C., Noli, F., Kouimtzis, Th., & Anousis, I. (1993). Toxic element concentrations in airborne particulate matter in the area of Thessaloniki, Greece. Science of the Total Environment, 130–131, 139–146.

    Google Scholar 

  • Miziolek, A., Palleschi, V., & Schechter, I. (2006). Laser induced breakdown spectroscopy. Cambridge: Cambridge University Press.

    Google Scholar 

  • Mogensen, O. E. (2004). Positron annihilation in chemistry. Berlin: Springer.

    Google Scholar 

  • Moharram, B. M., Lamaze, G., Elfiki, M., & Khalil, N. (2002). Neutron-based analysis of fission rates and ultra-trace concentrations of 235U using gamma spectrometry and CR-39 (plastic track detector). Radiation Measurements, 35, 113–117.

    Article  Google Scholar 

  • Molina, A., & González, J. (2007). Pulse voltammetry in physical electrochemistry and electroanalysis theory and applications. Berlin: Springer

    Google Scholar 

  • Monteith, J. L., & Unsworth, M. H. (2013). Transport of radiant energy. Principles of Environmental Physics—Chapter 4 (4th ed., pp. 37–48).

    Google Scholar 

  • Morita, S., Giessibl, F. J., Meyer, E., & Wiesendanger, R. (Eds.). (2015). Noncontact atomic force microscopy (Vol. 3). Berlin: Springer.

    Google Scholar 

  • Morse, D. H., Antolak, A. J., & Doyle, B. L. (2007). Photofission in uranium by nuclear reaction gamma-rays. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 261, 378–381.

    Article  Google Scholar 

  • Moseley, H. G. J. (1913). The high frequency spectra of the elements. Philosophical Magazine Series 6, 26, 1024–1034.

    Google Scholar 

  • Mössbauer, R. L. (1958). Kernresonanzfluoreszenz von Gammastrahlung in Ir191 . Zeitschrift für Physik, 151, 124–143.

    Google Scholar 

  • Mössbauer, R. L., Seelbach, H. E., Persson, B., Bent, M., & Longworth, G. (1968). Self-inversion of gamma lines. Physics Letters A, 28, 94–95.

    Article  Google Scholar 

  • Moulin, C., Charron, N., Plancque, G., & Virelizier, H. (2000). Speciation of uranium by ES-MS: comparison with TRLIF. Applied Spectroscopy, 54, 843–848.

    Article  Google Scholar 

  • Moulin, C., Amekraz, B., Hubert, S., & Moulin, V. (2001). Study of thorium hydrolysis species by electrospray-ionization mass spectrometry. Analytica Chimica Acta, 21, 1–11.

    Google Scholar 

  • Moulin, C., Decambox, P., Mauchien, P., Moulin, V., & Theyssier, M. (1991). On the use of laser-induced time-resolved Spectrofluorometry: Application to curium. Radiochimica Acta, 52/3, 119–125.

    Google Scholar 

  • Moulin, C., Decambox, P., & Mauchien, P. (1997). State-of-the-art in time resolved laser fluorescence for actinides analysis applications and trends. Journal of Radioanalytical and Nuclear Chemistry, 226, 135–138.

    Article  Google Scholar 

  • Moulin, C., Decambox, P., Moulin, V., & Decaillon, J. G. (1995). Uranium speciation in solution by time- resolved laser-induced fluorescence. Analytical Chemistry, 67, 348–353.

    Article  Google Scholar 

  • Musazzi, S., & Perini, U. (Eds.). (2014). Laser-induced breakdown spectroscopy theory and applications. Berlin: Springer.

    Google Scholar 

  • Müller, E. W. (1951). Das Feldionenmikroskop. Zeitschrift für Physik, 131, 136

    Google Scholar 

  • Müller, E. W. (1970). The atom-probe field ion microscope. Naturwissenschaften, 5, 222–230.

    Article  Google Scholar 

  • Müller, E. W., MacLane, S. B., Panitz, J. A. (1969) Field adsorption and desorption of helium and neon. Surface Science, 17, 430–438.

    Google Scholar 

  • Müller, W., Worrack, M., & Zapara, M. (2011). Analysis of nanoidentation experiment by mean of atom force microscopy. In Proceedings in Applied Mathematics and Mechanics (Vol. 11, pp. 413–414).

    Google Scholar 

  • Mundschau, M. (1991). Photoelectron emission microscopy. Synchrotron Radiation News, 4, 29–34.

    Article  Google Scholar 

  • Mwenifumbo, C. J., & Kjarsgaard, B. A. (1999). Gamma-ray logging and radioelement distribution in the Fort à la Corne kimberlite pipe 169. Exploration and Mining Geology, 8, 137–147.

    Google Scholar 

  • Nagra. (1991) Sondierbohrung Leuggern (Technischer Bericht 88-10, Beilage Band 5.16). Wettingen, Switzerland.

    Google Scholar 

  • Nakada, M., Saeki, M., Masaki, N. M., & Tsutsui, S. (1998). Mössbauer spectroscopy of 237Np. Journal of Radioanalytical and Nuclear Chemistry, 232, 201–207.

    Google Scholar 

  • Nakashima, S. (1992). Complexation and reduction of uranium by lignite. Science of the Total Environment, 117(8), 425–437.

    Article  Google Scholar 

  • Nasu, S. (2012). Chapter: General introduction to mössbauer spectroscopy. In Mössbauer spectroscopy (pp. 1–22). Berlin: Springer.

    Google Scholar 

  • Néher-Neumann, E. (2009). Advanced potentiometr, potentiometric titrations and their systematic errors. Berlin: Springer.

    Google Scholar 

  • Neudecker, D., Taddeucci, T. N., Haight, R. C., Lee, H. Y., White, M. C., & Rising, M. E. (2016). The need for precise and well-documented experimental data on prompt fission neutron spectra from neutron -induced fission of 239Pu. Nuclear Data Sheets, 131, 289–318.

    Article  Google Scholar 

  • Nernst, W. (1888) zur Kinetik der in Lösung befindlichen Körper 1.Theorie der Diffusion, Zeitschrift für Physikalische Chemie, 2, 613–637; Ueber freie lonen. (1889). ibid, 3, 120–130.

    Google Scholar 

  • Neu, M., Hoffman, D., Roberts, K. E., Nitsche, H., & Silva, R. J. (1994). Comparision of extractions and laser photoacoustic spectroscopy for the determination of plutonium species in carbonate solution IV. Radiochim.ica Acta, 66(7), 251–258.

    Google Scholar 

  • Neuville, D. R., Cormier, L., Boizot, B., & Flank, A. M. (2003). Structure of β-irradiated glasses studied by X-ray absorption and Raman spectroscopies. Journal of Non-crystalline Solids, 323, 207–213.

    Article  Google Scholar 

  • Nicholson, R. S., & Shain, I. (1964). Theory of stationary electrode polarography. Analytical Chemistry, 36, 706–723.

    Article  Google Scholar 

  • Nitsche, H. (1995). Synchrotron X-ray absorption spectroscopy: A new tool for actinide and lanthanide speciation in solids and solution. Journal of Alloys and Compounds, 223, 274–279.

    Article  Google Scholar 

  • Noller, B. N., & Hart, B. T. (1993). Uranium in sediments from the Magela Creek catchment, northern territory. Environmental Technology, 14, 649–656.

    Article  Google Scholar 

  • Ohkubo, Y., Kobayashi, Y., Harasawa, K., Ambe, S., Okada, T., Ambe, F., et al. (1995). Time-differential perturbed-angular-correlation and emission Moessbauer studies on 99Ru dispersed in YBa2Cu3O6.8 and YBa2Cu3O6. The Journal of Physical Chemistry, 99, 10629–10634.

    Google Scholar 

  • Ohtani, T. (1986). 129Te Mössbauer emission spectroscopic study of the V-Te system: V3Te4, V5Te8 and VTe2 phases. Solid State Communication, 57, 81–83.

    Google Scholar 

  • Onsager, L. (1927). Zur Theorie der Elektrolyte. II. Physikalische Zeitschrift, 28, 277–298.

    Google Scholar 

  • Orlov, A. V., Restani, R., Kuri, G., Degueldre, C., & Valizadeh, S. (2010). Investigation on a corrosion product deposit layer on a boiling water reactor fuel cladding. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268, 297–305.

    Article  Google Scholar 

  • Ortega Paredes, V. I., Neyra Astudillo, M. R., Nu–ez, N., Ruzzante, J. E., Lopez Pumarega, M. I., Gomez, M. P., et al. (2012). Analysis of barkhausen noise signals of samples Fe–1 wt % Cu. Procedia Materials Science, 1, 651–658.

    Google Scholar 

  • Okajima, S., Reed, D. T., Beitz, J. V., Sabau, C. A., & Bowers, D. L. (1991). Speciation of Pu (VI) in near-neutral solutions via laser photoacoustic spectroscopy. Radiochimica Acta, 52(3), 111–117.

    Google Scholar 

  • Onsager, L. (1926). Zur Theorie der Elektrolyte. Physikalische Zeitschrift, 27, 388–392.

    Google Scholar 

  • Opilik, L., Schmid, Th, & Zenobi, R. (2013). Modern Raman imaging: Vibrational spectroscopy on the micrometer and nanometer scales. Annual Review of Analytical Chemistry, 6, 379–398.

    Article  Google Scholar 

  • Page, A. G., Godbole, S. V., Kulkarni, Madhuri J., Porwal, N. K., Shelar, S. S., & Joshi, B. D. (1983). Trace metal assay of U3O8 powder by electrothermal AAS. Talanta, 30, 783–786.

    Article  Google Scholar 

  • Papadopulos, N. N., & Tsagas, N. F. (1994). Rapid nondestructive isotopic uranium analysis by neutron activation delayed neutron counting. Journal of Radioanalytical and Nuclear Chemistry, 179, 35–43.

    Article  Google Scholar 

  • Pareto, V. (1965). La courbe de répartition de la richesse. In G. Busino (Ed.), Œuvres completes de Vilfredo Pareto. Geneva: Librairie Droz (Originally published in 1896).

    Google Scholar 

  • Park, J. S., Zhang, X., Sharma, H., Kenesei, P., Hoelzer, D., Li, M., et al. (2015). High-energy synchrotron x-ray techniques for studying irradiated materials. Journal of Materials Research, 30, 1380–1391.

    Article  Google Scholar 

  • Parker, H. M., & Joyce, M. J. (2015). The use of ionising radiation to image nuclear fuel: A review. Progress in Nuclear Energy, 85, 297–318.

    Article  Google Scholar 

  • Parry, E. P., & Osteryoung, R. A. (1965). Evaluation of analytical pulse polarography. Analytical Chemistry, 37, 1634–1637.

    Article  Google Scholar 

  • Pedersen, H., Höglund, C., Birch, J., Jensen, J., & Henry, A. (2012). Chemical Vapor Deposition, 18, 221–224.

    Article  Google Scholar 

  • Perkampus, H. H. (1992). UV-VIS spectroscopy and its applications. Berlin: Springer.

    Google Scholar 

  • Perkins, W. T., Pearce, N. J. G., & Jefferies, T. E. (1993). Laser ablation inductively coupled plasma mass spectrometry: A new technique for the determination of trace and ultra-trace elements in silicates Geochim. Cosmochimica Acta, 57, 475–482.

    Article  Google Scholar 

  • Petersen, T. B. (2009). Acoustic emission from impact on rigid body, Journal of Acoustic Emission, 27, 98–113.

    Google Scholar 

  • Pfennig, G., Klewe-Nebenius, H., & Seelmann-Eggebert, W. (1995). Chart of the nuclides, Forschungszentrum Karlsruhe.

    Google Scholar 

  • Pike, E. R. & Abbiss, J. B. (Eds.). (1997). Light scattering and photon correlation spectroscopy. Berlin: Springer.

    Google Scholar 

  • Pleniceany, M., Isvoranu, M., & Spinu, C. (2005). Liquid membrane ion-selectve electrodes for potentiometric dosage of coper and nickel. Journal of the Serbian Chemical Society, 70, 269–276.

    Article  Google Scholar 

  • Pollard, P. M., Liezers, M., McMillan, J. W., Phillips, G., Thomason, H. P., & Ewart, F. T. (1988). Some actinide speciation using laser induced photoacoustic spectroscopy. Radiochimica Acta, 44(5), 95–101.

    Google Scholar 

  • Portier, S., Degueldre, C., & Kivel, N. (2012). Solving isobaric interferences in secondary ion mass spectrometry: The case of Am and Pu in irradiated thorium-based fuel. Spectrochimica Acta B, 73, 35–38.

    Article  Google Scholar 

  • Pouchon, M. A., Chen, J., & Hoffelner, W. (2009). He implantation induced microstructure- and hardness-modification of the intermetallic γ-TiAl. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267, 1500–1504.

    Article  Google Scholar 

  • Pozsgai, S. (2007). Mass thickness determination and microanalysis of thin films in the TEM-revisited. Ultramicroscopy, 107, 191–195.

    Article  Google Scholar 

  • Probst, T., Zeh, P., & Kim, J. I. (1995). Multielement determinations in ground water. Fresenius’ Journal of Analytical Chemistry, 351, 745–751.

    Article  Google Scholar 

  • Quaim, S. M., Bisinger, T., Hilgers, K., Nayak, D., & Coenen, H. H. (2007). Positron emission intensities in the decay of 64Cu, 76Br and 124I. Radiochimica Acta, 95, 67–73.

    Google Scholar 

  • Raman, C. V. (1928). A new radiation. Indian Journal of Physics, 2, 387–398.

    Google Scholar 

  • Randles, J. E. B. (1948). A cathode ray polarograph. Transactions of the Faraday Society, 44, 322–327.

    Google Scholar 

  • Rapkin, E. (1964). Liquid scintillation counting 1957–1963: A review. The International Journal of Applied Radiation and Isotopes, 15, 69–87.

    Article  Google Scholar 

  • Rao, T. S., Shriwastwa, B. B., Dubey, J. N., Patil, B. P., Chandrasekharan, K. N., Pandey, V. D., et al. (2003). Quantitative estimation of plutonium-rich areas in thorium-based MOX fuels using alpha autoradiography technique. Radiation Measurements, 36, 747–750.

    Article  Google Scholar 

  • Ray, A. K. (1963). 3-Oximinomethylsalicylic acid as a reagent for the gravimetric determination of thoriumAnalytica Chimica Acta, 28, 580–583.

    Google Scholar 

  • Rehr, J. J., & Albers, R. C. (2000). Theoretical approaches to X-ray absorption fine structure. Reviews of Modern Physics, 72, 621–654.

    Article  Google Scholar 

  • Reimer, L. (1998). Scanning electron microscopy, physics of image formation and microanalysis. Berlin: Springer.

    Book  Google Scholar 

  • Restani, R., Martin, M., Kivel, N., & Gavillet, D. (2009). Analytical investigations of irradiated inert matrix fuel. Journal of Nuclear Materials, 385, 435–442.

    Article  Google Scholar 

  • Riggi, S., Antonuccio-Delogu, V., Bandieramonte, M., Becciani, U., & Costa, A. (2013). Muon tomography imaging algorithms for nuclear threat detection inside large volume containers with the Muon Portal detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 728, 59–68.

    Article  Google Scholar 

  • Riley, K. J., & Harling, O. K. (1998). An improved prompt gamma neutron activation analysis facility using a focused diffracted neutron beam. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 143, 414–421.

    Article  Google Scholar 

  • Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of applied Crystallography, 2, 65–71.

    Article  Google Scholar 

  • Robertson, C., Panigrahi, B. K., Balaji, S., Kataria, S., Serruys, Y., Mathon, M.-H., et al. (2012). Particle stability in model ODS steel irradiated up to 100 dpa at 600 & #xB0;C: TEM and nano-indentation investigation. Journal of Nuclear Materials, 426, 240–246.

    Article  Google Scholar 

  • Rogers, A. W. (1979). Techniques of autoradiography (3rd ed.). New York: Elsevier North Holland.

    Google Scholar 

  • Roncal-Herrero, J. D., Rodríguez-Blanco, E. H., Oelkers, L. G., & Benning, L. G. J. (2011). The direct precipitation of rhabdophane (REEPO4∙nH2O) nano-rods from acidic aqueous solutions at 5–100 ℃. Journal of Nanoparticle Research, 13, 4049–4062.

    Google Scholar 

  • Ronchi, C., Ottaviani, J. P., Degueldre, C., & Calabrese, R. (2003). Thermophysical properties of inert matrix fuels for actinide transmutation. Journal of Nuclear Materials, 320, 54–65.

    Article  Google Scholar 

  • Rothchild, S. (1963). Advances in tracer methodology (Vol. 1). Berlin: LSC, Springer.

    Google Scholar 

  • Rudenko, A., & Rolles, D. (2015). Time-resolved studies with FELs. Journal of Electron Spectroscopy and Related Phenomena, 204, 228–236.

    Article  Google Scholar 

  • Sah, D. N., Viswanathan, U. K., Ramadasan, E., Unnikrishnan, K., & Anantharaman, S. (2008). Post irradiation examination of thermal reactor fuels. Journal of Nuclear Materials, 383, 45–53.

    Article  Google Scholar 

  • Sahoo, P., Mallika, C., Ananthanarayanan, R., Lawrence, F., Murali, N., & Kamachi, U. (2012). Mudali, Potentiometric titration in a low volume of solution for rapid assay of uranium. Application to quantitative electro-reduction of uranium(VI). Journal of Radioanalytical and Nuclear Chemistry, 292, 1401–1409.

    Article  Google Scholar 

  • Sarma, D. V. N., & Raghava Rao, Bh S V. (1955). Alizarin-s, a reagent for thorium. A gravimetric, colorimetric, and spectrophotometric study. Analytica Chimica Acta, 13, 142–149.

    Article  Google Scholar 

  • Sarott, F. A. (2005). Water chemistry in boiling water reactor—a Leibstadt—specific overview. CHIMIA International Journal for Chemistry, 59, 923–928.

    Article  Google Scholar 

  • Savvin S. B. (1961). Analytical use of arsenazoIII, determination of thorium, zirconium, uranium and rare earth elements. Talanta, 8, 673–585.

    Google Scholar 

  • Ševčík, A. (1948). Oscillographic polarography with periodical triangular voltage. Collection of Czechoslovak Chemical, 13, 349–377.

    Article  Google Scholar 

  • Sharma, A., & Schulman, St. G. (1999). Introduction to fluorescence spectroscopy. Hoboken: Wiley.

    Google Scholar 

  • Shamsipur, M., Ghiasvand, A. R., & Yamini, Y. (1999). Solid-phase extraction of ultratrace uranium(VI) in natural waters using octadecyl silica membrane disks modified by tri-n-octylphosphine oxide and its spectrophotometric determination with dibenzoylmethane. Analytical Chemistry, 71, 4892–4895.

    Article  Google Scholar 

  • Sheng, Z., Zhao, Y., & Gu, D. (1985). NAA determination of the 235U/238U ratio of uranium in geological samples. Geochimica, 18, 188–195.

    Google Scholar 

  • Shimizu, I. (2013, September). In Proceeding of 13th Conference Astroparticle & Underground Physics.

    Google Scholar 

  • Scholz, F. (2010). Electroanalytical methods. Berlin: Springer.

    Google Scholar 

  • Schlemmer, G. (1999). Analytical graphite furnace atomic absorption spectrometry a laboratory guide. Berlin: Springer.

    Google Scholar 

  • Schlichting, I., & Miao, J. (2012). Emerging opportunities in structural biology with X-ray free-electron lasers. Current Opinion in Structural Biology, 22, 613–626.

    Article  Google Scholar 

  • Schoonover, J. R., & Havrilla, G. J. (1999). Combining X-ray fluorescence spectrometry and vibrational microscopy to assess highly heterogeneous, actinide-contaminated materials. Applied Spectroscopy, 53, 257–265.

    Article  Google Scholar 

  • Scott, D. B. (2013). Internal inspection of reinforced concrete for nuclear structures using shear wave tomography. Energy Conversion and Management, 74, 582–586.

    Article  Google Scholar 

  • Schmüser, P., Dohlus, M., & Rossbach, J. (2009). Ultraviolet and soft x-ray free-electron lasers introduction to physical principles, experimental results, technological challenges, springer tracts in modern physics (p. 229).

    Google Scholar 

  • Scott, M. C., Chen, C. C., Mecklenburg, M., Zhu, C., Xu, R., Ercius, P., et al. (2012). Electron tomography at 2.4-ångström resolution. Nature, 483, 444–447.

    Article  Google Scholar 

  • Seidman, D. N. (2007). Three-dimensional atom-probe tomography: Advances and applications. Annual Review of Materials Research, 37, 127–158.

    Article  Google Scholar 

  • Sekine, T., Yoshihara, K., Lakosi, L., Németh, Z., & Veres, A. (1991). Integral cross section of the 99Tc(γ, γ′)99mTc reaction in the 15–50 MeV energy region. International Journal of Radiation Applications and Instrumentation. A., 42, 149–153.

    Google Scholar 

  • Sheriff, R. E., & Geldart, L. P. (1995). Exploration seismology. Cambridge: Cambridge University Press (2nd ed).

    Google Scholar 

  • Silverman, L., Billings, C. E., & First, M. W. (1971). 5—Automatic particle counting and sizing instruments. Particle Size Analysis in Industrial Hygiene, 196–234.

    Google Scholar 

  • Singh, J. P., Gautam, S., Srivastava, R. C., Asokan, K., & Chae, K. H. (2015). XAS and XMCD investigation of zinc ferrite nanoparticles irradiated with 100 MeV O beam. In Proceedings of Magnetics Conference (INTERMAG), 2015 IEEE.

    Google Scholar 

  • Siren, T., Hakala, M., Valli, J., Kantia, P., Hudson, J. A., & Johansson, E. (2015). In situ strength and failure mechanisms of migmatitic gneiss and pegmatitic granite at the nuclear waste disposal site in Olkiluoto, Western Finland. International Journal of Rock Mechanics and Mining Sciences, 79, 135–148.

    Article  Google Scholar 

  • Sim, C.-M., Park, S.-S., Song, Y.-Y., Park, D.-G., & Chang, K.-O. (2000). Harmonic frequency analysis of acoustic Barkhausen noise on neutron irradiated material. In Springer 15th World Conference on Non-Destructive Testing 15–21 October 2000, Rome.

    Google Scholar 

  • Slichter, Ch. P. (1996). Principles of magnetic resonance, springer series in solid-state sciences.

    Google Scholar 

  • Simeone, D., Mallet, C., Dubuisson, P., Baldinozzi, G., Gervais, C., & Maquet, J. (2000). Study of boron carbide evolution under neutron irradiation by Raman spectroscopy. Journal of Nuclear Materials, 277, 1–10.

    Article  Google Scholar 

  • Song, D., Wang, Z., & Zhu, J. (2015). Effect of the asymmetry of dynamical electron diffraction on intensity of acquired EMCD signals. Ultramicroscopy, 148, 42–51.

    Article  Google Scholar 

  • Soto-Guerrero, J., Gajdosova, D., & Havel, J. (2001). Uranium oxide clusters by laser desorption ionization during MALDI-TOF MS analysis of uranium(VI). Journal of Radioanalytical and Nuclear Chemistry, 249, 139–143.

    Article  Google Scholar 

  • Smedley, S. (1980). The interpretation of ionic conductivity in liquids. Berlin: Springer.

    Google Scholar 

  • Smith, A. L., Raison, P. E., Hen, A., Bykov, D., Colineau, E., Sanchez, J.-P., et al. (2015). Structural investigation of Na3NpO4 and Na3PuO4 using X-ray diffraction and 237Np Mössbauer spectroscopy. Dalton Transactions, 44, 18370–18377.

    Article  Google Scholar 

  • Stefanovsky, S. V., & Stefanovskaya, O. I. (2014). EPR of radiation-induced paramagnetic centers in irradiated sodium silicate glass for immobilization of solid radioactive wastes synthesized in various conditions. Inorganic Materials: Applied Research, 3, 271–277.

    Google Scholar 

  • Stefanovsky, S. V., Stefanovsky, O. I., Kadyko, M. I., Zhachkin, V. A., & Bogomolova, L. D. (2016). The effect of electron irradiation on the structure of sodium aluminum-iron phosphate glasses. Materials Research Society Symposium: the Japanese Society for Non-Destructive Inspection. 1, 4227–4234.

    Google Scholar 

  • Steinhausen, Ch., Dobler, M., Glückler, H., & Weidinger, A. (1994). Elastic recoil detection analysis with heavy ions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 89, 131–139.

    Article  Google Scholar 

  • Suekane, F., & Junqueira de Castro Bezerra, Th. (2016). Double Chooz and a history of reactor θ 13 experiments. Nuclear Physics B, 908, 74–93.

    Article  Google Scholar 

  • Szöghy, I. M., Simon, J., & Kish, L. (1981). Si(Li) detector efficiency in standard X-ray fluorescence geometries. X-Ray Spectrometry, 10, 168–170.

    Article  Google Scholar 

  • Szymanski, H. (1970). Raman spectroscopy—Theory and practice. Berlin: Springer.

    Google Scholar 

  • Tao, S. J. (1972). Positronium annihilation in molecular substances. The Journal of Chemical Physics, 56, 5499–5510.

    Article  Google Scholar 

  • Taylor, J. E. L., Hall, G. N., & Mummery, P. M. (2016). Investigating the effects of stress on the pore structures of nuclear grade graphites. Journal of Nuclear Materials, 470, 216–228.

    Article  Google Scholar 

  • Takamatsu, K., Takegami, H., Ito, C., Suzuki, K., Ohnuma, H., Hino, R., et al. (2015). Cosmic-ray muon radiography for reactor core observation. Annals of Nuclear Energy, 78, 166–175.

    Article  Google Scholar 

  • Taurines,T., & Boizot, B. (2011). Synthesis of powellite-rich glasses for high level waste immobilization. Journal of Non-crystalline Solids, 357, 2723–2725.

    Google Scholar 

  • Teixeira, L. S. G., Costa, A. C. S., Ferreira, S. L. C., Freitas, M. D. L., & Carvalho, M. S. D. (1999). Spectrophotometric determination of uranium using 2-(2-Thiazolylazo)-p-cresol (TAC) in the presence of surfactants. Journal of the Brazilian Chemical Society, 10 (On-line). ISSN 1678-4790.

    Google Scholar 

  • Teo, B.-K. (1986). EXAFS: Basic principles and data analysis. Berlin: Springer

    Google Scholar 

  • Theisen, R. (1965). Quantitative electron microprobe analysis. Berlin: Springer.

    Google Scholar 

  • The Japanese, Society for Non-Destructive Inspection. (Ed.). (2016). Practical acoustic emission testing. Berlin: Springer.

    Google Scholar 

  • Theophanides. (Ed). (1984). Fourier transform infrared spectroscopy industrial chemical and biochemical applications. Berlin: Springer.

    Google Scholar 

  • Theuwissen, A. J. P. (1995). Solid-state imaging with charge-coupled device. Dordrecht: Kluwer Academic Publisher.

    Google Scholar 

  • Thieme, J., Schmahl, G., Rudolph, D. & Umbach, E. (Eds). (1998). X-Ray microscopy and spectromicroscopy—status report from the Fifth International Conference, Wüzburg, August 19–23, 1996. Berlin: Springer.

    Google Scholar 

  • Thomson, J. J. (1923). The electron in chemistry. Journal of the Franklin Institute, 195, 737–785.

    Article  Google Scholar 

  • Thompson, M. (Ed). (1989). Handbook of inductively coupled plasma spectrometry (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Trautmann, N., Peuser, P., Rimke, H., Sattelberger, P., Herrmann, G., Ames, F., et al. (1986). A resonance ionization mass spectrometer as an analytical instrument for trace analysis. Journal of the Less Common Metals, 122, 533–538.

    Article  Google Scholar 

  • Triay, I., Hobart, D. E., Mitchell, A. J., Newton, T. W., Ott, M. A., Palmer, P. D., et al. (1991). Size distribution of plutonium colloids using autocorrelation photon spectroscopy. Radiochimica Acta, 52(53), 127–131.

    Google Scholar 

  • Tycko, R. (Ed.). (1994). Nuclear magnetic resonance probes of molecular dynamics. Berlin: Springer.

    Google Scholar 

  • Tylka, M. M., Willit, J. L., Prakash, J., & Williamson, M. A. (2015a). Method development for quantitative analysis of actinides in molten salts. Journal of the Electrochemical Society, 162, H1. doi:10.1149/2.0401509jes

  • Tylka, M. M., Willit, J. L., Prakash, J., & Williamson, M. A. (2015b). Application of voltammetry for quantitative analysis of actinides in molten salts. Journal of The Electrochemical Society, 162, H852–H859.

    Article  Google Scholar 

  • Uchida, S., Satoh, T., & Tsukada, T. (2008). High temperature water chemistry sensors related to nuclear power plant. Preprint ICPWS XV (p. 10).

    Google Scholar 

  • Upadhyay, S. K. (2004). Seismic reflection processing, with special reference to anisotropy. Berlin: Springer.

    Book  Google Scholar 

  • Usman, S. M., Jocher, G. R., Dye, S. T., McDonough, W. F., & Learned J. G. (2015a). Corrigendum: AGM2015: Antineutrino global map 2015. Scientific Reports, 5, 15308.

    Google Scholar 

  • Usman, S. M., Jocher, G. R., Dye, S. T., McDonough, W. F., & Learned, J. G. (2015b). Corrigendum: AGM2015: Antineutrino global map 2015. Scientific Reports, 5, 15308.

    Google Scholar 

  • Valeur, B., & Brochon, J.-C. (Eds.). (2001). New Trends in fluorescence spectroscopy applications to chemical and life sciences. Berlin: Springer.

    Google Scholar 

  • Vegard, L. (1921). Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Zeitschrift für Physik, 5, 17–26.

    Article  Google Scholar 

  • Verbeeck, J., Hébert, C., Rubino, S., Novak, P., Rusz, J., et al. (2008). Optimal aperture sizes and positions for EMCD experiments. Ultramicroscopy, 108, 865–872.

    Article  Google Scholar 

  • Veleva, L., Schäublin, R., Plocinski, T., Walter, M., & Baluc, N. (2011). Processing and characterization of a W–2Y material for fusion power reactors. Fusion Engineering and Design, 86, 2450–2453.

    Article  Google Scholar 

  • Veselsky, J. C., & Degueldre, C. A. (1986). Quenching behaviour of lanthanides on the ultraviolet fluorescence of uranium(VI). Analyst, 111, 535–538.

    Article  Google Scholar 

  • Veselsky, J. C., & Ratsimandresy, Y. (1979). An investigation of quenching effects in the direct fluorimetric determination of uranium in minerals. Analytica Chimica Acta, 104, 345–353.

    Article  Google Scholar 

  • Vizkelethy, G. (2003). Nuclear reaction analysis and proton-induced gamma ray emission. In Characterisation of materials. Hoboken: Wiley.

    Google Scholar 

  • von Laue, M. (1913). Röntgenstrahlinterferenzen. Physikalische Zeitschrift, 14, 1075–1079.

    Google Scholar 

  • Xu, H., & Wang, Y. (1999). Electron energy-loss spectroscopy (EELS) study of oxidation states of Ce and U in pyrochlore and uraninite—natural analogues for Pu- and U-bearing waste forms. Journal of Nuclear Materials, 265, 117–123.

    Article  Google Scholar 

  • Xu, J., & Shi, S.-Q. (2004). Investigation of mechanical properties of ε-zirconium hydride using micro- and nano-indentation techniques. Journal of Nuclear Materials, 327, 165–170.

    Article  Google Scholar 

  • Walker, C. T., Bremier, S., Portier, S., Hasnaoui, R., & Goll, W. (2009). SIMS analysis of an UO2 fuel irradiated at low temperature to 65 MWd/kgHM. Journal of Nuclear Materials, 393, 212–223.

    Article  Google Scholar 

  • Walstedt, R. E., Tokunaga, Y., & Kambe, Sh. (2014). NMR studies of actinide oxides—A review. Comptes Rendus Physique, 15, 563–572.

    Article  Google Scholar 

  • Wanga, Zh, Morrisa, C. L., Makelaa, M. F., Bacona, J. D., Baera, E. E., Brockwella, M. I., et al. (2009). Inexpensive and practical sealed drift-tube neutron detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 605, 430–432.

    Article  Google Scholar 

  • Ward, J. D., Bowden, M., Resch, C. T., Smith, St., McNamara, Br. K., Buck, & E. C. (2015). Identification of uranyl minerals using oxygen K-edge X-ray absorption spectroscopy. Geostandards and Geoanalytical Research, 02. doi:10.1111/j.1751-908X.2015.00337.x

  • Waseda, Y., Matsubara, E., & Shinoda, K. (2011). X-Ray diffraction crystallography. introduction, examples and solved problems. Berlin: Springer.

    Google Scholar 

  • Weeks, R. A. (1994). The many varieties of E′ centers: A review. Journal of Non-crystalline Solids, 179, 1–9.

    Google Scholar 

  • Weisenburger, S., & Sandoghdar, V. (2015). Light Microscopy: An ongoing contemporary revolution. Contemporary Physics, 52, 123–143.

    Article  Google Scholar 

  • Weiland, E., Springuel-Huet, M.-A., Nossov, A., & Gédéon, A. (2016). 129Xenon NMR: Review of recent insights into porous materials. Microporous and Mesoporous Materials, 225, 41–65.

    Article  Google Scholar 

  • Wevers, M. (1997). Listening to the sound of materials: Acoustic emission for the analysis of material behaviour. NDT & E International, 30, 99–106.

    Article  Google Scholar 

  • Weyer, G. (1976). Applications of parallel-plate avalanche counters in Mössbauer spectroscopy, chapter. In Mössbauer effect methodology (pp. 301–319). Berlin: Springer Publisher

    Google Scholar 

  • Wilbraham, R. J., Boxall, C., Goddard, D. T., Taylor, R. J., & Woodbury, S. E. (2015). The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel. Journal of Nuclear Materials, 464, 86–96.

    Article  Google Scholar 

  • Winkelmann, I., Thomas, M., & Vogl, K. (2001). Aerial measurements on uranium ore mining, milling and processing areas in Germany. Journal of Environmental Radioactivity, 53, 301–311.

    Article  Google Scholar 

  • Whitehouse, A. I., Young, J., Botheroyd, I. M., Lawson, S., Evans, C. P., & Wright, J. (2001). Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy. Spectrochimica Acta B, 56, 821–830.

    Article  Google Scholar 

  • Xiong, Q., Baychev, T. G., & Jivkov, A. P. (2016). Review of porenetwork modeling of porous media: Experimental characterizations, network constructions and application to reactive transport. Journal of Contaminant Hydrology, 192, 101–117.

    Article  Google Scholar 

  • Yakshin, V. V., & Krokhin, M. N. (2011). Determination of small amounts of uranium by redox potentiometric titration. Radiochemistry, 53, 327–331.

    Article  Google Scholar 

  • Yang, Ch.-H, & Huang, M.-F. (2004). Characterization of hydrogen concentration in Zircaloy claddings using a low-frequency acoustic microscope with a PVDF/LFB transducer. Journal of Nuclear Materials, 335, 359–365.

    Article  Google Scholar 

  • Yang, F., & Li, J. C. M. (Eds.). (2008). Micro and nano mechanical testing of materials and devices. Berlin: Springer.

    Google Scholar 

  • Yang, K. J., Wang, T. S., Zhang, G. F., Peng, H. B., Chen, L., Zhang, L. M., et al. (2013). Study of irradiation damage in borosilicate glass induced by He ions and electrons. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 307, 541–544.

    Article  Google Scholar 

  • Yasuoka, H., Koutroulakis, G., Chudo, H., Richmond, S., Veirs, D. K., Smith, A. I., et al. (2012). Observation of 239Pu nuclear magnetic resonance. Science, 336, 901–904.

    Google Scholar 

  • Yoe, J. H., Will, F., III, & Black, R. A. (1953). Colorimetric determination of uranium with dibenzoylmethane. Analytical Chemistry, 25, 1200–1204.

    Article  Google Scholar 

  • Yoshida, Y., & Langouche, G. (Eds.). (2013). Mössbauer spectroscopy, tutorial book springer. Berlin: Springer.

    Google Scholar 

  • Yu-fu, Y., Salbu, B., Bjørnstad, H. E., & Lien, H. (1990). Improvement for α-energy resolution in determination of low level plutonium by liquid scintillation counting. Journal of Radioanalytical and Nuclear Chemistry, 145, 345–353.

    Article  Google Scholar 

  • Zeeman, P. (1897). On the influence of magnetism on the nature of light emitted by a substance. Philosophical Magazine, 43, 226.

    Google Scholar 

  • Zelenty, J., Smith, G. D. W., Wilford, K., Hyde, J. M., & Moody, M. P. (2016). Secondary precipitation within the cementite phase of reactor pressure vessel steels. Scripta Materialia, 115, 118–122.

    Article  Google Scholar 

  • Zhang, F., & Juhlin, Ch. (2014). Full waveform inversion of seismic reflection data from the Forsmark planned repository for spent nuclear fuel, eastern central Sweden. Geophys. J. Int., 192, 1106–1122.

    Article  Google Scholar 

  • Zhang, W., Yi, J., Mekarski, P., Ungar, K., Hauck, B., & Kramer, G. H. (2011). Quantification of 235U and 238U activity concentrations for undeclared nuclear materials by a digital gamma—gamma coincidence spectroscopy. Applied Radiation and Isotopes, 69, 904–907.

    Article  Google Scholar 

  • Zheng, Y., Maev, R Gr, & Solodov, I Yu. (2000). Review/Sythèse nonlinear acoustic applications for material characterization: A review. Canadian Journal of Physics, 77, 927–967.

    Article  Google Scholar 

  • Ziebold, Th O. (1967). Precision and sensitivity in electron microprobe analysis. Analytical Chemistry, 39, 858–861.

    Article  Google Scholar 

  • Zink, F. E. (1997). X-ray tubes. Radiographic, 17, 1257–1268.

    Article  Google Scholar 

  • Zschornack, G. H. (2007). Handbook of X-ray data. Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude André Degueldre .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Degueldre, C.A. (2017). Characterization Using Passive or Interactive Techniques. In: The Analysis of Nuclear Materials and Their Environments. Springer, Cham. https://doi.org/10.1007/978-3-319-58006-7_3

Download citation

Publish with us

Policies and ethics