Smart Is a Matter of Context

  • Julien NigonEmail author
  • Nicolas Verstaevel
  • Jérémy Boes
  • Frédéric Migeon
  • Marie-Pierre Gleizes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10257)


Smart cities involve, in a large scale, a wide array of interconnected components and agents, giving birth to large and heterogeneous data flows. They are inherently cross-disciplinary, provide interesting challenges, and constitute a very promising field for future urban developments, such as smart grids, eco-feedback, intelligent traffic control, and so on. We advocate that the key to these challenges is the proper modelling and exploitation of context. However, said context is highly dynamic and mainly unpredictable. Improved AI and machine learning techniques are required. Starting from some of the main smart cities features, this paper highlights the key challenges, explains why handling context is crucial to them, and gives some insights to address them, notably with multi-agent systems.


Smart cities Multi-agent systems Complexity 



This work is partially funded by the Midi-Pyrénées region for the neOCampus initiative ( and supported by the University of Toulouse.


  1. 1.
    Amato, F., Chianese, A., Moscato, V., Picariello, A., Sperli, G.: SNOPS: a smart environment for cultural heritage applications. In: Proceedings of the Twelfth International Workshop on Web Information and Data Management, pp. 49–56. ACM (2012)Google Scholar
  2. 2.
    Bai, X., McAllister, R.R.J., Beaty, R.M., Taylor, B.: Urban policy and governance in a global environment: complex systems, scale mismatches and public participation. Current Opin. Environ. Sustain. 2(3), 129–135 (2010)Google Scholar
  3. 3.
    Boes, J., Nigon, J., Verstaevel, N., Gleizes, M.-P., Migeon, F.: The self-adaptive context learning pattern: overview and proposal. In: Christiansen, H., Stojanovic, I., Papadopoulos, G.A. (eds.) Modeling and Using Context. LNCS (LNAI), vol. 9405, pp. 91–104. Springer, Cham (2015). doi: 10.1007/978-3-319-25591-0_7 CrossRefGoogle Scholar
  4. 4.
    Briot, J.-P., de Nascimento, N.M., de Lucena, C.J.P.: A multi-agent architecture for quantified fruits: design and experience. In: 28th International Conference on Software Engineering & Knowledge Engineering (SEKE 2016). SEKE/Knowledge Systems Institute, PA, USA (2016)Google Scholar
  5. 5.
    Cerquides, J., Picard, G., Rodríguez-Aguilar, J.A.: Designing a marketplace for the trading and distribution of energy in the smart grid. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, International Foundation for Autonomous Agents and Multiagent Systems, pp. 1285–1293 (2015)Google Scholar
  6. 6.
    Chamoso, P., De la Prieta, F., Pérez, J.B., Rodríguez, J.M.C.: Conflict resolution with agents in smart cities. In: Interdisciplinary Perspectives on Contemporary Conflict Resolution, p. 244 (2016)Google Scholar
  7. 7.
    Choy, M.C., Srinivasan, D., Cheu, R.L.: Neural networks for continuous online learning and control. IEEE Trans. Neural Netw. 17(6), 1511–1531 (2006)CrossRefGoogle Scholar
  8. 8.
    Ferber, J.: Multi-agent Systems: An Introduction to Distributed Artificial Intelligence, vol. 1. Addison-Wesley, Reading (1999)Google Scholar
  9. 9.
    Froehlich, J., Findlater, L., Landay, J.: The design of eco-feedback technology. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1999–2008. ACM (2010)Google Scholar
  10. 10.
    Guériau, M., Billot, R., El Faouzi, N.-E., Monteil, J., Armetta, F., Hassas, S.: How to assess the benefits of connected vehicles? A simulation framework for the design of cooperative traffic management strategies. Transp. Res. Part C: Emerg. Technol. 67, 266–279 (2016)CrossRefGoogle Scholar
  11. 11.
    Hancke, G.P., Hancke Jr., G.P., et al.: The role of advanced sensing in smart cities. Sensors 13(1), 393–425 (2012)CrossRefGoogle Scholar
  12. 12.
    Harrison, C., Eckman, B., Hamilton, R., Hartswick, P., Kalagnanam, J., Paraszczak, J., Williams, P.: Foundations for smarter cities. IBM J. Res. Dev. 54(4), 1–16 (2010)CrossRefGoogle Scholar
  13. 13.
    Jin, J., Gubbi, J., Marusic, S., Palaniswami, M.: An information framework for creating a smart city through Internet of Things. IEEE Internet Things J. 1(2), 112–121 (2014)CrossRefGoogle Scholar
  14. 14.
    Kitchin, R.: The real-time city? Big data and smart urbanism. GeoJournal 79(1), 1–14 (2014)CrossRefGoogle Scholar
  15. 15.
    Lewis, D.P., Jebara, T., Noble, W.S.: Support vector machine learning from heterogeneous data: an empirical analysis using protein sequence and structure. Bioinformatics 22(22), 2753–2760 (2006)CrossRefGoogle Scholar
  16. 16.
    Lützenberger, M., Küster, T., Masuch, N., Fähndrich, J.: Multi-agent system in practice: when research meets reality. In: Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems, International Foundation for Autonomous Agents and Multiagent Systems, pp. 796–805 (2016)Google Scholar
  17. 17.
    Martínez-Ballesté, A., Pérez-Martínez, P.A., Solanas, A.: The pursuit of citizens’ privacy: a privacy-aware smart city is possible. IEEE Commun. Mag. 51(6), 136–141 (2013)CrossRefGoogle Scholar
  18. 18.
    Mazac, S., Armetta, F., Hassas, S.: On bootstrapping sensori-motor patterns for a constructivist learning system in continuous environments. In: Alife 14: Fourteenth International Conference on the Synthesis and Simulation of Living Systems (2014)Google Scholar
  19. 19.
    Morvaj, B., Lugaric, L., Krajcar, S.: Demonstrating smart buildings and smart grid features in a smart energy city. In: Proceedings of the 2011 3rd International Youth Conference on Energetics (IYCE), pp. 1–8. IEEE (2011)Google Scholar
  20. 20.
    Mustapha, K., Mcheick, H., Mellouli, S.: Smart cities and resilience plans: a multi-agent based simulation for extreme event rescuing. In: Gil-Garcia, J.R., Pardo, T.A., Nam, T. (eds.) Smarter as the New Urban Agenda: A Comprehensive View of the 21st Century City. PAIT, vol. 11, pp. 149–170. Springer, Cham (2016). doi: 10.1007/978-3-319-17620-8_8 CrossRefGoogle Scholar
  21. 21.
    Najjar, A., Reignier, P.: Constructivist ambient intelligent agent for smart environments. In: 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 356–359. IEEE (2013)Google Scholar
  22. 22.
    Nam, T., Pardo, A.T.: Conceptualizing smart city with dimensions of technology, people, and institutions. In: Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times, pp. 282–291. ACM (2011)Google Scholar
  23. 23.
    Neirotti, P., De Marco, A., Cagliano, A.C., Mangano, G., Scorrano, F.: Current trends in smart city initiatives: some stylised facts. Cities 38, 25–36 (2014)CrossRefGoogle Scholar
  24. 24.
    Nigon J., Glize, E., Dupas, D., Crasnier, F., Boes, J.: Use cases of pervasive artificial intelligence for smart cities challenges. In: IEEE Workshop on Smart and Sustainable City, Toulouse, juillet (2016)Google Scholar
  25. 25.
    Opper, M.: Online versus offline learning. Philos. Mag. B 77(5), 1531–1537 (1998)CrossRefGoogle Scholar
  26. 26.
    Pittarello, F., Pellegrini, T.: Designing and evaluating interfaces for domestic eco-feedback: a blended educational experience. In: Proceedings of the 11th Biannual Conference on Italian SIGCHI Chapter, pp. 18–25. ACM (2015)Google Scholar
  27. 27.
    Roscia, M., Longo, M., Lazaroiu, G.C.: Smart city by multi-agent systems. In: 2013 International Conference on Renewable Energy Research and Applications (ICRERA), pp. 371–376. IEEE (2013)Google Scholar
  28. 28.
    Schaffers, H., Komninos, N., Pallot, M., Trousse, B., Nilsson, M., Oliveira, A.: Smart cities and the future internet: towards cooperation frameworks for open innovation. In: Domingue, J., et al. (eds.) FIA 2011. LNCS, vol. 6656, pp. 431–446. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20898-0_31 CrossRefGoogle Scholar
  29. 29.
    Singh, M., Duggirala, M., Hayatnagarkar, H., Balaraman, V.: A multi-agent model of workgroup behaviour in an enterprise using a compositional approach (2016)Google Scholar
  30. 30.
    Su, K., Li, J., Fu, H.: Smart city and the applications. In: 2011 International Conference on Electronics, Communications and Control (ICECC), pp. 1028–1031. IEEE (2011)Google Scholar
  31. 31.
    Szabó, R., Farkas, K., Ispány, M., Benczúr, A.A., Bátfai, N., Jeszenszky, P., Laki, S., Vágner, A., Kollár, L., Sidló, C., et al.: Framework for smart city applications based on participatory sensing. In: 2013 IEEE 4th International Conference on Cognitive Infocommunications (CogInfoCom), pp. 295–300. IEEE (2013)Google Scholar
  32. 32.
    Vaubourg, J., Presse, Y., Camus, B., Bourjot, C., Ciarletta, L., Chevrier, V., Tavella, J.-P., Morais, H.: Multi-agent multi-model simulation of smart grids in the MS4SG project. In: Demazeau, Y., Decker, K.S., Bajo Pérez, J., de la Prieta, F. (eds.) PAAMS 2015. LNCS (LNAI), vol. 9086, pp. 240–251. Springer, Cham (2015). doi: 10.1007/978-3-319-18944-4_20 CrossRefGoogle Scholar
  33. 33.
    Nicolas, V.: Self-organization of robotic devices through demonstrations. Thesis, Université de Toulouse, Toulouse, France, juin (2016)Google Scholar
  34. 34.
    Vlahogianni, E.I., Kepaptsoglou, K., Tsetsos, V., Karlaftis, M.G.: A real-time parking prediction system for smart cities. J. Intell. Transp. Syst. 20(2), 192–204 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Julien Nigon
    • 1
    Email author
  • Nicolas Verstaevel
    • 1
  • Jérémy Boes
    • 1
  • Frédéric Migeon
    • 1
  • Marie-Pierre Gleizes
    • 1
  1. 1.University of Toulouse/IRIT-Team SMACToulouse Cedex 9France

Personalised recommendations