Skip to main content

Smart Cities and Resilience Plans: A Multi-Agent Based Simulation for Extreme Event Rescuing

  • Chapter
  • First Online:
Smarter as the New Urban Agenda

Part of the book series: Public Administration and Information Technology ((PAIT,volume 11))

Abstract

The concept of smart cities is one that relies on the use of new information and communication technologies in order to improve services that cities provide to their citizens. The resilience of a city is one of the services that it can provide to its citizens. Resilience is defined as its capacity to continue working normally by serving citizens when extreme events (EEs) occur. This chapter will propose a new framework based on multi-agent systems to help cities build simulation scenarios for rescuing citizens in the case of an EE. The main contribution of the framework will be a set of models, at different levels of abstraction, to reflect the organizational structure and policies within the simulation, which involves the integration of truly dynamic dimensions of this organization. The framework will also propose methods to go from one model to another (conceptual to simulation). This framework can be applied in different domains, such as smart cities, earthquakes and building fires.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://en.wikipedia.org/wiki/Smart_city

Abbreviations

AA:

Agent Artefact

ABDiSE:

Agent-Based Disaster Simulation Environment

ABS:

Agent Based Simulation

ACL:

Agent Communication Language

AUML:

Agent Unified Modeling Language

BDI:

Believe, Desire, Intention

CAOM:

Conceptual Agent Organizational Model

CROM:

Conceptual Role Organizational Model

D4S2 :

Dynamic Discrete Disaster Decision Simulation System:

EE:

Extreme Events

FACL:

Form-based ACL

FIPA:

Foundation of Intelligent Physical Agents

GIS:

Geographical Information System

JADE:

Java Agent Development Environment

MAS:

Multi Agent System

MDA:

Model Driven Architecture

MDD:

Model Driven Development

MOON:

Mu1tiagent-Oriented Office Network

ND:

Natural disaster

OMT:

Object Modeling Template

OPAM:

Operational Agent Model

PIM:

Platform Independent Model

PSM:

Platform Specific Model

RTI:

Real Time Infrastructure

SAMoSAB:

Software Architecture for Modeling and Simulation Agent-Based

UEML:

Unified Enterprise Modeling Language

References

  • Antonio, L., D’Amours, S., & Frayret, J. M. (2008). “A methodological framework for the analysis of agent-based supply chain planning simulations”, SpringSim ’08: Proceedings of the 2008 spring simulation multiconference, Society for Computer Simulation International San Diego, CA, USA.

    Google Scholar 

  • Bellissard, L., Freyssinet, A., De Palma, N., Herrmann, M., & Lacourte, S. (1999). An agent platform for reliable asynchronous distributed programming. IEEE: FRANCE.

    Google Scholar 

  • Ben-Akiva, M. E., Koutsopoulos, H., & Mukundan, A. (1994). A dynamic traffic model system for ATMS/ATIS operation. Journal of Intelligent Transportation Systems, 2, 1–19. (MITTNS).

    Google Scholar 

  • Bordini, R., & Hubner, J. (2006). An overview of Jason. Association for Logic Programming Newsletter, 9(3), 1–6. http://www.cs.kuleuven.ac.be/~dtai/projects/ALP/newsletter/aug06/nav/articles/article5/fs.pdf.

    Google Scholar 

  • Bordini, R., Hubner, J., & Vieira, R. (2005). Jason and the golden fleece of agent-oriented programming. In R. Bordini, J. Hubner, & R. Vieira (Eds.), Multi-agent programming (pp. 3–37). New York: Springer.

    Chapter  Google Scholar 

  • Boulton, A., Brunn, S. D., & Devriendt, L. (2011). Cyberinfrastructures and “smart” world cities: Physical, human, and soft infrastructures. In P. Taylor, B. Derudder, M. Hoyler, & F. Witlox (Eds.), International handbook of globalization and world cities. Cheltenham: Edward Elgar.

    Google Scholar 

  • Cervera, E. (2005). A cross-platform agent-based implementation. IEEE.

    Google Scholar 

  • Chusho, T., & Fujiwara, K. (2000). A formbased agent communication language for enduser-initiative agent-based application development. IEEE.

    Google Scholar 

  • De Palma, A., Marchal, F., & Nesterov, Y. (1996). A modular system for dynamic traffic simulations. Transportation Research Record Journal of the Transportation Research Board, 1607, 178–184.

    Article  Google Scholar 

  • Defense Modeling and Simulation Office (DMSO). (1998). High Level Architecture Object Model Template, Version 1.3, dated 5 February 1998. Available online at the HLA Homepage.

    Google Scholar 

  • Erceau, J., & Ferber, J. (1991). ‘L’Intelligence Artificielle Distribuée’. La recherche, 22, 750–758.

    Google Scholar 

  • Ferber, J., & Perrot, J. F. (1995). Les Systèmes multi-agents, vers une intelligence collective. Paris: InerEditions.

    Google Scholar 

  • FIPA. (2002). FIPA Contract Net Interaction Protocol Specification, Foundation for Intelligent Physical Agents, www.fipa.org/specs/fipa00029/.

  • France, R., Ghosh, S., Dinh-Trong, T., & Solberg, A. (2006). Model-driven development using UML 2.0: Promises and pitfalls. Computer, 39(2), 59–66.

    Article  Google Scholar 

  • Galea, E., & Gwynne, S. (2005). Principles and practices of evacuation modeling. London: CMS Press.

    Google Scholar 

  • Gaud, N., Galland, S., & Koukam, A. (2008). Towards a multilevel simulation approach based on holonic multi-agent. Published in the 10th International Conference on Computer Modeling and Simulation (EUROSIM/UKSiM”08), pp. 180–185, England.

    Google Scholar 

  • Giffinger, R., Fertner, C., Kramar, H., Kalasek, R., Pichler-Milanovié, N., & Meijers, E. (2007). Smart cities: Ranking of European medium-sized cities. Vienna: Centre of Regional Science (SRF), Vienna University of Technology.

    Google Scholar 

  • Hall, R. E. (2000). The vision of a smart city. In Proceedings of the 2nd International Life Extension Technology Workshop, Paris, France, September 28.

    Google Scholar 

  • Harrison, C., Eckman, B., Hamilton, R., Hartswick, P., Kalagnanam, J., Paraszczak, J., & Williams, P. (2010). Foundations for smarter cities. IBM Journal of Research and Development, 54(4), 1–16.

    Article  Google Scholar 

  • Helbing, D., & Treiber, M. (1999). Numerical simulation of macroscopic traffic equations. IMPACT of Computing in Science and Engineering, 1, 89–99.

    Article  Google Scholar 

  • Hollands, R. G. (2008). Will the real smart city please stand up? City, 12(3), 303–320.

    Article  Google Scholar 

  • Hsu, T. L., & Liu, J. W. S. (2012). An agent-based disaster simulation environment. RITMAN Workshop 2012, Taipei, Taiwan.

    Google Scholar 

  • Hübner, J. F, Sichman, J. S., & Boissier, O. (2007). Developing organised multi-agent systems using the Moise + Model: Programming issues at the system and agent levels. International Journal of Agent-Oriented Software Engineering, 1(3/4), 370–395

    Google Scholar 

  • Jain, S., & McLean, C. R. (2003). “A Framework for modeling and simulation of emergency response,” Proceedings of the 2003 Winter Simulation Conference, Dec. 7–10, New Orleans, Louisiana, pp. 1068–1076.

    Google Scholar 

  • Kao, Y.-C., & Chen, M.-S. (2010). An agent-based distributed smart machine tool service system. In 3CA 2010. IEEE.

    Google Scholar 

  • Kosonen, I., & Pursula, M. (1991). A simulation tool for traffic control planning. IEEE Conference Publication Number 320. Third international Conference on Road Traffic Control. Vol. 320, pp. 72–76.

    Google Scholar 

  • Kuligowski, E. D., & Peacock, R. D. (2006). A review of building evacuation models, Fire Research Division Building and Fire Research Laboratory.

    Google Scholar 

  • Labarthe, O., Espinasse, B., Ferrarini, A., & Montreuil, B. (2007). Toward a methodological framework for agent-based modeling and simulation of supply chains in a mass customization context. Simulation Modeling Practice and Theory International Journal (SIMPAT), 15(2), 113–136.

    Article  Google Scholar 

  • Lampert, R. (2002). Agent-based modeling as organizational and public policy simulators. Proceedings of the National Academy of Sciences of the United States of America, 99, 7195–196.

    Article  Google Scholar 

  • Li, X. (2010). An Agent/XML based information integration platform for process industry, in 2010 2nd International Conference on Computer Engineering and Technology. IEEE.

    Google Scholar 

  • Lin, A., & Maheshwari, P. (2005). Agent-based middleware for web service dynamic integration on peer-to-peer networks. In S. Zhang & R. Jharvis (Eds.), AI 2005: Advances in artificial intelligence (pp. 405–414). Berlin: Springer Verlag. (LNAI 3809).

    Chapter  Google Scholar 

  • Mcheick, H., & Qi, Y. (2011). Dependency of components in MVC distributed architecture. 24th IEEE (ccece’2011). May 8–11, Ontario, Canada.

    Google Scholar 

  • Montagna, S., Ricci, A., & Omicini, A. (2008). A & A for modeling and engineering simulations in systems biology. International Journal of Agent-Oriented Software Engineering, 2(2), 222–245.

    Article  Google Scholar 

  • Monteiro, T., Anciaux, D., Espinasse, B., Ferrarini, A., Labarthe, O., & Roy, D. (2008). The interest of agents for supply chain simulation. In C. Thierry, A. Thomas, & G. Bel (Eds.), Simulation for supply chain management. London: ISTE.

    Google Scholar 

  • Mukerji, J., & Miller, J. (2003). MDA: Model Driven Architecture Guide Version, www.omg.org/cgibin/doc?omg/03-06-01, Juin (2003).

  • Mustapha, K., Tranvouez, E., Espinasse, B., & Ferrarini, A. (2010). An organization-oriented methodological framework for agent-based supply chain simulation. 4th International Conference on Research Challenges in Information Science, France.

    Google Scholar 

  • Odell, J., Parunak, H. V. D., & Bauer, B. (2001). Representing agent interaction protocols in UML, Proceedings of the First International Workshop on Agent-Oriented Software Engineering, CIANCARINI, P. & WOOLDRIDGE, M.

    Google Scholar 

  • Ounnar, F., Archimède, B., Pujo, P., & Charbonnaud, P. (2008). HLA Distributed Simulation Approaches for Supply Chain. In Hermès Science Europe Ltd (Ed.), Simulation for Supply Chain Management. (pp. 257–294). Wiley, ISTE.

    Google Scholar 

  • Piunti, M., Ricci, A., Boissier, O., & Hübner, J. F. (2009). Embodying organisations in multi-agent work environments, Web Intelligence and Intelligent Agent Technologies, 2009. WI-IAT’09. IEEE/WIC/ACM International Joint Conferences on 2, pp. 511–518.

    Google Scholar 

  • Rao, A. S. (1996). AgentSpeak(L): BDI Agents speak out in a Logical Computable Language. In W. Van de Velde & J. Perram (Eds.), Proceedings of the Seventh Workshop on Modeling Autonomous Agents in a Multi-Agent World (MAAMAW’96), Jan. 22–25, Eindhoven, Netherlands, no. 1038 in LNAI, pp. 42–55. Springer-Verlag, London, U.K.

    Google Scholar 

  • Rao, A. S., & Gorgeff, M. P. (1991). Modeling rational agents within BDI-Architecture. In J. Allen et al. (Ed.), Proceedings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning. San Mateo, USA, Morgan Kaufmann, Pub, pp. 473–484.

    Google Scholar 

  • Russell, S., & Norvig, P. (2003). Artificial intelligence: A modern approach (2nd ed.). Upper Saddle River: Pearson Education.

    Google Scholar 

  • Serment, J., Espinasse, B., Tranvouez, E. (2007). An agent integration infrastructure for the development of environmental decision support systems based on simulation, AIS-CMS International modeling and simulation multiconference, Buenos Aires—Argentina. (ISBN 978-2-9520712-6-0).

    Google Scholar 

  • Steele, R., et al. (2005). XML-based mobile agents. In Proceedings of the International Conference on Information Technology: Coding and computing (ITCC’05). IEEE.

    Google Scholar 

  • Vangheluwe, H., et al. (2002). In Proceedings of the 2002 AI, Simulation and Planning in High Autonomy Systems Conference, AIS℉2002, (Lisboa, Portugal, April 2002). 9–20.

    Google Scholar 

  • Weber, E. P., & Khademian, A. M. (2008). Wicked problems, knowledge challenges, and collaborative capacity builders in network settings. Public Administration Review, 68(2), 334–349.

    Article  Google Scholar 

  • Wu, S., Shuman, L. J., Bidanda, B., Kelley, M., Sochats, K., & Balaban, C. (2007c). System implementation issues of dynamic discrete disaster decision simulation system (D4S2)—Phase I. In the Proceedings of the 2007 Winter Simulation Conference.

    Google Scholar 

  • Zambonelli, F., Jennings N., & Wooldridge, M. (2003). Developing multi-agent systems: The GAIA methodology. ACM Transactions on Software Engineering and Methodology, 12(3), 317–370.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karam Mustapha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mustapha, K., Mcheick, H., Mellouli, S. (2016). Smart Cities and Resilience Plans: A Multi-Agent Based Simulation for Extreme Event Rescuing. In: Gil-Garcia, J., Pardo, T., Nam, T. (eds) Smarter as the New Urban Agenda. Public Administration and Information Technology, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-17620-8_8

Download citation

Publish with us

Policies and ethics