Skip to main content

Industrial Selenium Pollution: Wastewaters and PhysicalChemical Treatment Technologies

  • Chapter
  • First Online:
Bioremediation of Selenium Contaminated Wastewater

Abstract

Industrial activities including mining, metal and petrol refining, coal-fired power generation, and intensive agriculture may generate wastes and effluents loaded with selenium (Se). Currently, even if Se discharge is strictly regulated in North America, the large volumes of selenium-laden effluents produced represent a critical problem for both industry and environmental agencies. Numerous treatment technologies for Se removal based on physical and chemical processes have been tested at bench scale, pilot scale, and full scale, and several are commercially available. Physical treatment (e.g., membrane filtration and evaporative systems) can be effective in bringing the Se levels below the discharge standards, but it entails prohibitive operational costs due to high-energy consumption. Adsorption is a less financially demanding alternative treatment option; however, the competition with other anions present in real industrial effluents severely limits the Se removal performance. Chemical treatment has been tested for selenium removal, being mainly founded on the redox change of this element. Various reducing agents (e.g., zero-valent iron and sodium dithionite) have been tested mostly for synthetic wastewaters. pH plays a critical role in the effectiveness of the chemical treatment and, similarly to adsorption, the competition with other anions limits its performance. Several studies have coupled physical and chemical treatment systems in order to attain higher Se removal efficiencies. Residual products of Se treatment are generated by all physical–chemical treatment systems, incurring additional treatment and disposal costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Activated alumina

BDAT:

Best demonstrated available technology

COD:

Chemical oxygen demand

DO:

Dissolved oxygen

EC:

Electrocoagulation

EES:

Enhanced evaporation system

EP:

Evaporation

EPRI:

Electric Power Research Institute

Fe0 :

Elemental (zero-valent) iron

Fh:

Ferrihydrite

FGD:

Flue gas desulfurization

GAC:

Granular activated carbon

HRT:

Hydraulic residence time

IEA:

International Energy Agency

NAMC:

North American Metal Council

NF:

Nanofiltration

NSMP:

Nitrogen and selenium management program

nZVI:

Nanoscale zero-valent iron

ORP:

Oxido-reduction potential

pHPZC :

Point of zero charge

RO:

Reverse osmosis

SSW:

Stripped sour water

Se:

Selenium

Se0 :

Elemental (zero-valent) selenium

SeOx :

Selenium oxyanions (selenite and selenate)

TCLP:

Toxicity characteristic leaching procedure

TDS:

Total dissolved solids

TOC:

Total organic carbon

TSS:

Total suspended solids

USBR:

United States Bureau of Reclamation

USEPA:

United Stated Environmental Protection Agency

ZLD:

Zero liquid discharge

ZVI:

Zero-valent iron

References

  • Alberta Environment (2013) Evaluation of treatment options to reduce water-borne selenium at coal mines in West-Central Alberta. http://environmentgovabca/info/library/7766.pdf

  • Baek K, Kasem N, Ciblak A, Vesper D, Padilla I, Alshawabkeh AN (2013) Electrochemical removal of selenate from aqueous solutions. Chem Eng J 215–216:678–684

    Article  Google Scholar 

  • Canadian Council of Ministers of the Environment (2007) Canadian water quality guidelines for the protection of aquatic life: Summary table. In: Canadian environmental quality guidelines. Canadian Council of Ministers of the Environment, Winnipeg, SK, Canada

    Google Scholar 

  • Chapman PM, McDonald BG, Ohlendorf HM, Jones R (2009) A conceptual selenium management model. Integr Environ Assess Manag 5:461–469

    Article  CAS  Google Scholar 

  • Chapman PM, Adams WJ, Brooks M, Delos CG, Luoma SN, Maher WA, Ohlendorf HM, Presser TS, Shaw P (2010) Ecological assessment of selenium in the aquatic environments. SETAC Press, Pensacola

    Book  Google Scholar 

  • Chellam S, Clifford DA (2002) Physical-chemical treatment of groundwater contaminated by leachate from surface disposal of uranium tailings. J Environ Eng 128:942–952

    Article  CAS  Google Scholar 

  • Conaway CC, Upadhyaya P, Meschter CL, Kurtzke C, Marcus LA (1992) Subchronic toxicity of benzyl selenocyanate and 1,4-phenylenbis(methylene)selenocyanate in F344 rats. Fundam Appl Toxicol 19:563–74

    Article  CAS  Google Scholar 

  • Cordoba P (2015) Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs. Fuel 144:274–286

    Article  CAS  Google Scholar 

  • Cordoba P, Font O, Izquierdo M, Querol X, Tobias A, Lopez-Anton MA et al (2011) Enrichment of inorganic trace pollutants in re-circulated water streams from a wet limestone flue gas desulphurisation system in two coal power plants. Fuel Process Technol 92:1764–1775

    Article  CAS  Google Scholar 

  • Electric Power Research Institute (EPRI) (2006) Technical manual: guidance for assessing wastewater impacts of FGD scrubbers. EPRI, Palo Alto

    Google Scholar 

  • Electric Power Research Institute (EPRI) (2009) Selenium removal by iron cementation from a coal-fired power plant flue gas desulfurization wastewater in a continuous flow system: a pilot study. Palo Alto, CA, USA

    Google Scholar 

  • Fernandez-Martinez A, Charlet L (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol 8:81–110

    Article  CAS  Google Scholar 

  • Frankenberger WT Jr, Amrhein C, Fan TW, Flaschi D, Kartinen E, Kovac K, Lee E, Ohlendorf HM, Owens L, Terry N, Toto A (2004) Advanced treatment technologies in the remediation of seleniferous drainage waters and sediments. Irrig Drain 18:517–522

    Google Scholar 

  • Gao S, Tanji KK, Dahlgren RA, Ryu J, Herbel MJ, Higashi RM (2007) Chemical status of selenium in evaporation basins for disposal of agricultural drainage. Chemosphere 69:585–594

    Article  CAS  Google Scholar 

  • Geoffrey NE, Benguerel E, Demopoulos GP (2008) Precipitation of selenium from zinc plant weak acidic solutions using sodium dithionite and sodium sulfide. 47th Annual Conference of Metallurgists of CIM, Winnipeg, Manitoba, Canada

    Google Scholar 

  • Golder Associates (Golder) (2009) Literature review of treatment technologies to remove selenium from mining influenced water. Golder Associates Inc., Lakewood, USA. http://esrd.alberta.ca/water/programs-and-services/surface-water-quality-program/documents/ReduceWaterBorneSeleniumCoalMines.pdf

  • Griffith MB, Norton SB, Alexander LC, Pollard AI, Leduc SD (2012) The effects of mountaintop mines and valley fills on the physicochemical quality of stream ecosystems in the central Appalachians: a review. Sci Total Environ 418:1–12

    Article  Google Scholar 

  • Gusek J, Conroy K, Rutkowski T (2008) Past, present and future for treating selenium-impacted water. In: Tailings and Mine Waste 2008 Proceedings of the 12th international conference, CRC Press, Boca Raton, FL, USA

    Google Scholar 

  • Hamilton SJ (2004) Review of selenium toxicity in the aquatic food chain. Sci Total Environ 326:1–31

    Article  CAS  Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18:309–318

    Article  CAS  Google Scholar 

  • Hayes KF, Roe AL, Brown GE, Hodgson KO, Leckie JO, Parks GA (1987) In situ X-ray absorption study of surface complexes: Selenium oxyanions on alpha FeOOH. Science 17:139–145

    Google Scholar 

  • Huang YH, Peddi PK, Tang C, Zeng H, Teng X (2013) Hybrid zero-valent iron process for removing heavy metals and nitrate from flue-gas-desulfurization wastewater. Sep Purif Technol 118:690–698

    Article  CAS  Google Scholar 

  • International Energy Agency (IEA) (2013) Medium-term coal market report 2013 - Market trends and projections to 2018. https://www.iea.org/publications/freepublications/publication/MTcoalMR2013_free.pdf

  • International Energy Agency (IEA) (2014) http://www.iea.org/topics/coal

  • Jordan N, Foerstendorf H, Weiss S, Heim K, Schild D, Brendler V (2011) Sorption of selenium(VI) onto anatase: macroscopic and microscopic characterization. Geochim Cosmochim Acta 75:1519–1530

    Article  CAS  Google Scholar 

  • Kharaka YK, Ambats G, Presser TS (1996) Removal of selenium from contaminated agricultural drainage water by nanofiltration membranes. Appl Geochem 11:797–802

    Article  CAS  Google Scholar 

  • King KA, Custer TW, Weaver DA (1994) Reproductive success of barn swallow nesting near selenium-contaminated lake in East Texas, USA. Environ Pollut 84:53–58

    Article  CAS  Google Scholar 

  • Knotek-Smith HM, Crawford DL, Möller G, Henson RA (2006) Microbial studies of a selenium-contaminated mine site and potential for on-site remediation. J Ind Microbiol Biotechnol 33:897–913

    Article  CAS  Google Scholar 

  • Kyle JH, Breuer PL, Bunney KG, Pleysier R, May PM (2011) Review of trace toxic elements (Pb, Cd, Hg, As, Sb, Bi, Se, Te) and their deportment in gold processing. Part 1: mineralogy, aqueous solution chemistry and toxicity. Hydrometallurgy 107:91–100

    Article  CAS  Google Scholar 

  • Kyle JH, Breuer PL, Bunney KG, Pleysier R (2012) Review of trace toxic elements (Pb, Cd, Hg, As, Sb, Bi, Se, Te) and their deportment in gold processing: Part II: Deportment in gold ore processing by cyanidation. Hydrometallurgy 111–112:10–21

    Article  Google Scholar 

  • Lalvani SB (2004) Selenium removal from agricultural drainage water: Lab scale studies Final report to the Department of Natural Resources, Sacramento, CA, USA. http://www.watercagov/pubs/drainage/selenium_removal_from_agricultural_drainage_water__lab_scale_studies/seremvl.pdf

  • Lemly AD (2002) Symptoms and implications of selenium toxicity in fish: the Belews Lake case example. Aquat Toxicol 57:39–49

    Article  CAS  Google Scholar 

  • Lemly AD (2014) Teratogenic effects and monetary cost of selenium poisoning of fish in Lake Sutton, North Carolina. Ecotox Environ Safe 104:160–167

    Article  CAS  Google Scholar 

  • Lenz M, Lens PNL (2009) The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 407:3620–3633

    Article  CAS  Google Scholar 

  • Ling L, Pan B, Zhang W (2015) Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of Se(IV). Water Res 71:274–281

    Article  CAS  Google Scholar 

  • Liu Y-T, Chen T-Y, MacKebee WG, Ruhl L, Vengosh A, Hsu-Kim H (2013) Selenium speciation in coal ash spilled at the Tennessee Valley Authority Kingston site. Environ Sci Technol 47:14001–14009

    Article  CAS  Google Scholar 

  • Luek A, Brock C, Rown DJ, Rasmussen JB (2014) A simplified anaerobic bioreactor for the treatment of selenium-laden discharges from non-acidic, end-pit lakes. Mine Water Environ 33:295–306

    Article  CAS  Google Scholar 

  • Macy JM, Lawson S, Demoll-Decker H (1993) Bioremediation of selenium oxyanions in San Joaquin drainage water using Thauera selenatis in a biological reactor system. Appl Microbiol Biotechnol 40:588–594

    Article  CAS  Google Scholar 

  • Manceau A, Gallup DL (1997) Removal of selenocyanate in water by precipitation: characterization of copper-selenium precipitate by x-ray diffraction infrared and x-ray absorption spectroscopy. Environ Sci Technol 31:968–976

    Article  CAS  Google Scholar 

  • Meng X, Bang S, Korfiatis GP (2002) Removal of selenocyanate from water using elemental iron. Water Res 36:3867–3873

    Article  CAS  Google Scholar 

  • Merrill DT, Manzione M, Parker D, Peterson J, Crow W, Hobbs A (1986) Field evaluation of As and Se removal by iron coprecipitation. J Water Poll Control Federation 6:82–89

    Google Scholar 

  • MSE Technology Applications Inc. (MSE) (2001) Final report—Selenium treatment/removal alternatives demonstration project Mine Waste Technology Program Activity III Project 20 Report prepared for US Environmental Protection Agency National Energy Technology Laboratory Office of Research and Development Cincinnati OH and US Department of Energy Federal Energy Technology Center, Pittsburgh, PA, USA. http://nepisepagov/Adobe/PDF/P1008GVL.pdf

  • Nishimura T, Hata R, Umetsu Y (2000) Removal of selenium from industrial wastewater. In: Minor Elements 2000—processing and environmental aspects of As, Sb, S, Te, and Bi; Young C (ed) Society for Mining, Metallurgy, and Exploration, pp 355–362, Littleton, CO, USA

    Google Scholar 

  • Nishimura T, Hashimoto H, Nakayama M (2007) Removal of selenium (VI) from aqueous solution with polyamine-type weakly basic ion exchange resin. Sep Sci Technol 42:3155–3167

    Article  CAS  Google Scholar 

  • Nitrogen and Selenium Management Program (NSMP) (2007) Identification and assessment of selenium and nitrogen treatment technologies and best management practices. Orange County, CA, USA. http://www.ocnsmpcom/team/NSMP%20Task%2022%20Update%2030Mar07.pdf

  • Norbury AH (1975) Coordination chemistry of the cyanate, thiocyanate and selenocyanate ions. In: Emeleus HJ Sharpe AG (ed) Advances in inorganic chemistry and radiochemistry, Cambridge, UK

    Google Scholar 

  • North American Metal Council (NAMC) (2010) Review of available technologies for removal of selenium from water. http://www.namc.org/docs/00062756.pdf

  • Ohlendorf HM (1989) Bioaccumulation and effects of selenium in wildlife. In: Selenium in agriculture and the environment. Jacobs LW (ed) American Society of Agronomy, Inc., Soil Science Society of America, Inc. 5585, Madison, pp 133–177

    Google Scholar 

  • Raisbeck MF (2000) Selenosis. Vet Clin North Am Food Anim Pract 16:465–480

    Article  CAS  Google Scholar 

  • Reilly C (2006) Selenium in food and health. Springer, The Netherlands

    Google Scholar 

  • Renault F, Sancey B, Badot P-M, Crini G (2009) Chitosan for coagulation/flocculation processes—an eco-friendly approach. Eur Polym J 45:1337–1348

    Article  CAS  Google Scholar 

  • Ruhl L, Vengosh A, Dwyer G, Hsu-Kim H, Deonarine A (2010) Environmental impacts of the coal ash spill in Kingston, Tennessee: an 18-month survey. Environ Sci Technol 44:9272–9280

    Article  CAS  Google Scholar 

  • Salton Sea Restoration Program (2005) Final technologies and management techniques to limit exposure to selenium. http://www.water.ca.gov/saltonsea/historicalcalendar/wg/03.04.2005/SeleniumMgmtTech.pdf

  • Santos S, Ungureanu G, Boaventura R, Botelho C (2015) Selenium contaminated waters: an overview of analytical methods, treatment options and recent advances in sorption methods. Sci Total Environ 521-522C:246–260

    Google Scholar 

  • Schwartz GE, Rivera N, Lee S-W, Harrington JM, Hower JC, Levine KE, Vengosh A, Hsu-Kim H (2016) Leaching potential and redox transformations of arsenic and selenium in sediment microcosms with fly ash. Appl Geochem 67:177–185

    Article  CAS  Google Scholar 

  • Simmons DB, Wallschlaeger D (2005) A critical review of the biogeochemistry and ecotoxicology of selenium in lotic and lentic environments. Environ Toxicol Chem 24:1331–1343

    Article  CAS  Google Scholar 

  • Soda S, Kashiwa M, Kagami T, Muroda M, Yamashita M, Ike M (2011) Laboratory-scale bioreactors for soluble selenium removal from selenium refinery wastewater using anaerobic sludge. Desalination 297:433–438

    Article  Google Scholar 

  • Squires RC, Groves GR, Raymond G, Johnston WR (1989) Economics of selenium removal from drainage water. J Irrigation Drainage Eng 115:48–57

    Article  Google Scholar 

  • Staicu LC, van Hullebusch ED, Lens PNL (2015a) Production, recovery and reuse of biogenic elemental selenium. Environ Chem Lett 13:89–96

    Article  CAS  Google Scholar 

  • Staicu LC, van Hullebusch ED, Lens PNL, Pilon-Smits EAH, Oturan MA (2015b) Electrocoagulation of colloidal biogenic selenium. Environ Sci Pollut Res Int 22:3127–3137

    Article  CAS  Google Scholar 

  • Staicu LC, van Hullebusch ED, Oturan MA, Ackerson CJ, Lens PNL (2015c) Removal of colloidal biogenic selenium from wastewater. Chemosphere 125:130–138

    Article  CAS  Google Scholar 

  • Staicu LC, Morin-Crini N, Crini G (2017) Desulfurization: critical step towards enhanced selenium removal from industrial effluents. Chemosphere 117:111–119

    Article  Google Scholar 

  • Su T, Guan X, Gu G, Wang J (2008) Adsorption characteristics of As(V), Se(IV), and V(V) onto activated alumina: effects of pH, surface loading, and ionic strength. J Colloid Interface Sci 326:347–353

    Article  CAS  Google Scholar 

  • Tennessee Valley Authority (TVA) (2009) Environmental Assessment: initial emergency response actions for the Kingston fossil plant ash dike failure Roane County Tennessee. https://archive.epa.gov/pesticides/region4/kingston/web/pdf/10644919.pdf

  • Twidwell L, McClosky J, Miranda P, Gale M (2000) Technologies and potential technologies for removing selenium from process and mine wastewater. In: Proceedings Minor Elements 2000 SME, Salt Lake City, UT, USA

    Google Scholar 

  • Twidwell L, McCloskey J, Joyce H, Dahlgren E, Hadden A (2005) Removal of selenium oxyanions from mine waters utilizing elemental iron and galvanically coupled metals. Innovations in Natural Resource Processing, Salt Lake City, Utah, USA

    Google Scholar 

  • United States Bureau of Reclamation (USBR) (2002) Imperial valley: drainwater reclamation and Reuse study. http://www.usbrgov/lc/region/g2000/publications/Imperial.pdf

  • United States Bureau of Reclamation (USBR) (2008) Selenium treatment of irrigation drainage water—options and limitations. http://libberkeleyedu/WRCA/WRC/pdfs/SD08Irvine.pdf

  • United States Environmental Protection Agency (USEPA) (2009) Steam electric power generating point source category: final detailed study report EPA-821-R-09-008 Washington DC, USA

    Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2013) Basic information about Selenium in drinking water. http://waterepagov/drink/contaminants/basicinformation/selenium.cfm

  • United States Environmental Protection Agency (USEPA) (2015) Effluent limitations guidelines and standards for the steam electric power generating point source category 3 Nov 2015. https://www.epa.gov/eg/steam-electric-power-generating-effluent-guidelines-2015-final-rule

  • Vadhanavikit S, Kraus RJ, Ganther H (1987) Metabolism of selenocyanate in the rat. Arch Biochem Biophys 258:1–6

    Article  CAS  Google Scholar 

  • Verbinnen B, Block C, Lievens P, Brecht A, Vandecasteele C (2013) Simultaneous removal of molybdenum, antimony and selenium oxyanions from wastewater by adsorption on supported magnetite. Waste Biomass Valorization 4:635–645

    Article  CAS  Google Scholar 

  • Wake H (2005) Oil refineries: a review of their ecological impacts on the aquatic environment. Estuar Coast Shelf Sci 62:131–140

    Article  CAS  Google Scholar 

  • Wallschläger D, Bloom NS (2001) Determination of selenite, selenate and selenocyanate in waters by ion chromatography-hydride generation-atomic fluorescence spectrometry (IC-HG-AFS). J Anal Atom Spectrom 16:1322–1328

    Article  Google Scholar 

  • Watson Montgomery (1995) Selenium removal from refinery wastewaters: biological field testing report prepared for Western States Petroleum Association Concord. California, USA

    Google Scholar 

  • Wellen CC, Shatilla NJ, Carey SK (2015) Regional scale selenium loading associated with surface coal mining, Elk Valley, British Columbia, Canada. Sci Total Environ 532:791–802

    Article  CAS  Google Scholar 

  • Wiesner MR, Hackney J, Sethi S, Jacangelo JG, Laine J-M (1994) Cost estimates for membrane filtration and conventional treatment. J Am Water Works Assoc 86:33–41

    CAS  Google Scholar 

  • Yan WL, Herzing AA, Kiely CJ, Zhang WX (2010) Nanoscale zero-valent iron (nZVI): aspects of the core–shell structure and reactions with inorganic species in water. J Contam Hydrol 118:96–104

    Article  CAS  Google Scholar 

  • Zhang Y, Wang J, Amrhein C, Frankerberger WT (2005) Removal of selenate from water by zerovalent iron. J Environ Qual 34:487–495

    Article  Google Scholar 

  • Zhang N, Lin LS, Gang DC (2008) Adsorptive selenite removal from water using iron-coated GAC adsorbents. Water Res 42:3809–3816

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the European Commission for providing financial support through the Erasmus Mundus Joint Doctorate Programme ETeCoS3 (Environmental Technologies for Contaminated Solids, Soils, and Sediments) under the grant agreement FPA n°2010-0009. We are grateful to Prof. Larry Twidwell (Montana Tech, USA) and Dr. Dennis Lemly (USDA Forest Service Southern Research Station, USA) for their useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucian C. Staicu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Staicu, L.C., van Hullebusch, E.D., Lens, P.N. (2017). Industrial Selenium Pollution: Wastewaters and PhysicalChemical Treatment Technologies . In: van Hullebusch, E. (eds) Bioremediation of Selenium Contaminated Wastewater. Springer, Cham. https://doi.org/10.1007/978-3-319-57831-6_5

Download citation

Publish with us

Policies and ethics