Skip to main content

Tissue Specificity: Store-Operated Ca2+ Entry in Cardiac Myocytes

  • Chapter
  • First Online:
Store-Operated Ca²⁺ Entry (SOCE) Pathways

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 993))

Abstract

Calcium (Ca2+) is a key regulator of cardiomyocyte contraction. The Ca2+ channels, pumps, and exchangers responsible for the cyclical cytosolic Ca2+ signals that underlie contraction are well known. In addition to those Ca2+ signaling components responsible for contraction, it has been proposed that cardiomyocytes express channels that promote the influx of Ca2+ from the extracellular milieu to the cytosol in response to depletion of intracellular Ca2+ stores. With non-excitable cells, this store-operated Ca2+ entry (SOCE) is usually easily demonstrated and is essential for prolonging cellular Ca2+ signaling and for refilling depleted Ca2+ stores. The role of SOCE in cardiomyocytes, however, is rather more elusive. While there is published evidence for increased Ca2+ influx into cardiomyocytes following Ca2+ store depletion, it has not been universally observed. Moreover, SOCE appears to be prominent in embryonic cardiomyocytes but declines with postnatal development. In contrast, there is overwhelming evidence that the molecular components of SOCE (e.g., STIM, Orai, and TRPC proteins) are expressed in cardiomyocytes from embryo to adult. Moreover, these proteins have been shown to contribute to disease conditions such as pathological hypertrophy, and reducing their expression can attenuate hypertrophic growth. It is plausible that SOCE might underlie Ca2+ influx into cardiomyocytes and may have important signaling functions perhaps by activating local Ca2+-sensitive processes. However, the STIM, Orai, and TRPC proteins appear to cooperate with multiple protein partners in signaling complexes. It is therefore possible that some of their signaling activities are not mediated by Ca2+ influx signals, but by protein-protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beech DJ, Bahnasi YM, Dedman AM, Al-Shawaf E (2009) TRPC channel lipid specificity and mechanisms of lipid regulation. Cell Calcium 45:583–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benard L, Oh JG, Cacheux M, Lee A, Nonnenmacher M, Matasic DS, Kohlbrenner E, Kho C, Pavoine C, Hajjar RJ, Hulot JS (2016) Cardiac Stim1 silencing impairs adaptive hypertrophy and promotes heart failure through inactivation of mTORC2/Akt signaling. Circulation 133:1458–1471. Discussion 1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett DL, Bootman MD, Berridge MJ, Cheek TR (1998) Ca2+ entry into PC12 cells initiated by ryanodine receptors or inositol 1,4,5-trisphosphate receptors. Biochem J 329(Pt 2):349–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge MJ (2003) Cardiac calcium signaling. Biochem Soc Trans 31:930–933

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ (2006) Remodelling Ca2+ signalling systems and cardiac hypertrophy. Biochem Soc Trans 34:228–231

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ (2016) The inositol trisphosphate/calcium signaling pathway in health and disease. Physiol Rev 96:1261–1296

    Article  PubMed  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signaling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  • Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  CAS  PubMed  Google Scholar 

  • Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49

    Article  CAS  PubMed  Google Scholar 

  • Bootman MD, Young KW, Young JM, Moreton RB, Berridge MJ (1996) Extracellular calcium concentration controls the frequency of intracellular calcium spiking independently of inositol 1,4,5-trisphosphate production in HeLa cells. Biochem J 314(Pt 1):347–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bootman MD, Collins TJ, Mackenzie L, Roderick HL, Berridge MJ, Peppiatt CM (2002) 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J 16:1145–1150

    Article  CAS  PubMed  Google Scholar 

  • Bootman MD, Smyrnias I, Thul R, Coombes S, Roderick HL (2011) Atrial cardiomyocyte calcium signaling. Biochim Biophys Acta 1813:922–934

    Article  CAS  PubMed  Google Scholar 

  • Cahalan MD (2009) STIMulating store-operated Ca(2+) entry. Nat Cell Biol 11:669–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Che H, Li G, Sun HY, Xiao GS, Wang Y, Li GR (2015) Roles of store-operated Ca2+ channels in regulating cell cycling and migration of human cardiac c-kit+ progenitor cells. Am J Physiol Heart Circ Physiol 309:H1772–H1781

    CAS  PubMed  Google Scholar 

  • Chen KH, Liu H, Yang L, Jin MW, Li GR (2015) SKF-96365 strongly inhibits voltage-gated sodium current in rat ventricular myocytes. Pflugers Arch 467:1227–1236

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Lederer MR, Lederer WJ, Cannell MB (1996) Calcium sparks and [Ca2+]i waves in cardiac myocytes. Am J Physiol 270:C148–C159

    CAS  PubMed  Google Scholar 

  • Cheng KT, Liu X, Ong HL, Swaim W, Ambudkar IS (2011) Local Ca(2)+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca(2)+ signals required for specific cell functions. PLoS Biol 9:e1001025

    Google Scholar 

  • Collins HE, Zhu-Mauldin X, Marchase RB, Chatham JC (2013) STIM1/Orai1-mediated SOCE: current perspectives and potential roles in cardiac function and pathology. Am J Physiol Heart Circ Physiol 305:H446–H458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins HE, He L, Zou L, Qu J, Zhou L, Litovsky SH, Yang Q, Young ME, Marchase RB, Chatham JC (2014) Stromal interaction molecule 1 is essential for normal cardiac homeostasis through modulation of ER and mitochondrial function. Am J Physiol Heart Circ Physiol 306:H1231–H1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper DM (2015) Store-operated Ca(2)(+)-entry and adenylyl cyclase. Cell Calcium 58:368–375

    Article  CAS  PubMed  Google Scholar 

  • Correll RN, Goonasekera SA, van Berlo JH, Burr AR, Accornero F, Zhang H, Makarewich CA, York AJ, Sargent MA, Chen X, Houser SR, Molkentin JD (2015) STIM1 elevation in the heart results in aberrant Ca(2)(+) handling and cardiomyopathy. J Mol Cell Cardiol 87:38–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuddon P, Bootman MD, Richards GR, Smith AJ, Simpson PB, Roderick HL (2008) Methacholine and PDGF activate store-operated calcium entry in neuronal precursor cells via distinct calcium entry channels. Biol Res 41(2):183–195

    Article  PubMed  Google Scholar 

  • DeHaven WI, Jones BF, Petranka JG, Smyth JT, Tomita T, Bird GS, Putney JW Jr (2009) TRPC channels function independently of STIM1 and Orai1. J Physiol 587:2275–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai PN, Zhang X, Wu S, Janoshazi A, Bolimuntha S, Putney JW Jr, Trebak M (2015) Multiple types of calcium channels arising from alternative translation initiation of the Orai1 message. Sci Signal 8:ra74

    Article  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Rodriguez A, Ruiz-Hurtado G, Sabourin J, Gomez AM, Alvarez JL, Benitah JP (2015) Proarrhythmic effect of sustained EPAC activation on TRPC3/4 in rat ventricular cardiomyocytes. J Mol Cell Cardiol 87:74–78

    Article  CAS  PubMed  Google Scholar 

  • Eder P, Molkentin JD (2011) TRPC channels as effectors of cardiac hypertrophy. Circ Res 108:265–272

    Article  CAS  PubMed  Google Scholar 

  • Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185

    Article  CAS  PubMed  Google Scholar 

  • Goonasekera SA, Hammer K, Auger-Messier M, Bodi I, Chen X, Zhang H, Reiken S, Elrod JW, Correll RN, York AJ, Sargent MA, Hofmann F, Moosmang S, Marks AR, Houser SR, Bers DM, Molkentin JD (2012) Decreased cardiac L-type Ca(2)(+) channel activity induces hypertrophy and heart failure in mice. J Clin Invest 122:280–290

    Article  CAS  PubMed  Google Scholar 

  • Heijman J, Voigt N, Nattel S, Dobrev D (2012) Calcium handling and atrial fibrillation. Wien Med Wochenschr 162:287–291

    Article  PubMed  Google Scholar 

  • Higazi DR, Fearnley CJ, Drawnel FM, Talasila A, Corps EM, Ritter O, McDonald F, Mikoshiba K, Bootman MD, Roderick HL (2009) Endothelin-1-stimulated InsP3-induced Ca2+ release is a nexus for hypertrophic signaling in cardiac myocytes. Mol Cell 33:472–482

    Article  CAS  PubMed  Google Scholar 

  • Hohendanner F, McCulloch AD, Blatter LA, Michailova AP (2014) Calcium and IP3 dynamics in cardiac myocytes: experimental and computational perspectives and approaches. Front Pharmacol 5:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Hooper R, Samakai E, Kedra J, Soboloff J (2013) Multifaceted roles of STIM proteins. Pflugers Arch 465:1383–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton JS, Buckley CL, Alvarez EM, Schorlemmer A, Stokes AJ (2014) The calcium release-activated calcium channel Orai1 represents a crucial component in hypertrophic compensation and the development of dilated cardiomyopathy. Channels 8:35–48

    Article  CAS  PubMed  Google Scholar 

  • Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356

    Article  CAS  PubMed  Google Scholar 

  • Huang J, van Breemen C, Kuo KH, Hove-Madsen L, Tibbits GF (2006) Store-operated Ca2+ entry modulates sarcoplasmic reticulum Ca2+ loading in neonatal rabbit cardiac ventricular myocytes. Am J Physiol Cell Physiol 290:C1572–C1582

    Article  CAS  PubMed  Google Scholar 

  • Hulot JS, Fauconnier J, Ramanujam D, Chaanine A, Aubart F, Sassi Y, Merkle S, Cazorla O, Ouille A, Dupuis M, Hadri L, Jeong D, Muhlstedt S, Schmitt J, Braun A, Benard L, Saliba Y, Laggerbauer B, Nieswandt B, Lacampagne A, Hajjar RJ, Lompre AM, Engelhardt S (2011) Critical role for stromal interaction molecule 1 in cardiac hypertrophy. Circulation 124:796–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunton DL, Lucchesi PA, Pang Y, Cheng X, Dell’Italia LJ, Marchase RB (2002) Capacitative calcium entry contributes to nuclear factor of activated T-cells nuclear translocation and hypertrophy in cardiomyocytes. J Biol Chem 277:14266–14273

    Article  CAS  PubMed  Google Scholar 

  • Hunton DL, Zou L, Pang Y, Marchase RB (2004) Adult rat cardiomyocytes exhibit capacitative calcium entry. Am J Physiol Heart Circ Physiol 286:H1124–H1132

    Article  CAS  PubMed  Google Scholar 

  • Iemitsu M, Miyauchi T, Maeda S, Sakai S, Kobayashi T, Fujii N, Miyazaki H, Matsuda M, Yamaguchi I (2001) Physiological and pathological cardiac hypertrophy induce different molecular phenotypes in the rat. Am J Physiol Regul Integr Comp Physiol 281:R2029–R2036

    CAS  PubMed  Google Scholar 

  • Ji Y, Guo X, Zhang Z, Huang Z, Zhu J, Chen QH, Gui L (2016) CaMKIIdelta meditates phenylephrine induced cardiomyocyte hypertrophy through store-operated Ca2+ entry. Cardiovasc Pathol 27:9–17

    Article  PubMed  Google Scholar 

  • Jing J, He L, Sun A, Quintana A, Ding Y, Ma G, Tan P, Liang X, Zheng X, Chen L, Shi X, Zhang SL, Zhong L, Huang Y, Dong MQ, Walker CL, Hogan PG, Wang Y, Zhou Y (2015) Proteomic mapping of ER-PM junctions identifies STIMATE as a regulator of Ca(2)(+) influx. Nat Cell Biol 17:1339–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DM, Heijman J, Bode EF, Greensmith DJ, van der Linde H, Abi-Gerges N, Eisner DA, Trafford AW, Volders PG (2012) Diastolic spontaneous calcium release from the sarcoplasmic reticulum increases beat-to-beat variability of repolarization in canine ventricular myocytes after beta-adrenergic stimulation. Circ Res 112:246–256

    Article  PubMed  Google Scholar 

  • Jones BF, Boyles RR, Hwang SY, Bird GS, Putney JW Jr (2008) Calcium influx mechanisms underlying calcium oscillations in rat hepatocytes. Hepatology 48:1273–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju YK, Chu Y, Chaulet H, Lai D, Gervasio OL, Graham RM, Cannell MB, Allen DG (2007) Store-operated Ca2+ influx and expression of TRPC genes in mouse sinoatrial node. Circ Res 100:1605–1614

    Article  CAS  PubMed  Google Scholar 

  • Ju YK, Lee BH, Trajanovska S, Hao G, Allen DG, Lei M, Cannell MB (2015) The involvement of TRPC3 channels in sinoatrial arrhythmias. Front Physiol 6:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Kar P, Parekh AB (2015) Distinct spatial Ca2+ signatures selectively activate different NFAT transcription factor isoforms. Mol Cell 58:232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kockskamper J, Zima AV, Roderick HL, Pieske B, Blatter LA, Bootman MD (2008) Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes. J Mol Cell Cardiol 45:128–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Kranias EG, Bers DM (2007) Calcium and cardiomyopathies. Subcell Biochem 45:523–537

    Article  CAS  PubMed  Google Scholar 

  • Krapivinsky G, Krapivinsky L, Stotz SC, Manasian Y, Clapham DE (2011) POST, partner of stromal interaction molecule 1 (STIM1), targets STIM1 to multiple transporters. Proc Natl Acad Sci USA 108:19234–19239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipp P, Laine M, Tovey SC, Burrell KM, Berridge MJ, Li W, Bootman MD (2000) Functional InsP3 receptors that may modulate excitation-contraction coupling in the heart. Curr Biol 10:939–942

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Xin L, Benson VL, Allen DG, Ju YK (2015) Store-operated calcium entry and the localization of STIM1 and Orai1 proteins in isolated mouse sinoatrial node cells. Front Physiol 6:69

    PubMed  PubMed Central  Google Scholar 

  • Luo X, Hojayev B, Jiang N, Wang ZV, Tandan S, Rakalin A, Rothermel BA, Gillette TG, Hill JA (2012) STIM1-dependent store-operated Ca(2)(+) entry is required for pathological cardiac hypertrophy. J Mol Cell Cardiol 52:136–147

    Article  CAS  PubMed  Google Scholar 

  • Makarewich CA, Zhang H, Davis J, Correll RN, Trappanese DM, Hoffman NE, Troupes CD, Berretta RM, Kubo H, Madesh M, Chen X, Gao E, Molkentin JD, Houser SR (2014) Transient receptor potential channels contribute to pathological structural and functional remodeling after myocardial infarction. Circ Res 115:567–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maus M, Cuk M, Patel B, Lian J, Ouimet M, Kaufmann U, Yang J, Horvath R, Hornig-Do HT, Chrzanowska-Lightowlers ZM, Moore KJ, Cuervo AM, Feske S (2017) Store-operated Ca2+ entry controls induction of lipolysis and the transcriptional reprogramming to lipid metabolism. Cell Metab25:698–712

    Google Scholar 

  • McMullen JR, Jennings GL (2007) Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol 34:255–262

    Article  CAS  PubMed  Google Scholar 

  • Molkentin JD (2006) Dichotomy of Ca2+ in the heart: contraction versus intracellular signaling. J Clin Invest 116:623–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama H, Bodi I, Maillet M, DeSantiago J, Domeier TL, Mikoshiba K, Lorenz JN, Blatter LA, Bers DM, Molkentin JD (2010) The IP3 receptor regulates cardiac hypertrophy in response to select stimuli. Circ Res 107:659–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nattel S (2003) Atrial electrophysiology and mechanisms of atrial fibrillation. J Cardiovasc Pharmacol Ther 8(Suppl 1):S5–11

    Article  PubMed  Google Scholar 

  • Nguyen N, Biet M, Simard E, Beliveau E, Francoeur N, Guillemette G, Dumaine R, Grandbois M, Boulay G (2013) STIM1 participates in the contractile rhythmicity of HL-1 cells by moderating T-type Ca(2+) channel activity. Biochim Biophys Acta 1833:1294–1303

    Article  CAS  PubMed  Google Scholar 

  • Niggli E (2011) Ryanodine receptors: waking up from refractoriness. Cardiovasc Res 91:563–564

    Article  CAS  PubMed  Google Scholar 

  • Nilius B, Szallasi A (2014) Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 66:676–814

    Article  PubMed  Google Scholar 

  • Ohba T, Watanabe H, Murakami M, Sato T, Ono K, Ito H (2009) Essential role of STIM1 in the development of cardiomyocyte hypertrophy. Biochem Biophys Res Commun 389:172–176

    Article  CAS  PubMed  Google Scholar 

  • Oh-Hora M, Yamashita M, Hogan PG, Sharma S, Lamperti E, Chung W, Prakriya M, Feske S, Rao A (2008) Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat Immunol 9:432–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong HL, de Souza LB, Ambudkar IS (2016) Role of TRPC channels in store-operated calcium entry. Adv Exp Med Biol 898:87–109

    Article  PubMed  Google Scholar 

  • Pan Z, Brotto M, Ma J (2014) Store-operated Ca2+ entry in muscle physiology and diseases. BMB Rep 20:69–79

    Article  Google Scholar 

  • Parks C, Alam MA, Sullivan R, Mancarella S (2016) STIM1-dependent Ca(2+) microdomains are required for myofilament remodeling and signaling in the heart. Sci Rep 6:25372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peppiatt CM, Collins TJ, Mackenzie L, Conway SJ, Holmes AB, Bootman MD, Berridge MJ, Seo JT, Roderick HL (2003) 2-Aminoethoxydiphenyl borate (2-APB) antagonises inositol 1,4,5-trisphosphate-induced calcium release, inhibits calcium pumps and has a use-dependent and slowly reversible action on store-operated calcium entry channels. Cell Calcium 34:97–108

    Article  CAS  PubMed  Google Scholar 

  • Putney JW Jr (1990) Capacitative calcium entry revisited. Cell Calcium 11:611–624

    Article  CAS  PubMed  Google Scholar 

  • Putney JW Jr, Bird GS (2008) Cytoplasmic calcium oscillations and store-operated calcium influx. J Physiol 586:3055–3059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putney JW Jr, Steinckwich-Besancon N, Numaga-Tomita T, Davis FM, Desai PN, D’Agostin DM, Wu S, Bird GS (2016) The functions of store-operated calcium channels. Biochi Biophys Acta. doi:10.1016/j.bbamcr.2016.11.028

    Google Scholar 

  • Roderick HL, Berridge MJ, Bootman MD (2003) Calcium-induced calcium release. Curr Biol 13:R425

    Article  CAS  PubMed  Google Scholar 

  • Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg P (2011) Socking It to cardiac hypertrophy: STIM1-mediated Ca2+ entry in the cardiomyocyte. Circulation 124:766–768

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross GR, Bajwa T Jr, Edwards S, Emelyanova L, Rizvi F, Holmuhamedov EL, Werner P, Downey FX, Tajik AJ, Jahangir A (2017) Enhanced store-operated Ca2+ influx and ORAI1 expression in ventricular fibroblasts from human failing heart. Biol Open 6:326–332

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruhle B, Trebak M (2013) Emerging roles for native Orai Ca2+ channels in cardiovascular disease. Curr Top Membr 71:209–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabourin J, Robin E, Raddatz E (2011) A key role of TRPC channels in the regulation of electromechanical activity of the developing heart. Cardiovasc Res 92:226–236

    Article  CAS  PubMed  Google Scholar 

  • Sabourin J, Bartoli F, Antigny F, Gomez AM, Benitah JP (2016) Transient receptor potential canonical (TRPC)/Orai1-dependent store-operated Ca2+ channels: NEW TARGETS OF ALDOSTERONE IN CARDIOMYOCYTES. J Biol Chem 291:13394–13409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saliba Y, Keck M, Marchand A, Atassi F, Ouille A, Cazorla O, Trebak M, Pavoine C, Lacampagne A, Hulot JS, Fares N, Fauconnier J, Lompre AM (2015) Emergence of Orai3 activity during cardiac hypertrophy. Cardiovasc Res 105:248–259

    Article  CAS  PubMed  Google Scholar 

  • Salido GM, Jardin I, Rosado JA (2011) The TRPC ion channels: association with Orai1 and STIM1 proteins and participation in capacitative and non-capacitative calcium entry. Adv Exp Med Biol 704:413–433

    Article  CAS  PubMed  Google Scholar 

  • Samak M, Fatullayev J, Sabashnikov A, Zeriouh M, Schmack B, Farag M, Popov AF, Dohmen PM, Choi YH, Wahlers T, Weymann A (2016) Cardiac hypertrophy: an introduction to molecular and cellular basis. Med Sci Monit Basic Res 22:75–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Seo K, Rainer PP, Shalkey Hahn V, Lee DI, Jo SH, Andersen A, Liu T, Xu X, Willette RN, Lepore JJ, Marino JP Jr, Birnbaumer L, Schnackenberg CG, Kass DA (2014) Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy. Proc Natl Acad Sci USA 111:1551–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuttleworth TJ, Mignen O (2003) Calcium entry and the control of calcium oscillations. Biochem Soc Trans 31:916–919

    Article  CAS  PubMed  Google Scholar 

  • Smyrnias I, Mair W, Harzheim D, Walker SA, Roderick HL, Bootman MD (2010) Comparison of the T-tubule system in adult rat ventricular and atrial myocytes, and its role in excitation-contraction coupling and inotropic stimulation. Cell Calcium 47:210–223

    Article  CAS  PubMed  Google Scholar 

  • Soboloff J, Rothberg BS, Madesh M, Gill DL (2012) STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 13:549–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltoff SP, Lannon WA (2013) Activation of ERK1/2 by store-operated calcium entry in rat parotid acinar cells. PLoS One 8:e72881

    Google Scholar 

  • Svobodova B, Groschner K (2016) Mechanisms of lipid regulation and lipid gating in TRPC channels. Cell Calcium 59:271–279

    Article  CAS  PubMed  Google Scholar 

  • Thompson JL, Shuttleworth TJ (2012) A plasma membrane-targeted cytosolic domain of STIM1 selectively activates ARC channels, an arachidonate-regulated store-independent Orai channel. Channels 6:370–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touchberry CD, Elmore CJ, Nguyen TM, Andresen JJ, Zhao X, Orange M, Weisleder N, Brotto M, Claycomb WC, Wacker MJ (2011) Store-operated calcium entry is present in HL-1 cardiomyocytes and contributes to resting calcium. Biochem Biophys Res Commun 416:45–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehara A, Yasukochi M, Imanaga I, Nishi M, Takeshima H (2002) Store-operated Ca2+ entry uncoupled with ryanodine receptor and junctional membrane complex in heart muscle cells. Cell Calcium 31:89–96

    Article  CAS  PubMed  Google Scholar 

  • Umar S, Nadadur R, Iorga A, Amjedi M, Matori H, Eghbali M (2012) Cardiac structural and hemodynamic changes associated with physiological heart hypertrophy of pregnancy are reversed postpartum. J Appl Physiol 113:1253–1259

    Article  PubMed  PubMed Central  Google Scholar 

  • Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223

    Article  CAS  PubMed  Google Scholar 

  • Voelkers M, Salz M, Herzog N, Frank D, Dolatabadi N, Frey N, Gude N, Friedrich O, Koch WJ, Katus HA, Sussman MA, Most P (2010) Orai1 and Stim1 regulate normal and hypertrophic growth in cardiomyocytes. J Mol Cell Cardiol 48:1329–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voigt N, Nattel S, Dobrev D (2012) Proarrhythmic atrial calcium cycling in the diseased heart. Adv Exp Med Biol 740:1175–1191

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Deng X, Gill DL (2010a) Calcium signaling by STIM and Orai: intimate coupling details revealed. Sci Signal 3:pe42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Deng X, Mancarella S, Hendron E, Eguchi S, Soboloff J, Tang XD, Gill DL (2010b) The calcium store sensor, STIM1, reciprocally controls Orai and CaV1.2 channels. Science 330:105–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci USA 103:9357–9362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YH, HJ W, Che H, Sun HY, Cheng LC, Li X, WK A, Tse HF, Li GR (2013) Functional transient receptor potential canonical type 1 channels in human atrial myocytes. Pflugers Arch 465:1439–1449

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Sun AY, Kim JJ, Graham V, Finch EA, Nepliouev I, Zhao G, Li T, Lederer WJ, Stiber JA, Pitt GS, Bursac N, Rosenberg PB (2015) STIM1-Ca2+ signaling modulates automaticity of the mouse sinoatrial node. Proc Natl Acad Sci USA 112:E5618–E5627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Jiang J, Yue Z, Liu S, Ma Y, Yu N, Gao Y, Sun S, Chen S, Liu P (2016) Store-Operated Ca2+ Entry (SOCE) contributes to angiotensin II-induced cardiac fibrosis in cardiac fibroblasts. J Pharmacol Sci 132:171–180

    Article  CAS  PubMed  Google Scholar 

  • Zhao G, Li T, Brochet DX, Rosenberg PB, Lederer WJ (2015) STIM1 enhances SR Ca2+ content through binding phospholamban in rat ventricular myocytes. Proc Natl Acad Sci USA 112:E4792–E4801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Cai X, Nwokonko RM, Loktionova NA, Wang Y, Gill DL (2017) The STIM-Orai coupling interface and gating of the Orai1 channel. Cell Calcium. doi:10.1016/j.ceca.2017.01.001

    Google Scholar 

  • Zhu-Mauldin X, Marsh SA, Zou L, Marchase RB, Chatham JC (2012) Modification of STIM1 by O-linked N-acetylglucosamine (O-GlcNAc) attenuates store-operated calcium entry in neonatal cardiomyocytes. J Biol Chem 287:39094–39106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin D. Bootman or Katja Rietdorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bootman, M.D., Rietdorf, K. (2017). Tissue Specificity: Store-Operated Ca2+ Entry in Cardiac Myocytes. In: Groschner, K., Graier, W., Romanin, C. (eds) Store-Operated Ca²⁺ Entry (SOCE) Pathways. Advances in Experimental Medicine and Biology, vol 993. Springer, Cham. https://doi.org/10.1007/978-3-319-57732-6_19

Download citation

Publish with us

Policies and ethics