Skip to main content

Sleep Deprivation Induced Blood-Brain Barrier Breakdown and Brain Pathology. Neuroprotective Effects of TiO2-Nanowired Delivery of Cerebrolysin and Ondansetron

  • Chapter
  • First Online:
Drug and Gene Delivery to the Central Nervous System for Neuroprotection

Abstract

Military personnel are often subjected to sleep deprivation (SD) for long hours during combat or peacekeeping operations across the Globe. Recent reports suggests that sound sleep for less than 4 h results in confusion, simple task calculations, and affects decision making. However, in military life SD of 12–72 h is quite common. It appears that longer duration of SD is related to brain dysfunction. Model experiments carried out in our laboratory show that 12–72 h of SD in rats results in progressive breakdown of the blood-brain barrier (BBB) to proteins and induce brain edema formation. Selective neuronal, glial cell and axonal injuries also occurred in SD that is progressive in nature. Interestingly, the magnitude and intensity of SD depends on environmental temperature and cardiovascular health of the animals. Thus, SD at 34 °C induces 2- to 4- fold brain damage, BBB breakdown and edema formation in rats as compared to identical SD at room temperature (21 ± 1 °C). Also hypertensive rats when subjected to identical SD showed greater degree of brain pathology as compared to normotensive animals. Treatment with a multimodal drug Cerebrolysin that is a balanced composition of several neurotrophic factors and active peptide fragments significantly reduced the brain pathology in healthy animals at room temperature. However, TiO2-nanowired delivery of cerebrolysin is needed to attenuate SD induced brain pathology of normotensive rats at hot environment or hypertensive animals at room temperature. These observations suggest that nanodrug delivery in SD is needed to induce neuroprotection at hot environment or in hypertensive animals, not reported earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parker RS, Parker P. The impact of sleep deprivation in military surgical teams: a systematic review. J R Army Med Corps. 2016. doi:10.1136/jramc-2016-000640. pii: jramc-2016-000640. [Epub ahead of print] Review.

    Google Scholar 

  2. Wolkow A, Ferguson S, Aisbett B, Main L. Effects of work-related sleep restriction on acute physiological and psychological stress responses and their interactions: A review among emergency service personnel. Int J Occup Med Environ Health. 2015;28(2):183–208. doi:10.13075/ijomeh.1896.00227. Review.

    PubMed  Google Scholar 

  3. Giam GC. Effects of sleep deprivation with reference to military operations. Ann Acad Med Singapore. 1997;26(1):88–93. Review.

    CAS  PubMed  Google Scholar 

  4. Harrison Y, Horne JA. The impact of sleep deprivation on decision making: a review. J Exp Psychol Appl. 2000;6(3):236–49. Review.

    Article  CAS  PubMed  Google Scholar 

  5. Wickens CD, Hutchins SD, Laux L, Sebok A. The impact of sleep disruption on complex cognitive tasks: a meta-analysis. Hum Factors. 2015;57(6):930–46.

    Article  PubMed  Google Scholar 

  6. Shattuck NL, Matsangas P, Eriksen E, Kulubis S. Comparison of two watch schedules for personnel at the White House Military Office President's Emergency Operations Center. Hum Factors. 2015;57(5):864–78.

    Article  PubMed  Google Scholar 

  7. Chapman DP, Liu Y, McKnight-Eily LR, Croft JB, Holt JB, Balkin TJ, Giles WH. Daily insufficient sleep and active duty status. Mil Med. 2015;180(1):68–76.

    Article  PubMed  Google Scholar 

  8. Kushida CA. Countermeasures for sleep loss and deprivation. Curr Treat Options Neurol. 2006;8(5):361–6.

    Article  PubMed  Google Scholar 

  9. Waits WM, Ganz MB, Schillreff T, Dell PJ. Sleep and the use of energy products in a combat environment. US Army Med Dep J. 2014;22–8.

    Google Scholar 

  10. Miller NL, Shattuck LG, Matsangas P. Longitudinal study of sleep patterns of United States Military Academy cadets. Sleep. 2010;33(12):1623–31.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tomczak A. Coordination motor skills of military pilots subjected to survival training. J Strength Cond Res. 2015;29(9):2460–4.

    Article  PubMed  Google Scholar 

  12. Tomczak A, Gajewski J, Mazur-Różycka J. Changes in physiological tremor resulting from sleep deprivation under conditions of increasing fatigue during prolonged military training. Biol Sport. 2014;31(4):303–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Harrison Y, Jones K, Waterhouse J. The influence of time awake and circadian rhythm upon performance on a frontal lobe task. Neuropsychologia. 2007;45(8):1966–72.

    Article  PubMed  Google Scholar 

  14. Miller NL, Shattuck LG, Matsagas P, Dyche J. Sleep and academic performance in U.S. Military Training and Education Programs. Mind Brain Educ. 2008;2(1):29–33.

    Article  Google Scholar 

  15. Andrews CH. The relationship between sleep regimen and performance in United States Navy recruits. Monterey, CA: Naval Postgraduate School; 2004.

    Book  Google Scholar 

  16. Miller DB. Sleep and predicted cognitive performance of new cadets during cadet basic training and the United States Military Academy. Monterey, CA: Naval Postgraduate School; 2005.

    Google Scholar 

  17. Miller NL, Matsangas P, Shattuck LG. Fatigue and its effect on performance in military environments. In: Hancock PA, Szalma JL, editors. Performance under stress. Burlington, VT: Ashgate Publications; 2008. p. 231–59.

    Google Scholar 

  18. Miller NL, Shattuck LG. Sleep patterns of young men and women enrolled at the United States Military Academy: results from year one of a four year longitudinal study. Sleep. 2005;28:837–41.

    Article  PubMed  Google Scholar 

  19. Wang G, Grone B, Colas D, Appelbaum L, Mourrain P. Synaptic plasticity in sleep: learning, homeostasis and disease. Trends Neurosci. 2011;34(9):452–63. doi:10.1016/j.tins.2011.07.005. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Van Someren EJ, Cirelli C, Dijk DJ, Van Cauter E, Schwartz S, Chee MW. Disrupted sleep: from molecules to cognition. J Neurosci. 2015;35(41):13889–95. doi:10.1523/JNEUROSCI.2592-15.2015. Review.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kreutzmann JC, Havekes R, Abel T, Meerlo P. Sleep deprivation and hippocampal vulnerability: changes in neuronal plasticity, neurogenesis and cognitive function. Neuroscience. 2015;309:173–90. doi:10.1016/j.neuroscience.2015.04.053. Review.

    Article  CAS  PubMed  Google Scholar 

  22. Ju YE, Lucey BP, Holtzman DM. Sleep and Alzheimer disease pathology--a bidirectional relationship. Nat Rev Neurol. 2014;10(2):115–9. doi:10.1038/nrneurol.2013.269. Review.

    Article  CAS  PubMed  Google Scholar 

  23. Cirelli C, Tononi G. Molecular neurobiology of sleep. Handb Clin Neurol. 2011;98:191–203. doi:10.1016/B978-0-444-52006-7.00012-5. Review.

    Article  PubMed  Google Scholar 

  24. Jan JE, Reiter RJ, Bax MC, Ribary U, Freeman RD, Wasdell MB. Long-term sleep disturbances in children: a cause of neuronal loss. Eur J Paediatr Neurol. 2010;14(5):380–90. doi:10.1016/j.ejpn.2010.05.001. Review.

    Article  PubMed  Google Scholar 

  25. Meerlo P, Sgoifo A, Suchecki D. Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med Rev. 2008;12(3):197–210. doi:10.1016/j.smrv.2007.07.007. Review.

    Article  PubMed  Google Scholar 

  26. Tobaldini E, Pecis M, Montano N. Effects of acute and chronic sleep deprivation on cardiovascular regulation. Arch Ital Biol. 2014;152(2–3):103–10. doi:10.12871/000298292014235. Review.

    CAS  PubMed  Google Scholar 

  27. Faraut B, Boudjeltia KZ, Vanhamme L, Kerkhofs M. Immune, inflammatory and cardiovascular consequences of sleep restriction and recovery. Sleep Med Rev. 2012;16(2):137–49. doi:10.1016/j.smrv.2011.05.001. Review.

    Article  PubMed  Google Scholar 

  28. Van Cauter E, Holmback U, Knutson K, Leproult R, Miller A, Nedeltcheva A, Pannain S, Penev P, Tasali E, Spiegel K. Impact of sleep and sleep loss on neuroendocrine and metabolic function. Horm Res. 2007;67(Suppl 1):2–9. Review.

    PubMed  Google Scholar 

  29. Palma JA, Urrestarazu E, Iriarte J. Sleep loss as risk factor for neurologic disorders: a review. Sleep Med. 2013;14(3):229–36. doi:10.1016/j.sleep.2012.11.019. Review.

    Article  PubMed  Google Scholar 

  30. Wright Jr KP, Drake AL, Frey DJ, Fleshner M, Desouza CA, Gronfier C, Czeisler CA. Influence of sleep deprivation and circadian misalignment on cortisol, inflammatory markers, and cytokine balance. Brain Behav Immun. 2015;47:24–34. doi:10.1016/j.bbi.2015.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schüssler P, Uhr M, Ising M, Weikel JC, Schmid DA, Held K, Mathias S, Steiger A. Nocturnal ghrelin, ACTH, GH and cortisol secretion after sleep deprivation in humans. Psychoneuroendocrinology. 2006;31(8):915–23.

    Article  PubMed  CAS  Google Scholar 

  32. Chapotot F, Buguet A, Gronfier C, Brandenberger G. Hypothalamo-pituitary-adrenal axis activity is related to the level of central arousal: effect of sleep deprivation on the association of high-frequency waking electroencephalogram with cortisol release. Neuroendocrinology. 2001;73(5):312–21.

    Article  CAS  PubMed  Google Scholar 

  33. Hipólide DC, Moreira KM, Barlow KB, Wilson AA, Nobrega JN, Tufik S. Distinct effects of sleep deprivation on binding to norepinephrine and serotonin transporters in rat brain. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29(2):297–303.

    Article  PubMed  CAS  Google Scholar 

  34. Blanco-Centurion CA, Salin-Pascual RJ. Extracellular serotonin levels in the medullary reticular formation during normal sleep and after REM sleep deprivation. Brain Res. 2001;923(1–2):128–36.

    Article  CAS  PubMed  Google Scholar 

  35. Wesemann W, Rotsch M, Schulz E, Zöfel P. Circadian rhythm of serotonin binding in rat brain – II. Influence of sleep deprivation and imipramine. Chronobiol Int. 1986;3(2):141–6.

    Article  CAS  PubMed  Google Scholar 

  36. Toru M, Mitsushio H, Mataga N, Takashima M, Arito H. Increased brain serotonin metabolism during rebound sleep in sleep-deprived rats. Pharmacol Biochem Behav. 1984;20(5):757–61.

    Article  CAS  PubMed  Google Scholar 

  37. Benedetti F, Colombo C. Sleep deprivation in mood disorders. Neuropsychobiology. 2011;64(3):141–51. doi:10.1159/000328947. Review.

    Article  PubMed  Google Scholar 

  38. Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Semin Neurol. 2005;25(1):117–29. Review.

    Article  PubMed  Google Scholar 

  39. McKenna BS, Eyler LT. Overlapping prefrontal systems involved in cognitive and emotional processing in euthymic bipolar disorder and following sleep deprivation: a review of functional neuroimaging studies. Clin Psychol Rev. 2012;32(7):650–63. doi:10.1016/j.cpr.2012.07.003. Review.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Banks S, Dinges DF. Behavioral and physiological consequences of sleep restriction. J Clin Sleep Med. 2007;3(5):519–28. Review.

    PubMed  PubMed Central  Google Scholar 

  41. Van Sweden B. Sleep and the temporal lobe. Acta Neurol Belg. 1996;96(1):19–30. Review.

    PubMed  Google Scholar 

  42. Sharma HS, Dey PK. Impairment of blood-brain barrier (BBB) in rat by immobilization stress: role of serotonin (5-HT). Indian J Physiol Pharmacol. 1981;25(2):111–22.

    CAS  PubMed  Google Scholar 

  43. Sharma HS, Dey PK. Role of 5-HT on increased permeability of blood-brain barrier under heat stress. Indian J Physiol Pharmacol. 1984;28(4):259–67.

    CAS  PubMed  Google Scholar 

  44. Sharma HS, Dey PK. Probable involvement of 5-hydroxytryptamine in increased permeability of blood-brain barrier under heat stress in young rats. Neuropharmacology. 1986;25(2):161–7.

    Article  CAS  PubMed  Google Scholar 

  45. Sharma HS, Cervós-Navarro J, Dey PK. Increased blood-brain barrier permeability following acute short-term swimming exercise in conscious normotensive young rats. Neurosci Res. 1991;10(3):211–21.

    Article  CAS  PubMed  Google Scholar 

  46. Sharma HS, Dey PK. Influence of long-term immobilization stress on regional blood-brain barrier permeability, cerebral blood flow and 5-HT level in conscious normotensive young rats. J Neurol Sci. 1986;72(1):61–76.

    Article  CAS  PubMed  Google Scholar 

  47. Sharma HS, Dey PK. Influence of long-term acute heat exposure on regional blood-brain barrier permeability, cerebral blood flow and 5-HT level in conscious normotensive young rats. Brain Res. 1987;424(1):153–62.

    Article  CAS  PubMed  Google Scholar 

  48. Sharma HS, Dey PK. EEG changes following increased blood-brain barrier permeability under long-term immobilization stress in young rats. Neurosci Res. 1988;5(3):224–39.

    Article  CAS  PubMed  Google Scholar 

  49. Sharma HS, Olsson Y, Dey PK. Changes in blood-brain barrier and cerebral blood flow following elevation of circulating serotonin level in anesthetized rats. Brain Res. 1990;517(1–2):215–23.

    Article  CAS  PubMed  Google Scholar 

  50. Sharma A, Muresanu DF, Lafuente JV, Patnaik R, Tian ZR, Buzoianu AD, Sharma HS. Sleep deprivation-induced blood-brain barrier breakdown and brain dysfunction are exacerbated by size-related exposure to Ag and Cu nanoparticles. Neuroprotective effects of a 5-HT3 receptor antagonist ondansetron. Mol Neurobiol. 2015;52(2):867–81. doi:10.1007/s12035-015-9236-9.

    Article  CAS  PubMed  Google Scholar 

  51. He J, Hsuchou H, He Y, Kastin AJ, Wang Y, Pan W. Sleep restriction impairs blood-brain barrier function. J Neurosci. 2014;34(44):14697–706. doi:10.1523/JNEUROSCI.2111-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gómez-González B, Hurtado-Alvarado G, Esqueda-León E, Santana-Miranda R, Rojas-Zamorano JÁ, Velázquez-Moctezuma J. REM sleep loss and recovery regulates blood-brain barrier function. Curr Neurovasc Res. 2013;10(3):197–207.

    Article  PubMed  CAS  Google Scholar 

  53. Youngblood BD, Smagin GN, Elkins PD, Ryan DH, Harris RB. The effects of paradoxical sleep deprivation and valine on spatial learning and brain 5-HT metabolism. Physiol Behav. 1999;67(5):643–9.

    Article  CAS  PubMed  Google Scholar 

  54. Tobaldini E, Costantino G, Solbiati M, Cogliati C, Kara T, Nobili L, Montano N. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases. Neurosci Biobehav Rev. 2017;74(Pt B):321–9. doi:10.1016/j.neubiorev.2016.07.004. Review.

    Article  PubMed  Google Scholar 

  55. Covassin N, Singh P. Sleep duration and cardiovascular disease risk: epidemiologic and experimental evidence. Sleep Med Clin. 2016;11(1):81–9. doi:10.1016/j.jsmc.2015.10.007. Review.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sauvet F, Florence G, Van Beers P, Drogou C, Lagrume C, Chaumes C, Ciret S, Leftheriotis G, Chennaoui M. Total sleep deprivation alters endothelial function in rats: a nonsympathetic mechanism. Sleep. 2014;37(3):465–73. doi:10.5665/sleep.3476.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wehrens SM, Hampton SM, Skene DJ. Heart rate variability and endothelial function after sleep deprivation and recovery sleep among male shift and non-shift workers. Scand J Work Environ Health. 2012;38(2):171–81. doi:10.5271/sjweh.3197.

    Article  PubMed  Google Scholar 

  58. Yang H, Durocher JJ, Larson RA, Dellavalla JP, Carter JR. Total sleep deprivation alters cardiovascular reactivity to acute stressors in humans. J Appl Physiol (1985). 2012;113(6):903–8. doi:10.1152/japplphysiol.00561.2012.

    Article  Google Scholar 

  59. Mullington JM, Haack M, Toth M, Serrador JM, Meier-Ewert HK. Cardiovascular, inflammatory, and metabolic consequences of sleep deprivation. Prog Cardiovasc Dis. 2009;51(4):294–302. doi:10.1016/j.pcad.2008.10.003. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Almeida FR, Perry JC, Futuro-Neto HA, Almeida VR, Sebastião RM, Andersen ML, Tufik S, Campos RR, Bergamaschi CT. Cardiovascular function alterations induced by acute paradoxical sleep deprivation in rats. Clin Exp Hypertens. 2014;36(8):567–71. doi:10.3109/10641963.2014.881843.

    Article  CAS  PubMed  Google Scholar 

  61. Franzen PL, Gianaros PJ, Marsland AL, Hall MH, Siegle GJ, Dahl RE, Buysse DJ. Cardiovascular reactivity to acute psychological stress following sleep deprivation. Psychosom Med. 2011;73(8):679–82. doi:10.1097/PSY.0b013e31822ff440.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sauvet F, Drogou C, Bougard C, Arnal PJ, Dispersyn G, Bourrilhon C, Rabat A, Van Beers P, Gomez-Merino D, Faraut B, Leger D, Chennaoui M. Vascular response to 1 week of sleep restriction in healthy subjects. A metabolic response? Int J Cardiol. 2015;190:246–55. doi:10.1016/j.ijcard.2015.04.119. Epub 2015 Apr 16.

    Article  PubMed  Google Scholar 

  63. Lai CT, Chen CY, Kuo TB, Chern CM, Yang CC. Sympathetic hyperactivity, sleep fragmentation, and wake-related blood pressure surge during late-light sleep in spontaneously hypertensive rats. Am J Hypertens. 2016;29(5):590–7. doi:10.1093/ajh/hpv154.

    Article  PubMed  Google Scholar 

  64. Cespuglio R, Amrouni D, Meiller A, Buguet A, Gautier-Sauvigné S. Nitric oxide in the regulation of the sleep-wake states. Sleep Med Rev. 2012;16(3):265–79. doi:10.1016/j.smrv.2012.01.006. Epub 2012 Mar 8.

    Article  PubMed  Google Scholar 

  65. Bowers Jr MB, Hartmann EL, Freedman DX. Sleep deprivation and brain acetylcholine. Science. 1966;153(3742):1416–7.

    Article  CAS  PubMed  Google Scholar 

  66. Roman V, Hagewoud R, Luiten PG, Meerlo P. Differential effects of chronic partial sleep deprivation and stress on serotonin-1A and muscarinic acetylcholine receptor sensitivity. J Sleep Res. 2006;15(4):386–94.

    Article  PubMed  Google Scholar 

  67. Dang-Vu TT, Zadra A, Labelle MA, Petit D, Soucy JP, Montplaisir J. Sleep deprivation reveals altered brain perfusion patterns in Somnambulism. PLoS One. 2015;10(8):e0133474. doi:10.1371/journal.pone.0133474.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Asplund CL, Chee MW. Time-on-task and sleep deprivation effects are evidenced in overlapping brain areas. Neuroimage. 2013;82:326–35. doi:10.1016/j.neuroimage.2013.05.119.

    Article  PubMed  Google Scholar 

  69. Sayk F, Teckentrup C, Becker C, Heutling D, Wellhöner P, Lehnert H, Dodt C. Effects of selective slow-wave sleep deprivation on nocturnal blood pressure dipping and daytime blood pressure regulation. Am J Physiol Regul Integr Comp Physiol. 2010;298(1):R191–7. doi:10.1152/ajpregu.00368.2009.

    Article  CAS  PubMed  Google Scholar 

  70. Pagani M, Pizzinelli P, Traon AP, Ferreri C, Beltrami S, Bareille MP, Costes-Salon MC, Béroud S, Blin O, Lucini D, Philip P. Hemodynamic, autonomic and baroreflex changes after one night sleep deprivation in healthy volunteers. Auton Neurosci. 2009;145(1–2):76–80. doi:10.1016/j.autneu.2008.10.009.

    Article  PubMed  Google Scholar 

  71. Robillard R, Lanfranchi PA, Prince F, Filipini D, Carrier J. Sleep deprivation increases blood pressure in healthy normotensive elderly and attenuates the blood pressure response to orthostatic challenge. Sleep. 2011;34(3):335–9.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chouchou F, Pichot V, Pépin JL, Tamisier R, Celle S, Maudoux D, Garcin A, Lévy P, Barthélémy JC, Roche F, PROOF Study Group. Sympathetic overactivity due to sleep fragmentation is associated with elevated diurnal systolic blood pressure in healthy elderly subjects: the PROOF-SYNAPSE study. Eur Heart J. 2013;34(28):2122–31. doi:10.1093/eurheartj/eht208. 2131a.

    Article  CAS  PubMed  Google Scholar 

  73. Chen WR, Liu HB, Sha Y, Shi Y, Wang H, Yin DW, Chen YD, Shi XM. Effects of Statin on Arrhythmia and heart rate variability in healthy persons with 48-hour sleep deprivation. J Am Heart Assoc. 2016;5(11):e003833. pii.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hunter A, Holdsworth DA, D'Arcy J, Bailey K, Casadei B. Hypertension in the military patient. J R Army Med Corps. 2015;161(3):200–5. doi:10.1136/jramc-2015-000506. Review.

    Article  PubMed  Google Scholar 

  75. McGraw LK, Turner BS, Stotts NA, Dracup KA. A review of cardiovascular risk factors in US military personnel. J Cardiovasc Nurs. 2008;23(4):338–44. doi:10.1097/01.JCN.0000317437.75081.e7. Review.

    Article  PubMed  Google Scholar 

  76. Johansson B, Li CL, Olsson Y, Klatzo I. The effect of acute arterial hypertension on the blood-brain barrier to protein tracers. Acta Neuropathol. 1970;16(2):117–24. No abstract available.

    Article  CAS  PubMed  Google Scholar 

  77. Johansson BB, Linder LE. The blood brain barrier in renal hypertensive rats. Clin Exp Hypertens. 1980;2(6):983–93.

    Article  CAS  PubMed  Google Scholar 

  78. Johansson BB. The cerebrovascular permeability to protein after bicuculline and amphetamine administration in spontaneously hypertensive rats. Evidence for increased resistance of pressure-induced blood-brain barrier dysfunction. Acta Neurol Scand. 1977;56(5):397–404.

    Article  CAS  PubMed  Google Scholar 

  79. Dey PK, Sharma HS, Rao KS. Effect of indomethacin (a prostaglandin synthetase inhibitor) on the permeability of blood-brain and blood-CSF barriers in rat. Indian J Physiol Pharmacol. 1980;24(1):25–36.

    CAS  PubMed  Google Scholar 

  80. Acosta-Peña E, Camacho-Abrego I, Melgarejo-Gutiérrez M, Flores G, Drucker-Colín R, García-García F. Sleep deprivation induces differential morphological changes in the hippocampus and prefrontal cortex in young and old rats. Synapse. 2015;69(1):15–25. doi:10.1002/syn.21779.

    Article  PubMed  CAS  Google Scholar 

  81. Carroll JE, Cole SW, Seeman TE, Breen EC, Witarama T, Arevalo JM, Ma J, Irwin MR. Partial sleep deprivation activates the DNA damage response (DDR) and the senescence-associated secretory phenotype (SASP) in aged adult humans. Brain Behav Immun. 2016;51:223–9. doi:10.1016/j.bbi.2015.08.024.

    Article  CAS  PubMed  Google Scholar 

  82. Liu C, Kong XZ, Liu X, Zhou R, Wu B. Long-term total sleep deprivation reduces thalamic gray matter volume in healthy men. Neuroreport. 2014;25(5):320–3. doi:10.1097/WNR.0000000000000091.

    PubMed  Google Scholar 

  83. Cirelli C. Cellular consequences of sleep deprivation in the brain. Sleep Med Rev. 2006;10(5):307–21. Review.

    Article  PubMed  Google Scholar 

  84. da Costa SA, Ribeiro S. Sleep deprivation and gene expression. Curr Top Behav Neurosci. 2015;25:65–90. doi:10.1007/7854_2014_360. Review.

    Article  Google Scholar 

  85. Elliott AS, Huber JD, O'Callaghan JP, Rosen CL, Miller DB. A review of sleep deprivation studies evaluating the brain transcriptome. Springerplus. 2014;3:728. doi:10.1186/2193-1801-3-728. Review.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Cirelli C. How sleep deprivation affects gene expression in the brain: a review of recent findings. J Appl Physiol (1985). 2002;92(1):394–400. Review.

    CAS  Google Scholar 

  87. Archer SN, Oster H. How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome. J Sleep Res. 2015;24(5):476–93. doi:10.1111/jsr.12307. Review.

    Article  PubMed  Google Scholar 

  88. Cirelli C, Tononi G. On the functional significance of c-fos induction during the sleep-waking cycle. Sleep. 2000;23(4):453–69. Review.

    CAS  PubMed  Google Scholar 

  89. Cirelli C, Tononi G. Gene expression in the brain across the sleep-waking cycle. Brain Res. 2000;885(2):303–21.

    Article  CAS  PubMed  Google Scholar 

  90. Cirelli C, Tononi G. Differential expression of plasticity-related genes in waking and sleep and their regulation by the noradrenergic system. J Neurosci. 2000;20(24):9187–94.

    CAS  PubMed  Google Scholar 

  91. Semba K, Pastorius J, Wilkinson M, Rusak B. Sleep deprivation-induced c-fos and junB expression in the rat brain: effects of duration and timing. Behav Brain Res. 2001;120(1):75–86.

    Article  CAS  PubMed  Google Scholar 

  92. Gong H, McGinty D, Guzman-Marin R, Chew KT, Stewart D, Szymusiak R. Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation. J Physiol. 2004;556(Pt 3):935–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. McKenna JT, Cordeira JW, Jeffrey BA, Ward CP, Winston S, McCarley RW, Strecker RE. c-Fos protein expression is increased in cholinergic neurons of the rodent basal forebrain during spontaneous and induced wakefulness. Brain Res Bull. 2009;80(6):382–8. doi:10.1016/j.brainresbull.2009.08.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dentico D, Amici R, Baracchi F, Cerri M, Del Sindaco E, Luppi M, Martelli D, Perez E, Zamboni G. c-Fos expression in preoptic nuclei as a marker of sleep rebound in the rat. Eur J Neurosci. 2009;30(4):651–61. doi:10.1111/j.1460-9568.2009.06848.x.

    Article  PubMed  Google Scholar 

  95. Terao A, Wisor JP, Peyron C, Apte-Deshpande A, Wurts SW, Edgar DM, Kilduff TS. Gene expression in the rat brain during sleep deprivation and recovery sleep: an Affymetrix GeneChip study. Neuroscience. 2006;137(2):593–605.

    Article  CAS  PubMed  Google Scholar 

  96. Terao A, Greco MA, Davis RW, Heller HC, Kilduff TS. Region-specific changes in immediate early gene expression in response to sleep deprivation and recovery sleep in the mouse brain. Neuroscience. 2003;120(4):1115–24.

    Article  CAS  PubMed  Google Scholar 

  97. Frank MG, Morrissette R, Heller HC. Effects of sleep deprivation in neonatal rats. Am J Physiol. 1998;275(1 Pt 2):R148–57.

    CAS  PubMed  Google Scholar 

  98. Thompson CL, Wisor JP, Lee CK, Pathak SD, Gerashchenko D, Smith KA, Fischer SR, Kuan CL, Sunkin SM, Ng LL, Lau C, Hawrylycz M, Jones AR, Kilduff TS, Lein ES. Molecular and anatomical signatures of sleep deprivation in the mouse brain. Front Neurosci. 2010;4:165. doi:10.3389/fnins.2010.00165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Taishi P, Sanchez C, Wang Y, Fang J, Harding JW, Krueger JM. Conditions that affect sleep alter the expression of molecules associated with synaptic plasticity. Am J Physiol Regul Integr Comp Physiol. 2001;281(3):R839–45.

    CAS  PubMed  Google Scholar 

  100. Bramham CR, Worley PF, Moore MJ, Guzowski JF. The immediate early gene arc/arg3.1: regulation, mechanisms, and function. J Neurosci. 2008;28(46):11760–7. doi:10.1523/JNEUROSCI.3864-08.2008. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shepherd JD, Bear MF. New views of Arc, a master regulator of synaptic plasticity. Nat Neurosci. 2011;14(3):279–84. doi:10.1038/nn.2708. Review.

    Article  CAS  PubMed  Google Scholar 

  102. Ribeiro S, Mello CV, Velho T, Gardner TJ, Jarvis ED, Pavlides C. Induction of hippocampal long-term potentiation during waking leads to increased extrahippocampal zif-268 expression during ensuing rapid-eye-movement sleep. J Neurosci. 2002;22(24):10914–23.

    CAS  PubMed  Google Scholar 

  103. Cartwright RD. The role of sleep in changing our minds: a psychologist's discussion of papers on memory reactivation and consolidation in sleep. Learn Mem. 2004;11(6):660–3. Review.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ribeiro S, Shi X, Engelhard M, Zhou Y, Zhang H, Gervasoni D, Lin SC, Wada K, Lemos NA, Nicolelis MA. Novel experience induces persistent sleep-dependent plasticity in the cortex but not in the hippocampus. Front Neurosci. 2007;1(1):43–55. doi:10.3389/neuro.01.1.1.003.2007.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wang H, Liu Y, Briesemann M, Yan J. Computational analysis of gene regulation in animal sleep deprivation. Physiol Genomics. 2010;42(3):427–36. doi:10.1152/physiolgenomics.00205.2009. Epub 2010 May 25.

    Article  CAS  PubMed  Google Scholar 

  106. Wisor JP, Morairty SR, Huynh NT, Steininger TL, Kilduff TS. Gene expression in the rat cerebral cortex: comparison of recovery sleep and hypnotic-induced sleep. Neuroscience. 2006;141(1):371–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kripke DF, Kline LE, Nievergelt CM, Murray SS, Shadan FF, Dawson A, Poceta JS, Cronin J, Jamil SM, Tranah GJ, Loving RT, Grizas AP, Hahn EK. Genetic variants associated with sleep disorders. Sleep Med. 2015;16(2):217–24. doi:10.1016/j.sleep.2014.11.003.

    Article  PubMed  Google Scholar 

  108. Naidoo N, Ferber M, Galante RJ, McShane B, JH H, Zimmerman J, Maislin G, Cater J, Wyner A, Worley P, Pack AI. Role of Homer proteins in the maintenance of sleep-wake states. PLoS One. 2012;7(4):e35174. doi:10.1371/journal.pone.0035174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Maret S, Dorsaz S, Gurcel L, Pradervand S, Petit B, Pfister C, Hagenbuchle O, O'Hara BF, Franken P, Tafti M. Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci U S A. 2007;104(50):20090–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mackiewicz M, Paigen B, Naidoo N, Pack AI. Analysis of the QTL for sleep homeostasis in mice: Homer1a is a likely candidate. Physiol Genomics. 2008;33(1):91–9. doi:10.1152/physiolgenomics.00189.2007.

    Article  CAS  PubMed  Google Scholar 

  111. Conti B, Maier R, Barr AM, Morale MC, Lu X, Sanna PP, Bilbe G, Hoyer D, Bartfai T. Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine. Mol Psychiatry. 2007;12(2):167–89.

    Article  CAS  PubMed  Google Scholar 

  112. Porkka-Heiskanen T. Gene expression during sleep, wakefulness and sleep deprivation. Front Biosci. 2003;8:s421–37. Review.

    Article  CAS  PubMed  Google Scholar 

  113. Kilduff TS, Lein ES, de la Iglesia H, Sakurai T, Fu YH, Shaw P. New developments in sleep research: molecular genetics, gene expression, and systems neurobiology. J Neurosci. 2008;28(46):11814–8. doi:10.1523/JNEUROSCI.3768-08.2008. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Toppila J, Porkka-Heiskanen T. Transcriptional activity in the brain during sleep deprivation. Ann Med. 1999;31(2):146–51. Review.

    Article  CAS  PubMed  Google Scholar 

  115. Naidoo N. Cellular stress/the unfolded protein response: relevance to sleep and sleep disorders. Sleep Med Rev. 2009;13(3):195–204. doi:10.1016/j.smrv.2009.01.001. Review.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Rachalski A, Freyburger M, Mongrain V. Contribution of transcriptional and translational mechanisms to the recovery aspect of sleep regulation. Ann Med. 2014;46(2):62–72. doi:10.3109/07853890.2013.866439. Review.

    Article  CAS  PubMed  Google Scholar 

  117. Schmitt K, Holsboer-Trachsler E, Eckert A. BDNF in sleep, insomnia, and sleep deprivation. Ann Med. 2016;48(1–2):42–51. doi:10.3109/07853890.2015.1131327. Review.

    Article  CAS  PubMed  Google Scholar 

  118. Hsu JC, Lee YS, Chang CN, Chuang HL, Ling EA, Lan CT. Sleep deprivation inhibits expression of NADPH-d and NOS while activating microglia and astroglia in the rat hippocampus. Cells Tissues Organs. 2003;173(4):242–54.

    Article  CAS  PubMed  Google Scholar 

  119. Hui L, Hua F, Diandong H, Hong Y. Effects of sleep and sleep deprivation on immunoglobulins and complement in humans. Brain Behav Immun. 2007;21(3):308–10.

    Article  PubMed  CAS  Google Scholar 

  120. Zafra F, Lindholm D, Castrén E, Hartikka J, Thoenen H. Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. J Neurosci. 1992;12(12):4793–9.

    CAS  PubMed  Google Scholar 

  121. Juric DM, Miklic S, Carman-Krzan M. Monoaminergic neuronal activity up-regulates BDNF synthesis in cultured neonatal rat astrocytes. Brain Res. 2006;1108(1):54–62.

    Article  CAS  PubMed  Google Scholar 

  122. Juric DM, Loncar D, Carman-Krzan M. Noradrenergic stimulation of BDNF synthesis in astrocytes: mediation via alpha1- and beta1/beta2-adrenergic receptors. Neurochem Int. 2008;52(1–2):297–306.

    Article  CAS  PubMed  Google Scholar 

  123. Hofer M, Pagliusi SR, Hohn A, Leibrock J, Barde YA. Reginal distribution of brain-derived neurotrophic factor messenger-RNA in the adult-mouse brain. EMBO J. 1990;9:2459–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S. Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci. 1997;17:2295–313.

    CAS  PubMed  Google Scholar 

  125. Alzoubi KH, Khabour OF, Salah HA, Abu Rashid BE. The combined effect of sleep deprivation and Western diet on spatial learning and memory: role of BDNF and oxidative stress. J Mol Neurosci. 2013;50(1):124–33. doi:10.1007/s12031-012-9881-7.

    Article  CAS  PubMed  Google Scholar 

  126. Wallingford JK, Deurveilher S, Currie RW, Fawcett JP, Semba K. Increases in mature brain-derived neurotrophic factor protein in the frontal cortex and basal forebrain during chronic sleep restriction in rats: possible role in initiating allostatic adaptation. Neuroscience. 2014;277:174–83. doi:10.1016/j.neuroscience.2014.06.067.

    Article  CAS  PubMed  Google Scholar 

  127. Lipsky RH, Marini AM. Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Ann N Y Acad Sci. 2007;1122:130–43. Review.

    Article  CAS  PubMed  Google Scholar 

  128. Estrada JA, Contreras I, Pliego-Rivero FB, Otero GA. Molecular mechanisms of cognitive impairment in iron deficiency: alterations in brain-derived neurotrophic factor and insulin-like growth factor expression and function in the central nervous system. Nutr Neurosci. 2014;17(5):193–206. doi:10.1179/1476830513Y.0000000084. Review.

    Article  CAS  PubMed  Google Scholar 

  129. Belrose JC, Masoudi R, Michalski B, Fahnestock M. Increased pro-nerve growth factor and decreased brain-derived neurotrophic factor in non-Alzheimer's disease tauopathies. Neurobiol Aging. 2014;35(4):926–33. doi:10.1016/j.neurobiolaging.2013.08.029.

    Article  CAS  PubMed  Google Scholar 

  130. Begni V, Riva MA, Cattaneo A. Cellular and molecular mechanisms of the brain-derived neurotrophic factor in physiological and pathological conditions. Clin Sci (Lond). 2017;131(2):123–38. doi:10.1042/CS20160009. Review.

    Article  CAS  Google Scholar 

  131. Martinowich K, Schloesser RJ, Jimenez DV, Weinberger DR, Lu B. Activity-dependent brain-derived neurotrophic factor expression regulates cortistatin-interneurons and sleep behavior. Mol Brain. 2011;4:11. doi:10.1186/1756-6606-4-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Suzuki G, Tokuno S, Nibuya M, Ishida T, Yamamoto T, Mukai Y, Mitani K, Tsumatori G, Scott D, Shimizu K. Decreased plasma brain-derived neurotrophic factor and vascular endothelial growth factor concentrations during military training. PLoS One. 2014;9(2):e89455. doi:10.1371/journal.pone.0089455.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Zielinski MR, Kim Y, Karpova SA, McCarley RW, Strecker RE, Gerashchenko D. Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression. Neurosci Lett. 2014;580:27–31. doi:10.1016/j.neulet.2014.07.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hairston IS, Peyron C, Denning DP, Ruby NF, Flores J, Sapolsky RM, Heller HC, O'Hara BF. Sleep deprivation effects on growth factor expression in neonatal rats: a potential role for BDNF in the mediation of delta power. J Neurophysiol. 2004;91(4):1586–95.

    Article  CAS  PubMed  Google Scholar 

  135. Brandt JA, Churchill L, Guan Z, Fang J, Chen L, Krueger JM. Sleep deprivation but not a whisker trim increases nerve growth factor within barrel cortical neurons. Brain Res. 2001;898(1):105–12.

    Article  CAS  PubMed  Google Scholar 

  136. Hamatake M, Miyazaki N, Sudo K, Matsuda M, Sadakata T, Furuya A, Ichisaka S, Hata Y, Nakagawa C, Nagata K, Furuichi T, Katoh-Semba R. Phase advance of the light-dark cycle perturbs diurnal rhythms of brain-derived neurotrophic factor and neurotrophin-3 protein levels, which reduces synaptophysin-positive presynaptic terminals in the cortex of juvenile rats. J Biol Chem. 2011;286(24):21478–87. doi:10.1074/jbc.M110.195859. Epub 2011 Apr 28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nedeltcheva AV, Scheer FA. Metabolic effects of sleep disruption, links to obesity and diabetes. Curr Opin Endocrinol Diabetes Obes. 2014;21(4):293–8. doi:10.1097/MED.0000000000000082. Review.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Davies SK, Ang JE, Revell VL, Holmes B, Mann A, Robertson FP, Cui N, Middleton B, Ackermann K, Kayser M, Thumser AE, Raynaud FI, Skene DJ. Effect of sleep deprivation on the human metabolome. Proc Natl Acad Sci U S A. 2014;111(29):10761–6. doi:10.1073/pnas.1402663111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Feng L, Wu HW, Song GQ, Lu C, Li YH, Qu LN, Chen SG, Liu XM, Chang Q. Chronical sleep interruption-induced cognitive decline assessed by a metabolomics method. Behav Brain Res. 2016;302:60–8. doi:10.1016/j.bbr.2015.12.039.

    Article  CAS  PubMed  Google Scholar 

  140. Gao J, Zhang JX, Xu TL. Modulation of serotonergic projection from dorsal raphe nucleus to basolateral amygdala on sleep-waking cycle of rats. Brain Res. 2002;945(1):60–70.

    Article  CAS  PubMed  Google Scholar 

  141. Park SP, Lopez-Rodriguez F, Wilson CL, Maidment N, Matsumoto Y, Engel Jr J. In vivo microdialysis measures of extracellular serotonin in the rat hippocampus during sleep-wakefulness. Brain Res. 1999;833(2):291–6.

    Article  CAS  PubMed  Google Scholar 

  142. Monti JM. Serotonin control of sleep-wake behavior. Sleep Med Rev. 2011;15(4):269–81. doi:10.1016/j.smrv.2010.11.003. Review.

    Article  PubMed  Google Scholar 

  143. Jakubovski E, Varigonda AL, Freemantle N, Taylor MJ, Bloch MH. Systematic review and meta-analysis: dose-response relationship of selective serotonin reuptake inhibitors in major depressive disorder. Am J Psychiatry. 2016;173(2):174–83. doi:10.1176/appi.ajp.2015.15030331. Review.

    Article  PubMed  Google Scholar 

  144. Mohammed HS, Aboul Ezz HS, Khadrawy YA, Noor NA. Neurochemical and electrophysiological changes induced by paradoxical sleep deprivation in rats. Behav Brain Res. 2011;225(1):39–46. doi:10.1016/j.bbr.2011.06.018.

    Article  CAS  PubMed  Google Scholar 

  145. Bianchi MT, Macdonald RL. Neurosteroids shift partial agonist activation of GABA(A) receptor channels from low- to high-efficacy gating patterns. J Neurosci. 2003;23(34):10934–43.

    CAS  PubMed  Google Scholar 

  146. Zeitzer JM, Duffy JF, Lockley SW, Dijk DJ, Czeisler CA. Plasma melatonin rhythms in young and older humans during sleep, sleep deprivation, and wake. Sleep. 2007;30(11):1437–43.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Wheler GH, Weller JL, Klein DC. Taurine: stimulation of pineal N-acetyltransferase activity and melatonin production via a beta-adrenergic mechanism. Brain Res. 1979;166(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  148. Wilder-Smith A, Mustafa FB, Earnest A, Gen L, Macary PA. Impact of partial sleep deprivation on immune markers. Sleep Med. 2013;14(10):1031–4. doi:10.1016/j.sleep.2013.07.001.

    Article  CAS  PubMed  Google Scholar 

  149. Aguirre CC. Sleep deprivation: a mind-body approach. Curr Opin Pulm Med. 2016;22(6):583–8. doi:10.1097/MCP.0000000000000323.

    Article  PubMed  Google Scholar 

  150. Irwin M. Effects of sleep and sleep loss on immunity and cytokines. Brain Behav Immun. 2002;16(5):503–12. Review.

    Article  CAS  PubMed  Google Scholar 

  151. Irwin MR, Olmstead R, Carroll JE. Sleep disturbance, sleep duration, and inflammation: a systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol Psychiatry. 2016;80(1):40–52. doi:10.1016/j.biopsych.2015.05.014.

    Article  PubMed  Google Scholar 

  152. Chanana P, Kumar A. Possible involvement of nitric oxide modulatory mechanisms in the neuroprotective effect of Centella asiatica against sleep deprivation induced anxiety like behaviour, oxidative damage and neuroinflammation. Phytother Res. 2016;30(4):671–80. doi:10.1002/ptr.5582.

    Article  CAS  PubMed  Google Scholar 

  153. Chanana P, Kumar A. GABA-BZD receptor modulating mechanism of Panax quinquefolius against 72-h sleep deprivation induced anxiety like behavior: possible roles of oxidative stress, mitochondrial dysfunction and neuroinflammation. Front Neurosci. 2016;10:84. doi:10.3389/fnins.2016.00084.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Majde JA, Krueger JM. Links between the innate immune system and sleep. J Allergy Clin Immunol. 2005;116(6):1188–98. Review.

    Article  CAS  PubMed  Google Scholar 

  155. Vaara J, Kyröläinen H, Koivu M, Tulppo M, Finni T. The effect of 60-h sleep deprivation on cardiovascular regulation and body temperature. Eur J Appl Physiol. 2009;105(3):439–44. doi:10.1007/s00421-008-0921-5.

    Article  PubMed  Google Scholar 

  156. Lapshina KV, Ekimova IV. Effects of sleep deprivation on measures of the febrile reaction and the recovery of somatovisceral functions and sleep in endotoxemia. Neurosci Behav Physiol. 2010;40(4):381–8. doi:10.1007/s11055-010-9268-6.

    Article  CAS  PubMed  Google Scholar 

  157. Sauvet F, Bourrilhon C, Besnard Y, Alonso A, Cottet-Emard JM, Savourey G, Launay JC. Effects of 29-h total sleep deprivation on local cold tolerance in humans. Eur J Appl Physiol. 2012;112(9):3239–50. doi:10.1007/s00421-011-2297-1.

    Article  PubMed  Google Scholar 

  158. Epstein Y, Druyan A, Heled Y. Heat injury prevention--a military perspective. J Strength Cond Res. 2012;26(Suppl 2):S82–6. doi:10.1519/JSC.0b013e31825cec4a. Review.

    Article  PubMed  Google Scholar 

  159. Yokota M, Berglund LG, Xu X. Thermoregulatory modeling use and application in the military workforce. Appl Ergon. 2014;45(3):663–70. doi:10.1016/j.apergo.2013.09.010.

    Article  PubMed  Google Scholar 

  160. Goforth CW, Kazman JB. Exertional heat stroke in navy and marine personnel: a hot topic. Crit Care Nurse. 2015;35(1):52–9. doi:10.4037/ccn2015257.

    Article  PubMed  Google Scholar 

  161. Stacey M, Woods D, Ross D, Wilson D. Heat illness in military populations: asking the right questions for research. J R Army Med Corps. 2014;160(2):121–4. doi:10.1136/jramc-2013-000204. Review.

    Article  PubMed  Google Scholar 

  162. Pryor RR, Bennett BL, O'Connor FG, Young JM, Asplund CA. Medical evaluation for exposure extremes: heat. Wilderness Environ Med. 2015;26(4 Suppl):S69–75. doi:10.1016/j.wem.2015.09.009. Review.

    Article  PubMed  Google Scholar 

  163. Cornali C, Franzoni S, Riello R, Ghianda D, Frisoni GB, Trabucchi M. Effect of high climate temperature on the behavioral and psychological symptoms of dementia. J Am Med Dir Assoc. 2004;5(3):161–6.

    Article  PubMed  Google Scholar 

  164. Varghese GM, John G, Thomas K, Abraham OC, Mathai D. Predictors of multi-organ dysfunction in heatstroke. Emerg Med J. 2005;22(3):185–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Xu J, Zhu Y, Fu C, Sun J, Li H, Yang X, Li W, Qin W, Shi D, Tian J. Frontal metabolic activity contributes to individual differences in vulnerability toward total sleep deprivation-induced changes in cognitive function. J Sleep Res. 2016;25(2):169–80. doi:10.1111/jsr.12354.

    Article  PubMed  Google Scholar 

  166. Maggio M, Colizzi E, Fisichella A, Valenti G, Ceresini G, Dall'Aglio E, Ruffini L, Lauretani F, Parrino L, Ceda GP. Stress hormones, sleep deprivation and cognition in older adults. Maturitas. 2013;76(1):22–44. doi:10.1016/j.maturitas.2013.06.006. Review.

    Article  CAS  PubMed  Google Scholar 

  167. Killgore WD. Effects of sleep deprivation on cognition. Prog Brain Res. 2010;185:105–29. doi:10.1016/B978-0-444-53702-7.00007-5. Review.

    Article  PubMed  Google Scholar 

  168. Kwon KJ, Lee EJ, Kim MK, Jeon SJ, Choi YY, Shin CY, Han SH. The potential role of melatonin on sleep deprivation-induced cognitive impairments: implication of FMRP on cognitive function. Neuroscience. 2015;301:403–14. doi:10.1016/j.neuroscience.2015.05.079.

    Article  CAS  PubMed  Google Scholar 

  169. Cassé-Perrot C, Lanteaume L, Deguil J, Bordet R, Auffret A, Otten L, Blin O, Bartrés-Faz D, Micallef J. Neurobehavioral and cognitive changes induced by sleep deprivation in healthy volunteers. CNS Neurol Disord Drug Targets. 2016;15(7):777–801. Review.

    Article  PubMed  CAS  Google Scholar 

  170. Kaplan J, Ventura J, Bakshi A, Pierobon A, Lackner JR, DiZio P. The influence of sleep deprivation and oscillating motion on sleepiness, motion sickness, and cognitive and motor performance. Auton Neurosci. 2017;202:86–96. doi:10.1016/j.autneu.2016.08.019. Review.

    Article  PubMed  Google Scholar 

  171. Patanaik A, Kwoh CK, Chua EC, Gooley JJ, Chee MW. Classifying vulnerability to sleep deprivation using baseline measures of psychomotor vigilance. Sleep. 2015;38(5):723–34. doi:10.5665/sleep.4664.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Satterfield BC, Wisor JP, Field SA, Schmidt MA, Van Dongen HP. NFα G308A polymorphism is associated with resilience to sleep deprivation-induced psychomotor vigilance performance impairment in healthy young adults. Brain Behav Immun. 2015;47:66–74. doi:10.1016/j.bbi.2014.12.009.

    Article  CAS  PubMed  Google Scholar 

  173. Oonk M, Davis CJ, Krueger JM, Wisor JP, Van Dongen HP. Sleep deprivation and time-on-task performance decrement in the rat psychomotor vigilance task. Sleep. 2015;38(3):445–51. doi:10.5665/sleep.4506.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Jung CM, Ronda JM, Czeisler CA, Wright Jr KP. Comparison of sustained attention assessed by auditory and visual psychomotor vigilance tasks prior to and during sleep deprivation. J Sleep Res. 2011;20(2):348–55. doi:10.1111/j.1365-2869.2010.00877.x.

    Article  PubMed  Google Scholar 

  175. Eickhoff E, Yung K, Davis DL, Bishop F, Klam WP, Doan AP. Excessive video game use, sleep deprivation, and poor work performance among U.S. Marines treated in a Military Mental Health Clinic: a case series. Mil Med. 2015;180(7):e839–43. doi:10.7205/MILMED-D-14-00597.

    Article  PubMed  Google Scholar 

  176. Heaton KJ, Maule AL, Maruta J, Kryskow EM, Ghajar J. Attention and visual tracking degradation during acute sleep deprivation in a military sample. Aviat Space Environ Med. 2014;85(5):497–503.

    Article  PubMed  Google Scholar 

  177. Whitney P, Hinson JM, Jackson ML, Van Dongen HP. Feedback blunting: total sleep deprivation impairs decision making that requires updating based on feedback. Sleep. 2015;38(5):745–54. doi:10.5665/sleep.4668.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Havekes R, Vecsey CG, Abel T. The impact of sleep deprivation on neuronal and glial signaling pathways important for memory and synaptic plasticity. Cell Signal. 2012;24(6):1251–60. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Massart R, Freyburger M, Suderman M, Paquet J, El Helou J, Belanger-Nelson E, Rachalski A, Koumar OC, Carrier J, Szyf M, Mongrain V. The genome-wide landscape of DNA methylation and hydroxymethylation in response to sleep deprivation impacts on synaptic plasticity genes. Transl Psychiatry. 2014;4:e347. doi:10.1038/tp.2013.120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wolf E, Kuhn M, Normann C, Mainberger F, Maier JG, Maywald S, Bredl A, Klöppel S, Biber K, van Calker D, Riemann D, Sterr A, Nissen C. Synaptic plasticity model of therapeutic sleep deprivation in major depression. Sleep Med Rev. 2016;30:53–62. doi:10.1016/j.smrv.2015.11.003. Review.

    Article  PubMed  Google Scholar 

  181. Prince TM, Wimmer M, Choi J, Havekes R, Aton S, Abel T. Sleep deprivation during a specific 3-hour time window post-training impairs hippocampal synaptic plasticity and memory. Neurobiol Learn Mem. 2014;109:122–30. doi:10.1016/j.nlm.2013.11.021.

    Article  PubMed  Google Scholar 

  182. Basheer R, Brown R, Ramesh V, Begum S, McCarley RW. Sleep deprivation-induced protein changes in basal forebrain: implications for synaptic plasticity. J Neurosci Res. 2005;82(5):650–8.

    Article  CAS  PubMed  Google Scholar 

  183. Kopp C, Longordo F, Nicholson JR, Lüthi A. Insufficient sleep reversibly alters bidirectional synaptic plasticity and NMDA receptor function. J Neurosci. 2006;26(48):12456–65.

    Article  CAS  PubMed  Google Scholar 

  184. Longordo F, Kopp C, Mishina M, Luján R, Lüthi A. NR2A at CA1 synapses is obligatory for the susceptibility of hippocampal plasticity to sleep loss. J Neurosci. 2009;29(28):9026–41. doi:10.1523/JNEUROSCI.1215-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. McDermott CM, Hardy MN, Bazan NG, Magee JC. Sleep deprivation-induced alterations in excitatory synaptic transmission in the CA1 region of the rat hippocampus. J Physiol. 2006;570(Pt 3):553–65.

    Article  CAS  PubMed  Google Scholar 

  186. Guzman-Marin R, Ying Z, Suntsova N, Methippara M, Bashir T, Szymusiak R, Gomez-Pinilla F, McGinty D. Suppression of hippocampal plasticity-related gene expression by sleep deprivation in rats. J Physiol. 2006;575(Pt 3):807–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Vecsey CG, Baillie GS, Jaganath D, Havekes R, Daniels A, Wimmer M, Huang T, Brown KM, Li XY, Descalzi G, Kim SS, Chen T, Shang YZ, Zhuo M, Houslay MD, Abel T. Sleep deprivation impairs cAMP signalling in the hippocampus. Nature. 2009;461(7267):1122–5. doi:10.1038/nature08488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. El Helou J, Bélanger-Nelson E, Freyburger M, Dorsaz S, Curie T, La Spada F, Gaudreault PO, Beaumont É, Pouliot P, Lesage F, Frank MG, Franken P, Mongrain V. Neuroligin-1 links neuronal activity to sleep-wake regulation. Proc Natl Acad Sci U S A. 2013;110(24):9974–9. doi:10.1073/pnas.1221381110.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Abel T, Havekes R, Saletin JM, Walker MP. Sleep, plasticity and memory from molecules to whole-brain networks. Curr Biol. 2013;23(17):R774–88. doi:10.1016/j.cub.2013.07.025. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ognjanovski N, Maruyama D, Lashner N, Zochowski M, Aton SJ. CA1 hippocampal network activity changes during sleep-dependent memory consolidation. Front Syst Neurosci. 2014;8:61. doi:10.3389/fnsys.2014.00061.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Thomas M, Sing H, Belenky G, Holcomb H, Mayberg H, Dannals R, Wagner H, Thorne D, Popp K, Rowland L, Welsh A, Balwinski S, Redmond D. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J Sleep Res. 2000;9(4):335–52.

    Article  CAS  PubMed  Google Scholar 

  192. Zhao Q, Peng C, Wu X, Chen Y, Wang C, You Z. Maternal sleep deprivation inhibits hippocampal neurogenesis associated with inflammatory response in young offspring rats. Neurobiol Dis. 2014;68:57–65. doi:10.1016/j.nbd.2014.04.008.

    Article  CAS  PubMed  Google Scholar 

  193. Cheng O, Li R, Zhao L, Yu L, Yang B, Wang J, Chen B, Yang J. Short-term sleep deprivation stimulates hippocampal neurogenesis in rats following global cerebral ischemia/reperfusion. PLoS One. 2015;10(6):e0125877. doi:10.1371/journal.pone.0125877.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Mueller AD, Meerlo P, McGinty D, Mistlberger RE. Sleep and adult neurogenesis: implications for cognition and mood. Curr Top Behav Neurosci. 2015;25:151–81. doi:10.1007/7854_2013_251. Review.

    Article  PubMed  Google Scholar 

  195. Brianza-Padilla M, Bonilla-Jaime H, Almanza-Pérez JC, López-López AL, Sánchez-Muñoz F, Vázquez-Palacios G. Effects of different periods of paradoxical sleep deprivation and sleep recovery on lipid and glucose metabolism and appetite hormones in rats. Appl Physiol Nutr Metab. 2016;41(3):235–43. doi:10.1139/apnm-2015-0337.

    Article  CAS  PubMed  Google Scholar 

  196. Reutrakul S, Van Cauter E. Interactions between sleep, circadian function, and glucose metabolism: implications for risk and severity of diabetes. Ann N Y Acad Sci. 2014;1311:151–73. doi:10.1111/nyas.12355. Review.

    Article  CAS  PubMed  Google Scholar 

  197. Petit JM, Burlet-Godinot S, Magistretti PJ, Allaman I. Glycogen metabolism and the homeostatic regulation of sleep. Metab Brain Dis. 2015;30(1):263–79. doi:10.1007/s11011-014-9629-x. Review.

    Article  CAS  PubMed  Google Scholar 

  198. Young L, Dungan J. Where in the brain is morality? Everywhere and maybe nowhere. Soc Neurosci. 2012;7(1):1–10. doi:10.1080/17470919.2011.569146. Review.

    Article  PubMed  Google Scholar 

  199. Fumagalli M, Priori A. Functional and clinical neuroanatomy of morality. Brain. 2012;135(Pt 7):2006–21. doi:10.1093/brain/awr334. Review.

    Article  PubMed  Google Scholar 

  200. Funk CM, Gazzaniga MS. The functional brain architecture of human morality. Curr Opin Neurobiol. 2009;19(6):678–81. doi:10.1016/j.conb.2009.09.011. Review.

    Article  CAS  PubMed  Google Scholar 

  201. Olsen OK, Pallesen S, Espevik R. The impact of partial sleep deprivation on military naval officers' ability to anticipate moral and tactical problems in a simulated maritime combat operation. Int Marit Health. 2013;64(2):61–5.

    PubMed  Google Scholar 

  202. Sandquist T, Raby M, Forsythe A, Carvalhais A. Work hours, sleep patterns and fatigue among merchant marine personnel. J Sleep Res. 1997;6:245–51.

    Article  Google Scholar 

  203. Killgore WDS, Kill DB, Day LM, Li C, Kamimori GH, Balkin TJ. The effects of 53 hours of sleep deprivation on moral judgment. Sleep. 2007;30:345–52.

    Article  PubMed  Google Scholar 

  204. Olsen OK, Pallesen S, Eid J. The impact of partial sleep deprivation on moral reasoning in military officers. Sleep. 2010;33:1086–90.

    Article  PubMed  PubMed Central  Google Scholar 

  205. May J, Kline P. Measuring the effects of upon cognitive abilities of sleep loss during continuous operations. Br J Psychol. 1987;78:433–55.

    Google Scholar 

  206. Miller NL, Shattuck LG, Matsangas P. Sleep and fatigue issues in continuous operations: a survey of U.S. army officers. Behav Sleep Med. 2011;9:53–65.

    Article  PubMed  Google Scholar 

  207. Youngblood BD, Zhou J, Smagin GN, Ryan DH, Harris RB. Sleep deprivation by the "flower pot" technique and spatial reference memory. Physiol Behav. 1997;61(2):249–56.

    Article  CAS  PubMed  Google Scholar 

  208. Mendelson WB, Guthrie RD, Frederick G, Wyatt RJ. The flower pot technique of rapid eye movement (REM) sleep deprivation. Pharmacol Biochem Behav. 1974;2(4):553–6.

    Article  CAS  PubMed  Google Scholar 

  209. Colavito V, Fabene PF, Grassi-Zucconi G, Pifferi F, Lamberty Y, Bentivoglio M, Bertini G. Experimental sleep deprivation as a tool to test memory deficits in rodents. Front Syst Neurosci. 2013;7:106. doi:10.3389/fnsys.2013.00106.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Senthilvelan M, Ravindran R, Samson J, Devi RS. Serotonin turnover in discrete regions of young rat brain after 24 h REM sleep deprivation. Neurochem Res. 2006;31(1):81–4.

    Article  CAS  PubMed  Google Scholar 

  211. Farooqui SM, Brock JW, Zhou J. Changes in monoamines and their metabolite concentrations in REM sleep-deprived rat forebrain nuclei. Pharmacol Biochem Behav. 1996;54(2):385–91.

    Article  CAS  PubMed  Google Scholar 

  212. Sharma A, Muresanu DF, Patnaik R, Sharma HS. Blood-brain barrier breakdown and brain dysfunction following sleep deprivation are exacerbated by size-related nanoparticles. Cell Transplant. 2013:22(5):915.

    Google Scholar 

  213. Sharma HS, Westman J. The blood-spinal cord and brain barriers in health and disease. San Diego: Academic; 2004. p. 1–617. Release date: Nov. 9, 2003.

    Google Scholar 

  214. Sharma HS. Blood-brain and spinal cord barriers in stress. In: Sharma HS, Westman J, editors. The blood-spinal cord and brain barriers in health and disease. San Diego: Elsevier Academic Press; 2004. p. 231–98.

    Chapter  Google Scholar 

  215. Sharma HS. Blood–central nervous system barriers: the gateway to neurodegeneration, neuroprotection and neuroregeneration. In: Lajtha A, Banik N, Ray SK, editors. Handbook of neurochemistry and molecular neurobiology: brain and spinal cord trauma. Berlin: Springer Verlag; 2009. p. 363–457.

    Chapter  Google Scholar 

  216. Sharma HS, Sharma A. Breakdown of the blood-brain barrier in stress alters cognitive dysfunction and induces brain pathology: new perspectives for neuroprotective strategies. In: Ritsner MS, editor. Brain protection in schizophrenia, mood and cognitive disorders. New York: Springer Science + Business Media B.V; 2010. p. 243–304.

    Chapter  Google Scholar 

  217. Sharma HS. Pathophysiology of blood-brain barrier, brain edema and cell injury following hyperthermia: new role of heat shock protein, nitric oxide and carbon monoxide. An experimental study in the rat using light and electron microscopy. Acta Universitatis Upsaliensis. 1999;830:1–94.

    Google Scholar 

  218. Sharma HS (1982) Blood-brain barrier in stress. Ph.D. Thesis, Banaras Hindu University Press, Varanasi, India.

    Google Scholar 

  219. Sharma HS, Johanson CE. Blood-cerebrospinal fluid barrier in hyperthermia. Prog Brain Res. 2007;162:459–78. Review.

    Article  CAS  PubMed  Google Scholar 

  220. Sharma HS. Pathophysiology of blood-spinal cord barrier in traumatic injury and repair. Curr Pharm Des. 2005;11(11):1353–89. Review.

    Article  CAS  PubMed  Google Scholar 

  221. Sharma HS, Olsson Y, Persson S, Nyberg F. Trauma-induced opening of the the blood-spinal cord barrier is reduced by indomethacin, an inhibitor of prostaglandin biosynthesis. Experimental observations in the rat using [131I]-sodium, evans blue and lanthanum as tracers. Restor Neurol Neurosci. 1995;7(4):207–15. doi:10.3233/RNN-1994-7403.

    PubMed  Google Scholar 

  222. Sharma HS, Skaper SD, Sharma A. Editorial: (Thematic Issue) novel concepts on the blood-brain barrier and brain pathology. New therapeutic approaches. CNS Neurol Disord Drug Targets. 2016;15(9):1014–5.

    Article  CAS  PubMed  Google Scholar 

  223. Sharma HS, Olsson Y, Nyberg F, Dey PK. Prostaglandins modulate alterations of microvascular permeability, blood flow, edema and serotonin levels following spinal cord injury: an experimental study in the rat. Neuroscience. 1993;57(2):443–9.

    Article  CAS  PubMed  Google Scholar 

  224. Olsson Y, Sharma HS, Pettersson A, Cervos-Navarro J. Release of endogenous neurochemicals may increase vascular permeability, induce edema and influence cell changes in trauma to the spinal cord. Prog Brain Res. 1992;91:197–203.

    Article  CAS  PubMed  Google Scholar 

  225. Olsson Y, Sharma HS, Pettersson CA. Effects of p-chlorophenylalanine on microvascular permeability changes in spinal cord trauma. An experimental study in the rat using 131I-sodium and lanthanum tracers. Acta Neuropathol. 1990;79(6):595–603.

    Article  CAS  PubMed  Google Scholar 

  226. Pettersson CA, Sharma HS, Olsson Y. Vascular permeability of spinal nerve roots. A study in the rat with Evans blue and lanthanum as tracers. Acta Neuropathol. 1990;81(2):148–54.

    Article  CAS  PubMed  Google Scholar 

  227. Betz E. Cerebral blood flow: its measurement and regulation. Physiol Rev. 1972;52(3):595–630.

    CAS  PubMed  Google Scholar 

  228. Prough DS, Rogers AT. Physiology and pharmacology of cerebral blood flow and metabolism. Crit Care Clin. 1989;5(4):713–28. Review.

    CAS  PubMed  Google Scholar 

  229. MacKenzie ET, McCulloch J, O'Kean M, Pickard JD, Harper AM. Cerebral circulation and norepinephrine: relevance of the blood-brain barrier. Am J Physiol. 1976;231(2):483–8.

    CAS  PubMed  Google Scholar 

  230. Botteri M, Bandera E, Minelli C, Latronico N. Cerebral blood flow thresholds for cerebral ischemia in traumatic brain injury. A systematic review. Crit Care Med. 2008;36(11):3089–92. doi:10.1097/CCM.0b013e31818bd7df. Review.

    Article  PubMed  Google Scholar 

  231. Raichle ME. The pathophysiology of brain ischemia. Ann Neurol. 1983;13(1):2–10. Review.

    Article  CAS  PubMed  Google Scholar 

  232. Volk SA, Kaendler SH, Hertel A, Maul FD, Manoocheri R, Weber R, Georgi K, Pflug B, Hör G. Can response to partial sleep deprivation in depressed patients be predicted by regional changes of cerebral blood flow? Psychiatry Res. 1997;75(2):67–74.

    Article  CAS  PubMed  Google Scholar 

  233. Schei JL, Rector DM. Evoked electrical and cerebral vascular responses during sleep and following sleep deprivation. Prog Brain Res. 2011;193:233–44. doi:10.1016/B978-0-444-53839-0.00015-6.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Braun AR, Balkin TJ, Wesenten NJ, Carson RE, Varga M, Baldwin P, Selbie S, Belenky G, Herscovitch P. Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain. 1997;120(Pt 7):1173–97.

    Article  PubMed  Google Scholar 

  235. Volk S, Kaendler SH, Weber R, Georgi K, Maul F, Hertel A, Pflug B, Hör G. Evaluation of the effects of total sleep deprivation on cerebral blood flow using single photon emission computerized tomography. Acta Psychiatr Scand. 1992;86(6):478–83.

    Article  CAS  PubMed  Google Scholar 

  236. Sharma HS. Effect of captopril (a converting enzyme inhibitor) on blood-brain barrier permeability and cerebral blood flow in normotensive rats. Neuropharmacology. 1987;26(1):85–92.

    Article  CAS  PubMed  Google Scholar 

  237. Sharma HS, Nyberg F, Cervos-Navarro J, Dey PK. Histamine modulates heat stress-induced changes in blood-brain barrier permeability, cerebral blood flow, brain oedema and serotonin levels: an experimental study in conscious young rats. Neuroscience. 1992;50(2):445–54.

    Article  CAS  PubMed  Google Scholar 

  238. Sharma HS, Westman J, Nyberg F. Pathophysiology of brain edema and cell changes following hyperthermic brain injury. Prog Brain Res. 1998;115:351–412. Review.

    Article  CAS  PubMed  Google Scholar 

  239. Sharma HS, Muresanu DF, Lafuente JV, Nozari A, Patnaik R, Skaper SD, Sharma A. Pathophysiology of blood-brain barrier in brain injury in cold and hot environments: novel drug targets for neuroprotection. CNS Neurol Disord Drug Targets. 2016;15(9):1045–71.

    Article  CAS  PubMed  Google Scholar 

  240. Sharma HS, Cervós-Navarro J. Brain oedema and cellular changes induced by acute heat stress in young rats. Acta Neurochir Suppl (Wien). 1990;51:383–6.

    CAS  Google Scholar 

  241. Puglisi-Allegra S, Andolina D. Serotonin and stress coping. Behav Brain Res. 2015;277:58–67. doi:10.1016/j.bbr.2014.07.052. Review.

    Article  CAS  PubMed  Google Scholar 

  242. Mahar I, Bambico FR, Mechawar N, Nobrega JN. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev. 2014;38:173–92. doi:10.1016/j.neubiorev.2013.11.009. Review.

    Article  CAS  PubMed  Google Scholar 

  243. Firk C, Markus CR. Review: serotonin by stress interaction: a susceptibility factor for the development of depression? J Psychopharmacol. 2007;21(5):538–44. Review.

    Article  CAS  PubMed  Google Scholar 

  244. Klatzo I. Pathophysiological aspects of brain edema. Acta Neuropathol. 1987;72(3):236–9.

    Article  CAS  PubMed  Google Scholar 

  245. Zimmer C, Sampaolo S, Sharma HS, Cervós-Navarro J. Altered glial fibrillary acidic protein immunoreactivity in rat brain following chronic hypoxia. Neuroscience. 1991;40(2):353–61.

    Article  CAS  PubMed  Google Scholar 

  246. Sharma HS, Zimmer C, Westman J, Cervós-Navarro J. Acute systemic heat stress increases glial fibrillary acidic protein immunoreactivity in brain: experimental observations in conscious normotensive young rats. Neuroscience. 1992;48(4):889–901.

    Article  CAS  PubMed  Google Scholar 

  247. Sharma HS, Olsson Y. Cervós-Navarro J.p-Chlorophenylalanine, a serotonin synthesis inhibitor, reduces the response of glial fibrillary acidic protein induced by trauma to the spinal cord. An immunohistochemical investigation in the rat. Acta Neuropathol. 1993;86(5):422–7.

    Article  CAS  PubMed  Google Scholar 

  248. Sharma HS, Olsson Y, Cervós-Navarro J. Early perifocal cell changes and edema in traumatic injury of the spinal cord are reduced by indomethacin, an inhibitor of prostaglandin synthesis. Experimental study in the rat. Acta Neuropathol. 1993;85(2):145–53.

    Article  CAS  PubMed  Google Scholar 

  249. Kim JH, Kim JH, Cho YE, Baek MC, Jung JY, Lee MG, Jang IS, Lee HW, Suk K. Chronic sleep deprivation-induced proteome changes in astrocytes of the rat hypothalamus. J Proteome Res. 2014;13(9):4047–61. doi:10.1021/pr500431j.

    Article  CAS  PubMed  Google Scholar 

  250. Petit JM, Gyger J, Burlet-Godinot S, Fiumelli H, Martin JL, Magistretti PJ. Genes involved in the astrocyte-neuron lactate shuttle (ANLS) are specifically regulated in cortical astrocytes following sleep deprivation in mice. Sleep. 2013;36(10):1445–58. doi:10.5665/sleep.3034.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Glenn JC. Nanotechnology: future military environmental health considerations. Technol Forecast Soc Change. 2006;73(2):128–37.

    Article  Google Scholar 

  252. Sharma HS 2009. Nanoneuroscience and nanoneuropharmacology. In: Prog brain rese, vol 180, 1st edn. Elsevier Science: Amsterdam, pp. 1–264. 9780444534316, 9780080962245.

    Google Scholar 

  253. Sharma HS, Sharma A. Neurotoxicity of engineered nanoparticles from metals. CNS Neurol Disord Drug Targets. 2012;11(1):65–80. Review.

    Article  CAS  PubMed  Google Scholar 

  254. Sharma HS, Muresanu DF, Lafuente JV, Sjöquist PO, Patnaik R, Sharma A. Nanoparticles exacerbate both ubiquitin and heat shock protein expressions in spinal cord injury: neuroprotective effects of the proteasome inhibitor carfilzomib and the antioxidant compound H-290/51. Mol Neurobiol. 2015;52(2):882–98. doi:10.1007/s12035-015-9297-9.

    Article  CAS  PubMed  Google Scholar 

  255. Sharma A, Muresanu DF, Patnaik R, Sharma HS. Size- and age-dependent neurotoxicity of engineered metal nanoparticles in rats. Mol Neurobiol. 2013;48(2):386–96. doi:10.1007/s12035-013-8500-0.

    Article  CAS  PubMed  Google Scholar 

  256. Sharma HS, Muresanu DF, Patnaik R, Sharma A. Exacerbation of brain pathology after partial restraint in hypertensive rats following SiO2 nanoparticles exposure at high ambient temperature. Mol Neurobiol. 2013;48(2):368–79. doi:10.1007/s12035-013-8502-y.

    Article  CAS  PubMed  Google Scholar 

  257. Sharma HS, Patnaik R, Sharma A, Sjöquist PO, Lafuente JV. Silicon dioxide nanoparticles (SiO2, 40-50 nm) exacerbate pathophysiology of traumatic spinal cord injury and deteriorate functional outcome in the rat. An experimental study using pharmacological and morphological approaches. J Nanosci Nanotechnol. 2009;9(8):4970–80.

    Article  CAS  PubMed  Google Scholar 

  258. Sharma HS, Sharma A. Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Prog Brain Res. 2007;162:245–73. Review.

    Article  CAS  PubMed  Google Scholar 

  259. Sharma H S, Westman J (1998) Brain functions in hot environment. In: Progress in brain research, vol 115, Elsevier, Amsterdam, pp. 1-516.

    Google Scholar 

  260. Sharma HS 2007. Neurobiology of hypertehrmia. In: Prog brain res, vol 162. Elsevier, San Diego, USA, pp. 1–617.

    Google Scholar 

  261. Hines LA, Sundin J, Rona RJ, Wessely S, Fear NT. Posttraumatic stress disorder post Iraq and Afghanistan: prevalence among military subgroups. Can J Psychiatry. 2014;59(9):468–79. Review.

    Article  PubMed  PubMed Central  Google Scholar 

  262. Ramchand R, Rudavsky R, Grant S, Tanielian T, Jaycox L. Prevalence of, risk factors for, and consequences of posttraumatic stress disorder and other mental health problems in military populations deployed to Iraq and Afghanistan. Curr Psychiatry Rep. 2015;17(5):37. doi:10.1007/s11920-015-0575-z. Review.

    Article  PubMed  Google Scholar 

  263. MacManus D, Rona R, Dickson H, Somaini G, Fear N, Wessely S. Aggressive and violent behavior among military personnel deployed to Iraq and Afghanistan: prevalence and link with deployment and combat exposure. Epidemiol Rev. 2015;37:196–212. doi:10.1093/epirev/mxu006. Review.

    Article  PubMed  Google Scholar 

  264. Smith-Forbes E, Najera C, Hawkins D. Combat operational stress control in Iraq and Afghanistan: Army occupational therapy. Mil Med. 2014;179(3):279–84. doi:10.7205/MILMED-D-13-00452. Review.

    Article  PubMed  Google Scholar 

  265. Grossman A, Grossman C, Barenboim E, Azaria B, Goldstein L, Grossman E. Pre-hypertension as a predictor of hypertension in military aviators: a longitudinal study of 367 men. Aviat Space Environ Med. 2006;77(11):1162–5.

    PubMed  Google Scholar 

  266. Al-Asmary SM, Al-Shehri AA, Farahat FM, Abdel-Fattah MM, Al-Shahrani MM, Al-Omari FK, Al-Otaibi FS, Al-Malki DM. Community-based screening for pre-hypertension among military active duty personnel. Saudi Med J. 2008;29(12):1779–84.

    PubMed  Google Scholar 

  267. Gupta D, Prabhakar V, Radhakrishnan M. 5HT3 receptors: Target for new antidepressant drugs. Neurosci Biobehav Rev. 2016;64:311–25. doi:10.1016/j.neubiorev.2016.03.001. Review.

    Article  CAS  PubMed  Google Scholar 

  268. Pehrson AL, Jeyarajah T, Sanchez C. Regional distribution of serotonergic receptors: a systems neuroscience perspective on the downstream effects of the multimodal-acting antidepressant vortioxetine on excitatory and inhibitory neurotransmission. CNS Spectr. 2016;21(2):162–83. doi:10.1017/S1092852915000486. Review.

    Article  PubMed  Google Scholar 

  269. Engleman EA, Rodd ZA, Bell RL, Murphy JM. The role of 5-HT3 receptors in drug abuse and as a target for pharmacotherapy. CNS Neurol Disord Drug Targets. 2008;7(5):454–67. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Huang Y, Yoon K, Ko H, Jiao S, Ito W, Wu JY, Yung WH, Lu B. Morozov A.5-HT3a receptors modulate Hippocampal Gamma oscillations by regulating synchrony of parvalbumin-positive interneurons. Cereb Cortex. 2016;26(2):576–85. doi:10.1093/cercor/bhu209.

    PubMed  Google Scholar 

  271. Sumaya IC, Bailey D, Catlett SL. Differential effects of a short-term high-fat diet in an animal model of depression in rats treated with the 5-HT3 receptor antagonist, ondansetron, the 5-HT3 receptor agonist, 2-methyl-5-HT, and the SSRI, fluoxetine. Pharmacol Biochem Behav. 2016;144:78–84. doi:10.1016/j.pbb.2016.03.005.

    Article  CAS  PubMed  Google Scholar 

  272. Seynaeve C, Verweij J, de Mulder PH. 5-HT3 receptor antagonists, a new approach in emesis: a review of ondansetron, granisetron and tropisetron. Anticancer Drugs. 1991;2(4):343–55. Review.

    Article  CAS  PubMed  Google Scholar 

  273. Sharma HS, Sharma A, Mössler H, Muresanu DF. Neuroprotective effects of cerebrolysin, a combination of different active fragments of neurotrophic factors and peptides on the whole body hyperthermia-induced neurotoxicity: modulatory roles of co-morbidity factors and nanoparticle intoxication. Int Rev Neurobiol. 2012;102:249–76. doi:10.1016/B978-0-12-386986-9.00010-7. Review.

    Article  CAS  PubMed  Google Scholar 

  274. Sharma HS, Menon PK, Lafuente JV, Aguilar ZP, Wang YA, Muresanu DF, Mössler H, Patnaik R, Sharma A. The role of functionalized magnetic iron oxide nanoparticles in the central nervous system injury and repair: new potentials for neuroprotection with cerebrolysin therapy. J Nanosci Nanotechnol. 2014;14(1):577–95. Review.

    Article  CAS  PubMed  Google Scholar 

  275. Sharma A, Menon P, Muresanu DF, Ozkizilcik A, Tian ZR, Lafuente JV, Sharma HS. Nanowired drug delivery across the blood-brain barrier in central nervous system injury and repair. CNS Neurol Disord Drug Targets. 2016;15(9):1092–117.

    Article  CAS  PubMed  Google Scholar 

  276. Sriramoju B, Kanwar RK, Kanwar JR. Nanomedicine based nanoparticles for neurological disorders. Curr Med Chem. 2014;21(36):4154–68. Review.

    Article  CAS  PubMed  Google Scholar 

  277. Kozlovskaya L, Stepensky D. Quantitative analysis of the brain-targeted delivery of drugs and model compounds using nano-delivery systems. J Control Release. 2013;171(1):17–23. doi:10.1016/j.jconrel.2013.06.028. Review.

    Article  CAS  PubMed  Google Scholar 

  278. Ruozi B, Belletti D, Sharma HS, Sharma A, Muresanu DF, Mössler H, Forni F, Vandelli MA, Tosi G. PLGA nanoparticles loaded cerebrolysin: studies on their preparation and investigation of the effect of storage and serum stability with reference to traumatic brain injury. Mol Neurobiol. 2015;52(2):899–912. doi:10.1007/s12035-015-9235-x.

    Article  CAS  PubMed  Google Scholar 

  279. Sharma HS, Sharma A. Nanowired drug delivery for neuroprotection in central nervous system injuries: modulation by environmental temperature, intoxication of nanoparticles, and comorbidity factors. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(2):184–203. doi:10.1002/wnan.172. Review.

    Article  CAS  PubMed  Google Scholar 

  280. Ruozi B, Belletti D, Forni F, Sharma A, Muresanu D, Mössler H, Vandelli MA, Tosi G, Sharma HS. Poly (D,L-lactide-co-glycolide) nanoparticles loaded with cerebrolysin display neuroprotective activity in a rat model of concussive head injury. CNS Neurol Disord Drug Targets. 2014;13(8):1475–82.

    Article  CAS  PubMed  Google Scholar 

  281. Sharma HS, Sharma A. New perspectives of nanoneuroprotection, nanoneuropharmacology and nanoneurotoxicity: modulatory role of amino acid neurotransmitters, stress, trauma, and co-morbidity factors in nanomedicine. Amino Acids. 2013;45(5):1055–71. doi:10.1007/s00726-013-1584-z. Review.

    Article  CAS  PubMed  Google Scholar 

  282. Tian ZR, Sharma A, Nozari A, Subramaniam R, Lundstedt T, Sharma HS. Nanowired drug delivery to enhance neuroprotection in spinal cord injury. CNS Neurol Disord Drug Targets. 2012;11(1):86–95. Review.

    Article  CAS  PubMed  Google Scholar 

  283. Sharma HS, Feng L, Lafuente JV, Muresanu DF, Tian ZR, Patnaik R, Sharma A. TiO2-nanowired delivery of mesenchymal stem cells thwarts diabetes- induced exacerbation of brain pathology in heat stroke: an experimental study in the rat using morphological and biochemical approaches. CNS Neurol Disord Drug Targets. 2015;14(3):386–99.

    Article  CAS  PubMed  Google Scholar 

  284. Sharma HS, Ali SF, Dong W, Tian ZR, Patnaik R, Patnaik S, Sharma A, Boman A, Lek P, Seifert E, Lundstedt T. Drug delivery to the spinal cord tagged with nanowire enhances neuroprotective efficacy and functional recovery following trauma to the rat spinal cord. Ann N Y Acad Sci. 2007;1122:197–218.

    Article  CAS  PubMed  Google Scholar 

  285. Menon PK, Muresanu DF, Sharma A, Mössler H, Sharma HS. Cerebrolysin, a mixture of neurotrophic factors induces marked neuroprotection in spinal cord injury following intoxication of engineered nanoparticles from metals. CNS Neurol Disord Drug Targets. 2012;11(1):40–9. Review.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Part of this research on Ondansetron in Sleep Deprivation as Innovation was accepted in the National Innovation Summit & Showcase, TechConnect 2014, National Harbor, Washington DC, USA Jun 15-18, 2014. This investigation was supported by grants from the Air Force Office of Scientific Research (EOARD, London, UK), and Air Force Material Command, USAF, under grant number FA8655-05-1-3065; Swedish Medical Research Council (Nr 2710-HSS), Swedish Strategic Research Foundation, Stockholm, Sweden; Göran Gustafsson Foundation, Stockholm, Sweden (HSS), Astra Zeneca, Mölndal, Sweden (HSS/AS), The University Grants Commission, New Delhi, India (HSS/AS), Ministry of Science & Technology, governments of India and Sweden (HSS/AS), Indian Medical Research Council, New Delhi, India (HSS/AS); India-EU Research Co-operation Program (RP/AS/HSS) and IT 901/16 (JVL), Government of Basque Country and UFI 11/32 (JVL); University of Basque Country, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari S. Sharma Ph.D., Dr Med Sci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sharma, A. et al. (2017). Sleep Deprivation Induced Blood-Brain Barrier Breakdown and Brain Pathology. Neuroprotective Effects of TiO2-Nanowired Delivery of Cerebrolysin and Ondansetron. In: Sharma, H., Muresanu, D., Sharma, A. (eds) Drug and Gene Delivery to the Central Nervous System for Neuroprotection. Springer, Cham. https://doi.org/10.1007/978-3-319-57696-1_5

Download citation

Publish with us

Policies and ethics