Skip to main content

Renewable Biomaterials as Nanocarriers for Drug and Gene Delivery

  • Chapter
  • First Online:
Drug and Gene Delivery to the Central Nervous System for Neuroprotection

Abstract

Recently, due to strong emphasis on environmental awareness worldwide, utilization of renewable feedstocks has been growing in the development of materials for various applications. Amphiphilic polymeric materials have been widely used as drug and gene delivery carriers. These materials can self-assemble into different nanostructures, such as micelles, nanospheres, hydrogels, nanocapsules and polymersomes, which can serve as reservoirs for various therapeutic agents. Among numerous materials that can be used to fabricate these systems, those from renewable resources are of particular interest, due to the increasing environmental concerns as well as their natural abundance and favorable properties including biocompatibility, biodegradability and non-toxicity. In this chapter, naturally occurring materials such as polysaccharides, vegetable oils, terpenes and proteins, and their applications as nano delivery systems are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res. 2006;23(7):1417–50.

    Article  CAS  PubMed  Google Scholar 

  2. Arias JL. Nanotechnology and drug delivery, Volume 1: nanoplatforms in drug delivery. Boca Raton, FL: CRC Press; 2014.

    Google Scholar 

  3. Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J. 2005;19(3):311–30.

    Article  CAS  PubMed  Google Scholar 

  4. Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release. 2008;126(3):187–204.

    Article  CAS  PubMed  Google Scholar 

  5. Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2012;64:302–15.

    Article  Google Scholar 

  6. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–22.

    Article  CAS  PubMed  Google Scholar 

  7. Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther. 2006;112(3):630–48.

    Article  CAS  PubMed  Google Scholar 

  8. Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  9. Weissig V. Liposomes: methods and protocols. New York: Humana; 2010.

    Google Scholar 

  10. Mohanty AK, Dilnawaz F, Mohanta GP, Sahoo SK. Polymer–drug conjugates for targeted drug delivery. In: Devarajan PV, Jain S, editors. Targeted drug delivery: concepts and design. Heidelberg: Springer; 2015. p. 389–407.

    Google Scholar 

  11. Khandare J, Minko T. Polymer–drug conjugates: progress in polymeric prodrugs. Prog Polym Sci. 2006;31(4):359–97.

    Article  CAS  Google Scholar 

  12. Pasut G, Veronese F. Polymer–drug conjugation, recent achievements and general strategies. Prog Polym Sci. 2007;32(8):933–61.

    Article  CAS  Google Scholar 

  13. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53(2):283–318.

    CAS  PubMed  Google Scholar 

  14. van Vlerken LE, Vyas TK, Amiji MM. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res. 2007;24(8):1405–14.

    Article  PubMed  CAS  Google Scholar 

  15. Chekhonin VP, Kabanov AV, Zhirkov YA, Morozov GV. Fatty acid acylated Fab-fragments of antibodies to neurospecific proteins as carriers for neuroleptic targeted delivery in brain. FEBS Lett. 1991;287(1):149–52.

    Article  CAS  PubMed  Google Scholar 

  16. Torchilin V. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci. 2004;61(19–20):2549–59.

    Article  CAS  PubMed  Google Scholar 

  17. Ogris M, Brunner S, Schüller S, Kircheis R, Wagner E. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 1999;6(4):595–605.

    Article  CAS  PubMed  Google Scholar 

  18. Leamon CP, Weigl D, Hendren RW. Folate copolymer-mediated transfection of cultured cells. Bioconjug Chem. 1999;10(6):947–57.

    Article  CAS  PubMed  Google Scholar 

  19. Torchilin VP. Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Peptide Sci. 2008;90(5):604–10.

    Article  CAS  Google Scholar 

  20. Gupta B, Levchenko TS, Torchilin VP. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev. 2005;57(4):637–51.

    Article  CAS  PubMed  Google Scholar 

  21. Cheng R, Meng F, Deng C, Klok H-A, Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials. 2013;34(14):3647–57.

    Article  CAS  PubMed  Google Scholar 

  22. Klaikherd A, Nagamani C, Thayumanavan S. Multi-stimuli sensitive amphiphilic block copolymer assemblies. J Am Chem Soc. 2009;131(13):4830–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.

    Article  CAS  PubMed  Google Scholar 

  24. Shi D, Bedford NM, Cho HS. Engineered multifunctional nanocarriers for cancer diagnosis and therapeutics. Small. 2011;7(18):2549–67.

    Article  CAS  PubMed  Google Scholar 

  25. Torchilin V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm. 2009;71(3):431–44.

    Article  CAS  PubMed  Google Scholar 

  26. Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm. 2007;65(3):259–69.

    Article  CAS  PubMed  Google Scholar 

  27. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008;60(15):1638–49.

    Article  CAS  PubMed  Google Scholar 

  28. Croy S, Kwon G. Polymeric micelles for drug delivery. Curr Pharm Des. 2006;12(36):4669–84.

    Article  CAS  PubMed  Google Scholar 

  29. Kazunori K, Masayuki Y, Teruo O, Yasuhisa S. Block copolymer micelles as vehicles for drug delivery. J Control Release. 1993;24(1):119–32.

    Article  Google Scholar 

  30. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47(1):113–31.

    Article  CAS  PubMed  Google Scholar 

  31. Kwon GS, Okano T. Polymeric micelles as new drug carriers. Adv Drug Deliv Rev. 1996;21(2):107–16.

    Article  CAS  Google Scholar 

  32. Jones M-C, Leroux J-C. Polymeric micelles—a new generation of colloidal drug carriers. Eur J Pharm Biopharm. 1999;48(2):101–11.

    Article  CAS  PubMed  Google Scholar 

  33. Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine. 2010;6(6):714–29.

    Article  CAS  PubMed  Google Scholar 

  34. Yokoyama M, Satoh A, Sakurai Y, Okano T, Matsumura Y, Kakizoe T, et al. Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size. J Control Release. 1998;55(2):219–29.

    Article  CAS  PubMed  Google Scholar 

  35. Harada A, Kataoka K. Novel polyion complex micelles entrapping enzyme molecules in the core: preparation of narrowly-distributed micelles from lysozyme and poly(ethylene glycol)-poly(aspartic acid) block copolymer in aqueous medium. Macromolecules. 1998;31(2):288–94.

    Article  CAS  Google Scholar 

  36. Opanasopit P, Yokoyama M, Watanabe M, Kawano K, Maitani Y, Okano T. Block copolymer design for camptothecin incorporation into polymeric micelles for passive tumor targeting. Pharm Res. 2004;21(11):2001–8.

    Article  CAS  PubMed  Google Scholar 

  37. Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 2006;6(11):2427–30.

    Article  CAS  PubMed  Google Scholar 

  38. Bigot J, Charleux B, Cooke G, Delattre F, Fournier D, Lyskawa J, et al. Tetrathiafulvalene end-functionalized poly(N-isopropylacrylamide): a new class of amphiphilic polymer for the creation of multistimuli responsive micelles. J Am Chem Soc. 2010;132(31):10796–801.

    Article  CAS  PubMed  Google Scholar 

  39. Wei H, Cheng S-X, Zhang X-Z, Zhuo R-X. Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Prog Polym Sci. 2009;34(9):893–910.

    Article  CAS  Google Scholar 

  40. Riley T, Stolnik S, Heald C, Xiong C, Garnett M, Illum L, et al. Physicochemical evaluation of nanoparticles assembled from poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) block copolymers as drug delivery vehicles. Langmuir. 2001;17(11):3168–74.

    Article  CAS  Google Scholar 

  41. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70(1):1–20.

    Article  CAS  PubMed  Google Scholar 

  42. Damge C, Michel C, Aprahamian M, Couvreur P, Devissaguet J. Nanocapsules as carriers for oral peptide delivery. J Control Release. 1990;13(2):233–9.

    Article  CAS  Google Scholar 

  43. Mora-Huertas C, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385(1):113–42.

    Article  CAS  PubMed  Google Scholar 

  44. Discher BM, Won Y-Y, Ege DS, Lee JC, Bates FS, Discher DE, et al. Polymersomes: tough vesicles made from diblock copolymers. Science. 1999;284(5417):1143–6.

    Article  CAS  PubMed  Google Scholar 

  45. Meng F, Zhong Z, Feijen J. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules. 2009;10(2):197–209.

    Article  CAS  PubMed  Google Scholar 

  46. Onaca O, Enea R, Hughes DW, Meier W. Stimuli-responsive polymersomes as nanocarriers for drug and gene delivery. Macromol Biosci. 2009;9(2):129–39.

    Article  CAS  PubMed  Google Scholar 

  47. Figueiredo J, Ismael M, Anjo C, Duarte A. Cellulose and derivatives from wood and fibers as renewable sources of raw-materials. In: Rauter AP, Vogel P, Queneau Y, editors. Carbohydrates in sustainable development I. Berlin: Springer; 2010. p. 117–28.

    Chapter  Google Scholar 

  48. Stevens CV, Meriggi A, Booten K. Chemical modification of inulin, a valuable renewable resource, and its industrial applications. Biomacromolecules. 2001;2(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  49. Beneke CE, Viljoen AM, Hamman JH. Polymeric plant-derived excipients in drug delivery. Molecules. 2009;14(7):2602–20.

    Article  PubMed  Google Scholar 

  50. Vemula PK, Li J, John G. Enzyme catalysis: tool to make and break amygdalin hydrogelators from renewable resources: a delivery model for hydrophobic drugs. J Am Chem Soc. 2006;128(27):8932–8.

    Article  CAS  PubMed  Google Scholar 

  51. Gandini A. The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chem. 2011;13(5):1061–83.

    Article  CAS  Google Scholar 

  52. Fertier L, Koleilat H, Stemmelen M, Giani O, Joly-Duhamel C, Lapinte V, et al. The use of renewable feedstock in UV-curable materials—a new age for polymers and green chemistry. Prog Polym Sci. 2013;38(6):932–62.

    Article  CAS  Google Scholar 

  53. Coviello T, Matricardi P, Marianecci C, Alhaique F. Polysaccharide hydrogels for modified release formulations. J Control Release. 2007;119(1):5–24.

    Article  CAS  PubMed  Google Scholar 

  54. Wen Y, Oh JK. Recent strategies to develop polysaccharide-based nanomaterials for biomedical applications. Macromol Rapid Commun. 2014;35(21):1819–32.

    CAS  PubMed  Google Scholar 

  55. Miao S, Wang P, Su Z, Zhang S. Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater. 2014;10(4):1692–704.

    Article  CAS  PubMed  Google Scholar 

  56. Karak N. Vegetable oil-based polymers: properties, processing and applications. Burlington: Elsevier; 2012.

    Book  Google Scholar 

  57. Parris N. New delivery systems for controlled drug from naturally occurring materials. Washington, DC: American Chemical Society; 2008.

    Book  Google Scholar 

  58. Goh CH, Heng PWS, Chan LW. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr Polym. 2012;88(1):1–12.

    Article  CAS  Google Scholar 

  59. Peniche C, Argüelles-Monal W, Peniche H, Acosta N. Chitosan: an attractive biocompatible polymer for microencapsulation. Macromol Biosci. 2003;3(10):511–20.

    Article  CAS  Google Scholar 

  60. Mano J, Silva G, Azevedo HS, Malafaya P, Sousa R, Silva S, et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface. 2007;4(17):999–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kaplan DL. Biopolymers from renewable resources. New York: Springer Science & Business Media; 2013.

    Google Scholar 

  62. Popa V, Schubert S, Schlufter K. Polysaccharides in medicinal and pharmaceutical applications. Shawbury: ISmithers Rapra Pub; 2011.

    Google Scholar 

  63. Ramawat KG, Mérillon J-M. Polysaccharides: bioactivity and biotechnology. Cham: Springer International Publishing; 2015.

    Book  Google Scholar 

  64. Marchessault RH, Ravenelle F, Zhu XX. Polysaccharides for drug delivery and pharmaceutical applications. Washington, DC: American Chemical Society; 2006.

    Book  Google Scholar 

  65. Sinha V, Kumria R. Polysaccharides in colon-specific drug delivery. Int J Pharm. 2001;224(1):19–38.

    Article  CAS  PubMed  Google Scholar 

  66. Wang W, Liu X, Xie Y, Zhang H, Yu W, Xiong Y, et al. Microencapsulation using natural polysaccharides for drug delivery and cell implantation. J Mater Chem. 2006;16(32):3252–67.

    Article  CAS  Google Scholar 

  67. Jain A, Gupta Y, Jain SK. Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon. J Pharm Pharm Sci. 2007;10(1):86–128.

    CAS  PubMed  Google Scholar 

  68. Chourasia M, Jain S. Polysaccharides for colon targeted drug delivery. Drug Deliv. 2004;11(2):129–48.

    Article  CAS  PubMed  Google Scholar 

  69. Shelke NB, James R, Laurencin CT, Kumbar SG. Polysaccharide biomaterials for drug delivery and regenerative engineering. Polym Adv Technol. 2014;25(5):448–60.

    Article  CAS  Google Scholar 

  70. Kamide K. Cellulose and cellulose derivatives. Amsterdam: Elsevier; 2005.

    Google Scholar 

  71. Czaja WK, Young DJ, Kawecki M, Brown RM. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules. 2007;8(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  72. Landoll L. Nonionic polymer surfactants. J Polym Sci A Polym Chem. 1982;20(2):443–55.

    Article  CAS  Google Scholar 

  73. Wei Y, Cheng F, Hou G, Sun S. Amphiphilic cellulose: surface activity and aqueous self-assembly into nano-sized polymeric micelles. React Funct Polym. 2008;68(5):981–9.

    Article  CAS  Google Scholar 

  74. Yang L, Kuang J, Li Z, Zhang B, Cai X, Zhang L-M. Amphiphilic cholesteryl-bearing carboxymethylcellulose derivatives: self-assembly and rheological behaviour in aqueous solution. Cellulose. 2008;15(5):659–69.

    Article  CAS  Google Scholar 

  75. Sroková I, Tomanová V, Ebringerová A, Malovíková A, Heinze T. Water-soluble amphiphilic O-(carboxymethyl) cellulose derivatives—synthesis and properties. Macromol Mater Eng. 2004;289(1):63–9.

    Article  CAS  Google Scholar 

  76. Li Y, Liu R, Liu W, Kang H, Wu M, Huang Y. Synthesis, self-assembly, and thermosensitive properties of ethyl cellulose-g-P (PEGMA) amphiphilic copolymers. J Polym Sci A Polym Chem. 2008;46(20):6907–15.

    Article  CAS  Google Scholar 

  77. Ye L, Li Q, Huang R. Study on the rheological behavior of the hydrophobically modified hydroxyethyl cellulose with 1,2-epoxyhexadecane*. J Appl Polym Sci. 2006;101(5):2953–9.

    Article  CAS  Google Scholar 

  78. Wei Y, Cheng F. Synthesis and aggregates of cellulose-based hydrophobically associating polymer. Carbohydr Polym. 2007;68(4):734–9.

    Article  CAS  Google Scholar 

  79. Yang L, Kuang J, Wang J, Li Z, Zhang LM. Loading and in vitro controlled release of indomethacin using amphiphilic cholesteryl-bearing carboxymethylcellulose derivatives. Macromol Biosci. 2008;8(3):279–86.

    Article  PubMed  CAS  Google Scholar 

  80. Kang H, Liu W, He B, Shen D, Ma L, Huang Y. Synthesis of amphiphilic ethyl cellulose grafting poly (acrylic acid) copolymers and their self-assembly morphologies in water. Polymer. 2006;47(23):7927–34.

    Article  CAS  Google Scholar 

  81. Kang H, Liu W, Liu R, Huang Y. A novel, amphiphilic ethyl cellulose grafting copolymer with poly(2-hydroxyethyl methacrylate) side chains and its micellization. Macromol Chem Phys. 2008;209(4):424–30.

    Article  CAS  Google Scholar 

  82. Wang D, Tan J, Kang H, Ma L, Jin X, Liu R, et al. Synthesis, self-assembly and drug release behaviors of pH-responsive copolymers ethyl cellulose-graft-PDEAEMA through ATRP. Carbohydr Polym. 2011;84(1):195–202.

    Article  CAS  Google Scholar 

  83. Dong H, Xu Q, Li Y, Mo S, Cai S, Liu L. The synthesis of biodegradable graft copolymer cellulose-graft-poly (l-lactide) and the study of its controlled drug release. Colloids Surf B Biointerfaces. 2008;66(1):26–33.

    Article  CAS  PubMed  Google Scholar 

  84. Ma L, Liu R, Tan J, Wang D, Jin X, Kang H, et al. Self-assembly and dual-stimuli sensitivities of hydroxypropylcellulose-graft-poly (N,N-dimethyl aminoethyl methacrylate) copolymers in aqueous solution. Langmuir. 2010;26(11):8697–703.

    Article  CAS  PubMed  Google Scholar 

  85. Ma L, Kang H, Liu R, Huang Y. Smart assembly behaviors of hydroxypropylcellulose-graft-poly(4-vinyl pyridine) copolymers in aqueous solution by thermo and pH stimuli. Langmuir. 2010;26(23):18519–25.

    Article  CAS  PubMed  Google Scholar 

  86. Francis MF, Piredda M, Winnik FM. Solubilization of poorly water soluble drugs in micelles of hydrophobically modified hydroxypropylcellulose copolymers. J Control Release. 2003;93(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  87. Xu F, Ping Y, Ma J, Tang G, Yang W, Li J, et al. Comb-shaped copolymers composed of hydroxypropyl cellulose backbones and cationic poly ((2-dimethyl amino)ethyl methacrylate) side chains for gene delivery. Bioconjug Chem. 2009;20(8):1449–58.

    Article  CAS  PubMed  Google Scholar 

  88. Danilevicius A, Dobiliene J, Wutz C, Liesiene J. Phenoxyhydroxypropylhydroxyethylcellulose—new amphiphilic cellulose derivative. Cellulose. 2007;14(4):321–9.

    Article  CAS  Google Scholar 

  89. Enomoto-Rogers Y, Kamitakahara H, Yoshinaga A, Takano T. Synthesis of diblock copolymers with cellulose derivatives 4. Self-assembled nanoparticles of amphiphilic cellulose derivatives carrying a single pyrene group at the reducing-end. Cellulose. 2011;18(4):1005–14.

    Article  CAS  Google Scholar 

  90. Nishimura H, Donkai N, Miyamoto T. Preparation and properties of a new type of comb-shaped, amphiphilic cellulose derivative. Cellulose. 1997;4(2):89–98.

    Article  CAS  Google Scholar 

  91. Song Y, Zhang L, Gan W, Zhou J, Zhang L. Self-assembled micelles based on hydrophobically modified quaternized cellulose for drug delivery. Colloids Surf B Biointerfaces. 2011;83(2):313–20.

    Article  CAS  PubMed  Google Scholar 

  92. Kumar MNR. A review of chitin and chitosan applications. React Funct Polym. 2000;46(1):1–27.

    Article  CAS  Google Scholar 

  93. Dutta PK, Dutta J, Tripathi V. Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res. 2004;63(1):20–31.

    CAS  Google Scholar 

  94. Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31(7):603–32.

    Article  CAS  Google Scholar 

  95. Kim J-H, Kim Y-S, Kim S, Park JH, Kim K, Choi K, et al. Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel. J Control Release. 2006;111(1):228–34.

    Article  CAS  PubMed  Google Scholar 

  96. Park JS, Han TH, Lee KY, Han SS, Hwang JJ, Moon DH, et al. N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: endocytosis, exocytosis and drug release. J Control Release. 2006;115(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  97. Prabaharan M, Reis R, Mano J. Carboxymethyl chitosan-graft-phosphatidylethanolamine: amphiphilic matrices for controlled drug delivery. React Funct Polym. 2007;67(1):43–52.

    Article  CAS  Google Scholar 

  98. Amidi M, Romeijn SG, Borchard G, Junginger HE, Hennink WE, Jiskoot W. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release. 2006;111(1):107–16.

    Article  CAS  PubMed  Google Scholar 

  99. Mourya V, Inamdar NN. Trimethyl chitosan and its applications in drug delivery. J Mater Sci Mater Med. 2009;20(5):1057–79.

    Article  CAS  PubMed  Google Scholar 

  100. Fan M, Hu Q, Shen K. Preparation and structure of chitosan soluble in wide pH range. Carbohydr Polym. 2009;78(1):66–71.

    Article  CAS  Google Scholar 

  101. Kumar AV, Varadaraj MC, Lalitha RG, Tharanathan R. Low molecular weight chitosans: preparation with the aid of papain and characterization. Biochim Biophys Acta. 2004;1670(2):137–46.

    Article  CAS  Google Scholar 

  102. Enhsen A, Kramer W, Wess G. Bile acids in drug discovery. Drug Discov Today. 1998;3(9):409–18.

    Article  CAS  Google Scholar 

  103. Chen X-G, Lee CM, Park H-J. O/W emulsification for the self-aggregation and nanoparticle formation of linoleic acid modified chitosan in the aqueous system. J Agric Food Chem. 2003;51(10):3135–9.

    Article  CAS  PubMed  Google Scholar 

  104. Liu C, Fan W, Chen X, Liu C, Meng X, Park HJ. Self-assembled nanoparticles based on linoleic-acid modified carboxymethyl-chitosan as carrier of adriamycin (ADR). Curr Appl Phys. 2007;7:e125–9.

    Article  Google Scholar 

  105. Lee C-M, Jeong H-J, Kim S-L, Kim E-M, Kim DW, Lim ST, et al. SPION-loaded chitosan–linoleic acid nanoparticles to target hepatocytes. Int J Pharm. 2009;371(1):163–9.

    Article  CAS  PubMed  Google Scholar 

  106. Y-L T, Liu C-G. Self-aggregated nanoparticles from linoleic acid modified carboxymethyl chitosan: synthesis, characterization and application in vitro. Colloids Surf B Biointerfaces. 2009;69(2):178–82.

    Article  CAS  Google Scholar 

  107. Zhang J, Chen XG, Li YY, Liu CS. Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin. Nanomedicine. 2007;3(4):258–65.

    Article  CAS  PubMed  Google Scholar 

  108. Zhang J, Chen XG, Huang L, Han JT, Zhang XF. Self-assembled polymeric nanoparticles based on oleic acid-grafted chitosan oligosaccharide: biocompatibility, protein adsorption and cellular uptake. J Mater Sci Mater Med. 2012;23(7):1775–83.

    Article  CAS  PubMed  Google Scholar 

  109. Hu F-Q, Ren G-F, Yuan H, Du Y-Z, Zeng S. Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel. Colloids Surf B Biointerfaces. 2006;50(2):97–103.

    Article  CAS  PubMed  Google Scholar 

  110. Liu C-G, Desai KGH, Chen X-G, Park H-J. Linolenic acid-modified chitosan for formation of self-assembled nanoparticles. J Agric Food Chem. 2005;53(2):437–41.

    Article  CAS  PubMed  Google Scholar 

  111. Lee K, Kwon I, Kim Y-H, Jo W, Jeong S. Preparation of chitosan self-aggregates as a gene delivery system. J Control Release. 1998;51(2):213–20.

    Article  CAS  PubMed  Google Scholar 

  112. Kim YH, Gihm SH, Park CR, Lee KY, Kim TW, Kwon IC, et al. Structural characteristics of size-controlled self-aggregates of deoxycholic acid-modified chitosan and their application as a DNA delivery carrier. Bioconjug Chem. 2001;12(6):932–8.

    Article  PubMed  CAS  Google Scholar 

  113. Lee KY, Jo WH, Kwon IC, Kim Y-H, Jeong SY. Structural determination and interior polarity of self-aggregates prepared from deoxycholic acid-modified chitosan in water. Macromolecules. 1998;31(2):378–83.

    Article  CAS  Google Scholar 

  114. Lee K, Kim J-H, Kwon I, Jeong S. Self-aggregates of deoxycholic acid-modified chitosan as a novel carrier of adriamycin. Colloid Polym Sci. 2000;278(12):1216–9.

    Article  CAS  Google Scholar 

  115. Jiang G-B, Quan D, Liao K, Wang H. Novel polymer micelles prepared from chitosan grafted hydrophobic palmitoyl groups for drug delivery. Mol Pharm. 2006;3(2):152–60.

    Article  CAS  PubMed  Google Scholar 

  116. Park JH, Kwon S, Nam J-O, Park R-W, Chung H, Seo SB, et al. Self-assembled nanoparticles based on glycol chitosan bearing 5β-cholanic acid for RGD peptide delivery. J Control Release. 2004;95(3):579–88.

    Article  CAS  PubMed  Google Scholar 

  117. Yoo HS, Lee JE, Chung H, Kwon IC, Jeong SY. Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. J Control Release. 2005;103(1):235–43.

    Article  CAS  PubMed  Google Scholar 

  118. Kwon S, Park JH, Chung H, Kwon IC, Jeong SY, Kim I-S. Physicochemical characteristics of self-assembled nanoparticles based on glycol chitosan bearing 5β-cholanic acid. Langmuir. 2003;19(24):10188–93.

    Article  CAS  Google Scholar 

  119. Min KH, Park K, Kim Y-S, Bae SM, Lee S, Jo HG, et al. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release. 2008;127(3):208–18.

    Article  CAS  PubMed  Google Scholar 

  120. Hanukoglu I. Steroidogenic enzymes: structure, function, and role in regulation of steroid hormone biosynthesis. J Steroid Biochem Mol Biol. 1992;43(8):779–804.

    Article  CAS  PubMed  Google Scholar 

  121. Chen M, Liu Y, Yang W, Li X, Liu L, Zhou Z, et al. Preparation and characterization of self-assembled nanoparticles of 6-O-cholesterol-modified chitosan for drug delivery. Carbohydr Polym. 2011;84(4):1244–51.

    Article  CAS  Google Scholar 

  122. Li X, Chen M, Yang W, Zhou Z, Liu L, Zhang Q. Interaction of bovine serum albumin with self-assembled nanoparticles of 6-O-cholesterol modified chitosan. Colloids Surf B Biointerfaces. 2012;92:136–41.

    Article  CAS  PubMed  Google Scholar 

  123. Wang Y-S, Liu L-R, Jiang Q, Zhang Q-Q. Self-aggregated nanoparticles of cholesterol-modified chitosan conjugate as a novel carrier of epirubicin. Eur Polym J. 2007;43(1):43–51.

    Article  CAS  Google Scholar 

  124. Yu JM, Li YJ, Qiu LY, Jin Y. Polymeric nanoparticles of cholesterol-modified glycol chitosan for doxorubicin delivery: preparation and in-vitro and in-vivo characterization. J Pharm Pharmacol. 2009;61(6):713–9.

    Article  CAS  PubMed  Google Scholar 

  125. Yu J-M, Li Y-J, Qiu L-Y, Jin Y. Self-aggregated nanoparticles of cholesterol-modified glycol chitosan conjugate: preparation, characterization, and preliminary assessment as a new drug delivery carrier. Eur Polym J. 2008;44(3):555–65.

    Article  CAS  Google Scholar 

  126. Yuan X-B, Li H, Yuan Y-B. Preparation of cholesterol-modified chitosan self-aggregated nanoparticles for delivery of drugs to ocular surface. Carbohydr Polym. 2006;65(3):337–45.

    Article  CAS  Google Scholar 

  127. Hans M, Lowman A. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci. 2002;6(4):319–27.

    Article  CAS  Google Scholar 

  128. Cai S, Vijayan K, Cheng D, Lima EM, Discher DE. Micelles of different morphologies—advantages of worm-like filomicelles of PEO-PCL in paclitaxel delivery. Pharm Res. 2007;24(11):2099–109.

    Article  CAS  PubMed  Google Scholar 

  129. Dash TK, Konkimalla VB. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release. 2012;158(1):15–33.

    Article  CAS  PubMed  Google Scholar 

  130. Duan K, Zhang X, Tang X, Yu J, Liu S, Wang D, et al. Fabrication of cationic nanomicelle from chitosan-graft-polycaprolactone as the carrier of 7-ethyl-10-hydroxy-camptothecin. Colloids Surf B Biointerfaces. 2010;76(2):475–82.

    Article  CAS  PubMed  Google Scholar 

  131. Zhou N, Zan X, Wang Z, Wu H, Yin D, Liao C, et al. Galactosylated chitosan–polycaprolactone nanoparticles for hepatocyte-targeted delivery of curcumin. Carbohydr Polym. 2013;94(1):420–9.

    Article  CAS  PubMed  Google Scholar 

  132. Liu L, Li Y, Liu H, Fang Y. Synthesis and characterization of chitosan-graft-polycaprolactone copolymers. Eur Polym J. 2004;40(12):2739–44.

    Article  CAS  Google Scholar 

  133. Yu H, Wang W, Chen X, Deng C, Jing X. Synthesis and characterization of the biodegradable polycaprolactone-graft-chitosan amphiphilic copolymers. Biopolymers. 2006;83(3):233–42.

    Article  CAS  PubMed  Google Scholar 

  134. Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today. 2005;10(21):1451–8.

    Article  CAS  PubMed  Google Scholar 

  135. Harris JM. Poly(ethylene glycol) chemistry: biotechnical and biomedical applications. New York: Springer Science & Business Media; 2013.

    Google Scholar 

  136. Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev. 2012;64:246–55.

    Article  Google Scholar 

  137. Jeong YI, Kim SH, Jung TY, Kim IY, Kang SS, Jin YH, et al. Polyion complex micelles composed of all-trans retinoic acid and poly (ethylene glycol)-grafted-chitosan. J Pharm Sci. 2006;95(11):2348–60.

    Article  CAS  PubMed  Google Scholar 

  138. Prego C, Torres D, Fernandez-Megia E, Novoa-Carballal R, Quiñoá E, Alonso M. Chitosan–PEG nanocapsules as new carriers for oral peptide delivery: effect of chitosan pegylation degree. J Control Release. 2006;111(3):299–308.

    Article  CAS  PubMed  Google Scholar 

  139. Yoksan R, Matsusaki M, Akashi M, Chirachanchai S. Controlled hydrophobic/hydrophilic chitosan: colloidal phenomena and nanosphere formation. Colloid Polym Sci. 2004;282(4):337–42.

    Article  CAS  Google Scholar 

  140. Opanasopit P, Ngawhirunpat T, Rojanarata T, Choochottiros C, Chirachanchai S. Camptothecin-incorporating N-phthaloylchitosan-g-mPEG self-assembly micellar system: effect of degree of deacetylation. Colloids Surf B Biointerfaces. 2007;60(1):117–24.

    Article  CAS  PubMed  Google Scholar 

  141. Yang X, Zhang Q, Wang Y, Chen H, Zhang H, Gao F, et al. Self-aggregated nanoparticles from methoxy poly(ethylene glycol)-modified chitosan: synthesis; characterization; aggregation and methotrexate release in vitro. Colloids Surf B Biointerfaces. 2008;61(2):125–31.

    Article  CAS  PubMed  Google Scholar 

  142. Park JS, Koh YS, Bang JY, Jeong YI, Lee JJ. Antitumor effect of all-trans retinoic acid-encapsulated nanoparticles of methoxy poly(ethylene glycol)-conjugated chitosan against CT-26 colon carcinoma in vitro. J Pharm Sci. 2008;97(9):4011–9.

    Article  CAS  PubMed  Google Scholar 

  143. Chung C-W, Chung K-D, Jeong Y-I, Kang DH. 5-Aminolevulinic acid-incorporated nanoparticles of methoxy poly(ethylene glycol)-chitosan copolymer for photodynamic therapy. Int J Nanomedicine. 2013;8:809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Shi Z, Guo R, Li W, Zhang Y, Xue W, Tang Y, et al. Nanoparticles of deoxycholic acid, polyethylene glycol and folic acid-modified chitosan for targeted delivery of doxorubicin. J Mater Sci Mater Med. 2014;25(3):723–31.

    Article  CAS  PubMed  Google Scholar 

  145. Kim J-H, Minai-Tehrani A, Kim Y-K, Shin J-Y, Hong S-H, Kim H-J, et al. Suppression of tumor growth in H-ras12V liver cancer mice by delivery of programmed cell death protein 4 using galactosylated poly(ethylene glycol)-chitosan-graft-spermine. Biomaterials. 2012;33(6):1894–902.

    Article  CAS  PubMed  Google Scholar 

  146. Chan P, Kurisawa M, Chung JE, Yang Y-Y. Synthesis and characterization of chitosan-g-poly (ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials. 2007;28(3):540–9.

    Article  CAS  PubMed  Google Scholar 

  147. Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer–drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev. 2009;61(13):1203–13.

    Article  CAS  PubMed  Google Scholar 

  148. Kopeček J. Polymer–drug conjugates: origins, progress to date and future directions. Adv Drug Deliv Rev. 2013;65(1):49–59.

    Article  PubMed  CAS  Google Scholar 

  149. Hu X, Jing X. Biodegradable amphiphilic polymer-drug conjugate micelles. Expert Opin Drug Deliv. 2009;6(10):1079–90.

    Article  CAS  PubMed  Google Scholar 

  150. Yoo HS, Park TG. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA–PEG block copolymer. J Control Release. 2001;70(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  151. Son YJ, Jang J-S, Cho YW, Chung H, Park R-W, Kwon IC, et al. Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J Control Release. 2003;91(1):135–45.

    Article  CAS  PubMed  Google Scholar 

  152. Park JH, Kwon S, Lee M, Chung H, Kim J-H, Kim Y-S, et al. Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: in vivo biodistribution and anti-tumor activity. Biomaterials. 2006;27(1):119–26.

    Article  CAS  PubMed  Google Scholar 

  153. Lee M, Cho YW, Park JH, Chung H, Jeong SY, Choi K, et al. Size control of self-assembled nanoparticles by an emulsion/solvent evaporation method. Colloid Polym Sci. 2006;284(5):506–12.

    Article  CAS  Google Scholar 

  154. Cho YW, Park SA, Han TH, Park JS, Oh SJ, Moon DH, et al. In vivo tumor targeting and radionuclide imaging with self-assembled nanoparticles: mechanisms, key factors, and their implications. Biomaterials. 2007;28(6):1236–47.

    Article  CAS  PubMed  Google Scholar 

  155. Lee SJ, Koo H, Jeong H, Huh MS, Choi Y, Jeong SY, et al. Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. J Control Release. 2011;152(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  156. Nichifor M, Lopes A, Carpov A, Melo E. Aggregation in water of dextran hydrophobically modified with bile acids. Macromolecules. 1999;32(21):7078–85.

    Article  CAS  Google Scholar 

  157. Passirani C, Barratt G, Devissaguet J-P, Labarre D. Long-circulating nanopartides bearing heparin or dextran covalently bound to poly(methyl methacrylate). Pharm Res. 1998;15(7):1046–50.

    Article  CAS  PubMed  Google Scholar 

  158. Rodrigues J, Santos-Magalhaes N, Coelho L, Couvreur P, Ponchel G, Gref R. Novel core (polyester)-shell (polysaccharide) nanoparticles: protein loading and surface modification with lectins. J Control Release. 2003;92(1):103–12.

    Article  CAS  PubMed  Google Scholar 

  159. Gref R, Rodrigues J, Couvreur P. Polysaccharides grafted with polyesters: novel amphiphilic copolymers for biomedical applications. Macromolecules. 2002;35(27):9861–7.

    Article  CAS  Google Scholar 

  160. Sun H, Guo B, Li X, Cheng R, Meng F, Liu H, et al. Shell-sheddable micelles based on dextran-SS-poly(ε-caprolactone) diblock copolymer for efficient intracellular release of doxorubicin. Biomacromolecules. 2010;11(4):848–54.

    Article  CAS  PubMed  Google Scholar 

  161. Wang H, Han S, Sun J, Fan T, Tian C, Wu Y. Amphiphilic dextran derivatives nanoparticles for the delivery of mitoxantrone. J Appl Polym Sci. 2012;126(S1):E35–43.

    Article  CAS  Google Scholar 

  162. Qiu F, Feng J, Wu D-Q, Zhang X-Z, Zhuo R-X. Nanosized micelles self-assembled from amphiphilic dextran-graft-methoxypolyethylene glycol/poly(ε-caprolactone) copolymers. Eur Polym J. 2009;45(4):1024–31.

    Article  CAS  Google Scholar 

  163. Houga C, Giermanska J, Lecommandoux S, Borsali R, Taton D, Gnanou Y, et al. Micelles and polymersomes obtained by self-assembly of dextran and polystyrene based block copolymers. Biomacromolecules. 2008;10(1):32–40.

    Article  CAS  Google Scholar 

  164. Kan M, Wang F, Xu J, Crabb JW, Hou J, McKeehan WL. An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science. 1993;259(5103):1918–21.

    Article  CAS  PubMed  Google Scholar 

  165. Guyton JR, Rosenberg RD, Clowes AW, Karnovsky MJ. Inhibition of rat arterial smooth muscle cell proliferation by heparin. In vivo studies with anticoagulant and nonanticoagulant heparin. Circ Res. 1980;46(5):625–34.

    Article  CAS  PubMed  Google Scholar 

  166. Choi SH, Lee J-H, Choi S-M, Park TG. Thermally reversible pluronic/heparin nanocapsules exhibiting 1000-fold volume transition. Langmuir. 2006;22(4):1758–62.

    Article  CAS  PubMed  Google Scholar 

  167. Park K, Kim K, Kwon IC, Kim SK, Lee S, Lee DY, et al. Preparation and characterization of self-assembled nanoparticles of heparin-deoxycholic acid conjugates. Langmuir. 2004;20(26):11726–31.

    Article  CAS  PubMed  Google Scholar 

  168. Passirani C, Barratt G, Devissaguet J-P, Labarre D. Interactions of nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate) with the complement system. Life Sci. 1998;62(8):775–85.

    Article  CAS  PubMed  Google Scholar 

  169. Yu MK, Lee DY, Kim YS, Park K, Park SA, Lee GY, et al. Antiangiogenic and apoptotic properties of a novel amphiphilic folate-heparin-lithocholate derivative having cellular internality for cancer therapy. Pharm Res. 2007;24(4):705–14.

    Article  CAS  PubMed  Google Scholar 

  170. Park K, Lee GY, Kim Y-S, Yu M, Park R-W, Kim I-S, et al. Heparin–deoxycholic acid chemical conjugate as an anticancer drug carrier and its antitumor activity. J Control Release. 2006;114(3):300–6.

    Article  CAS  PubMed  Google Scholar 

  171. Laurent TC, Fraser J. Hyaluronan. FASEB J. 1992;6(7):2397–404.

    CAS  PubMed  Google Scholar 

  172. Fraser J, Laurent T, Laurent U. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med. 1997;242(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  173. Toole BP. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer. 2004;4(7):528–39.

    Article  CAS  PubMed  Google Scholar 

  174. Udabage L, Brownlee GR, Nilsson SK, Brown TJ. The over-expression of HAS2, Hyal-2 and CD44 is implicated in the invasiveness of breast cancer. Exp Cell Res. 2005;310(1):205–17.

    Article  CAS  PubMed  Google Scholar 

  175. Hall CL, Yang B, Yang X, Zhang S, Turley M, Samuel S, et al. Overexpression of the hyaluronan receptor RHAMM is transforming and is also required for H-ras transformation. Cell. 1995;82(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  176. Eenschooten C, Guillaumie F, Kontogeorgis GM, Stenby EH, Schwach-Abdellaoui K. Preparation and structural characterisation of novel and versatile amphiphilic octenyl succinic anhydride-modified hyaluronic acid derivatives. Carbohydr Polym. 2010;79(3):597–605.

    Article  CAS  Google Scholar 

  177. Li J, Huo M, Wang J, Zhou J, Mohammad JM, Zhang Y, et al. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials. 2012;33(7):2310–20.

    Article  CAS  PubMed  Google Scholar 

  178. Liu CC, Chang KY, Wang YJ. A novel biodegradable amphiphilic diblock copolymers based on poly(lactic acid) and hyaluronic acid as biomaterials for drug delivery. J Polym Res. 2010;17(4):459–69.

    Article  CAS  Google Scholar 

  179. Pitarresi G, Palumbo FS, Albanese A, Fiorica C, Picone P, Giammona G. Self-assembled amphiphilic hyaluronic acid graft copolymers for targeted release of antitumoral drug. J Drug Target. 2010;18(4):264–76.

    Article  CAS  PubMed  Google Scholar 

  180. Choi KY, Chung H, Min KH, Yoon HY, Kim K, Park JH, et al. Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials. 2010;31(1):106–14.

    Article  CAS  PubMed  Google Scholar 

  181. Choi KY, Yoon HY, Kim J-H, Bae SM, Park R-W, Kang YM, et al. Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS Nano. 2011;5(11):8591–9.

    Article  CAS  PubMed  Google Scholar 

  182. Cho H-J, Yoon HY, Koo H, Ko S-H, Shim J-S, Lee J-H, et al. Self-assembled nanoparticles based on hyaluronic acid-ceramide (HA-CE) and Pluronic® for tumor-targeted delivery of docetaxel. Biomaterials. 2011;32(29):7181–90.

    Article  CAS  PubMed  Google Scholar 

  183. Liu Y, Sun J, Cao W, Yang J, Lian H, Li X, et al. Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Int J Pharm. 2011;421(1):160–9.

    Article  CAS  PubMed  Google Scholar 

  184. Yao J, Zhang L, Zhou J, Liu H, Zhang Q. Efficient simultaneous tumor targeting delivery of all-trans retinoid acid and paclitaxel based on hyaluronic acid-based multifunctional nanocarrier. Mol Pharm. 2013;10(3):1080–91.

    Article  CAS  PubMed  Google Scholar 

  185. Xu M, Qian J, Suo A, Wang H, Yong X, Liu X, et al. Reduction/pH dual-sensitive PEGylated hyaluronan nanoparticles for targeted doxorubicin delivery. Carbohydr Polym. 2013;98(1):181–8.

    Article  CAS  PubMed  Google Scholar 

  186. Qiu L, Li Z, Qiao M, Long M, Wang M, Zhang X, et al. Self-assembled pH-responsive hyaluronic acid–g-poly (l-histidine) copolymer micelles for targeted intracellular delivery of doxorubicin. Acta Biomater. 2014;10(5):2024–35.

    Article  CAS  PubMed  Google Scholar 

  187. Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res. 2007;41(1):120–9.

    Article  PubMed  CAS  Google Scholar 

  188. Leathers TD. Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol. 2003;62(5–6):468–73.

    Article  CAS  PubMed  Google Scholar 

  189. Akiyoshi K, Deguchi S, Moriguchi N, Yamaguchi S, Sunamoto J. Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules. 1993;26(12):3062–8.

    Article  CAS  Google Scholar 

  190. Akiyoshi K, Nishikawa T, Mitsui Y, Miyata T, Kodama M, Sunamoto J. Self-assembly of polymer amphiphiles: thermodynamics of complexation between bovine serum albumin and self-aggregate of cholesterol-bearing pullulan. Colloids Surf A Physicochem Eng Asp. 1996;112(2):91–5.

    Article  CAS  Google Scholar 

  191. Nishikawa T, Akiyoshi K, Sunamoto J. Supramolecular assembly between nanoparticles of hydrophobized polysaccharide and soluble protein complexation between the self-aggregate of cholesterol-bearing pullulan and alpha-chymotrypsin. Macromolecules. 1994;27(26):7654–9.

    Article  CAS  Google Scholar 

  192. Na K, Lee TB, Park K-H, Shin E-K, Lee Y-B, Choi H-K. Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur J Pharm Sci. 2003;18(2):165–73.

    Article  CAS  PubMed  Google Scholar 

  193. Lee SJ, Shim Y-H, Oh J-S, Jeong Y-I, Park I-K, Lee HC. Folic-acid-conjugated pullulan/poly(DL-lactide-co-glycolide) graft copolymer nanoparticles for folate-receptor-mediated drug delivery. Nanoscale Res Lett. 2015;10(1):1–11.

    Article  CAS  Google Scholar 

  194. Oh JK. Polylactide (PLA)-based amphiphilic block copolymers: synthesis, self-assembly, and biomedical applications. Soft Matter. 2011;7(11):5096–108.

    Article  CAS  Google Scholar 

  195. Wang Y, Liu Y, Liu Y, Wang Y, Wu J, Li R, et al. pH-sensitive pullulan-based nanoparticles for intracellular drug delivery. Polym Chem. 2014;5(2):423–32.

    Article  CAS  Google Scholar 

  196. Chen L, Wang X, Ji F, Bao Y, Wang J, Wang X, et al. New bifunctional-pullulan-based micelles with good biocompatibility for efficient co-delivery of cancer-suppressing p53 gene and doxorubicin to cancer cells. RSC Adv. 2015;5(115):94719–31.

    Article  CAS  Google Scholar 

  197. Wang J, Cui S, Bao Y, Xing J, Hao W. Tocopheryl pullulan-based self assembling nanomicelles for anti-cancer drug delivery. Mater Sci Eng C. 2014;43:614–21.

    Article  CAS  Google Scholar 

  198. Li H, Bian S, Huang Y, Liang J, Fan Y, Zhang X. High drug loading pH-sensitive pullulan-DOX conjugate nanoparticles for hepatic targeting. J Biomed Mater Res A. 2014;102(1):150–9.

    Article  PubMed  CAS  Google Scholar 

  199. Wang Y, Chen H, Liu Y, Wu J, Zhou P, Wang Y, et al. pH-sensitive pullulan-based nanoparticle carrier of methotrexate and combretastatin A4 for the combination therapy against hepatocellular carcinoma. Biomaterials. 2013;34(29):7181–90.

    Article  CAS  PubMed  Google Scholar 

  200. Pinzi S, Garcia I, Lopez-Gimenez F, Luque de Castro M, Dorado G, Dorado M. The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energy Fuel. 2009;23(5):2325–41.

    Article  CAS  Google Scholar 

  201. Lee J-H, Jung S-W, Kim I-S, Jeong Y-I, Kim Y-H, Kim S-H. Polymeric nanoparticle composed of fatty acids and poly(ethylene glycol) as a drug carrier. Int J Pharm. 2003;251(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  202. Lukyanov AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev. 2004;56(9):1273–89.

    Article  CAS  PubMed  Google Scholar 

  203. Arshad M, Saied S, Ullah A. PEG–lipid telechelics incorporating fatty acids from canola oil: synthesis, characterization and solution self-assembly. RSC Adv. 2014;4(50):26439–46.

    Article  CAS  Google Scholar 

  204. Zhang S, Arshad M, Ullah A. Drug encapsulation and release behavior of telechelic nanoparticles. Nanotechnology. 2015;26(41):415703.

    Article  PubMed  CAS  Google Scholar 

  205. Sahu A, Bora U, Kasoju N, Goswami P. Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)–palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomater. 2008;4(6):1752–61.

    Article  CAS  PubMed  Google Scholar 

  206. Feng X, Wang C, Lin B, Xu F. Methoxy poly(ethylene glycol)-conjugated linoleic acid polymeric micelles for paclitaxel delivery. Colloid J. 2006;68(6):779–83.

    Article  CAS  Google Scholar 

  207. Li YY, Zhang XZ, Kim GC, Cheng H, Cheng SX, Zhuo RX. Thermosensitive Y-shaped micelles of poly(oleic acid-Y-N-isopropylacrylamide) for drug delivery. Small. 2006;2(7):917–23.

    Article  CAS  PubMed  Google Scholar 

  208. Gao Q, Liang Q, Yu F, Xu J, Zhao Q, Sun B. Synthesis and characterization of novel amphiphilic copolymer stearic acid-coupled F127 nanoparticles for nano-technology based drug delivery system. Colloids Surf B Biointerfaces. 2011;88(2):741–8.

    Article  CAS  PubMed  Google Scholar 

  209. Heard CM, Gallagher SJ, Congiatu C, Harwood J, Thomas CP, McGuigan C, et al. Preferential π–π complexation between tamoxifen and borage oil/γ linolenic acid: transcutaneous delivery and NMR spectral modulation. Int J Pharm. 2005;302(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  210. Song Z, Zhu W, Liu N, Yang F, Feng R. Linolenic acid-modified PEG-PCL micelles for curcumin delivery. Int J Pharm. 2014;471(1):312–21.

    Article  CAS  PubMed  Google Scholar 

  211. Lligadas G, Ronda JC, Galia M, Cadiz V. Renewable polymeric materials from vegetable oils: a perspective. Mater Today. 2013;16(9):337–43.

    Article  CAS  Google Scholar 

  212. Petrović ZS. Polyurethanes from vegetable oils. Polym Rev. 2008;48(1):109–55.

    Article  CAS  Google Scholar 

  213. Williams CK, Hillmyer MA. Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polym Rev. 2008;48(1):1–10.

    Article  CAS  Google Scholar 

  214. Berkland C, Kipper MJ, Narasimhan B, Kim KK, Pack DW. Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres. J Control Release. 2004;94(1):129–41.

    Article  CAS  PubMed  Google Scholar 

  215. Shikanov A, Vaisman B, Krasko MY, Nyska A, Domb AJ. Poly(sebacic acid-co-ricinoleic acid) biodegradable carrier for paclitaxel: in vitro release and in vivo toxicity. J Biomed Mater Res A. 2004;69(1):47–54.

    Article  PubMed  CAS  Google Scholar 

  216. Zhang N, Guo SR. Synthesis and micellization of amphiphilic poly(sebacic anhydride)–poly(ethylene glycol)–poly(sebacic anhydride) block copolymers. J Polym Sci A Polym Chem. 2006;44(3):1271–8.

    Article  CAS  Google Scholar 

  217. Zhang N, Guo SR, Li HQ, Liu L, Li ZH, Gu JR. Synthesis of three types of amphiphilic poly(ethylene glycol)-block-poly(sebacic anhydride) copolymers and studies of their micellar solutions. Macromol Chem Phys. 2006;207(15):1359–67.

    Article  CAS  Google Scholar 

  218. Wu C, Fu J, Zhao Y. Novel nanoparticles formed via self-assembly of poly(ethylene glycol-b-sebacic anhydride) and their degradation in water. Macromolecules. 2000;33(24):9040–3.

    Article  CAS  Google Scholar 

  219. Lai P-L, Hsu C-C, Liu T-H, Hong D-W, Chen L-H, Chen W-J, et al. Mixed micelles from methoxy poly(ethylene glycol)–polylactide and methoxy poly(ethylene glycol)–poly(sebacic anhydride) copolymers as drug carriers. React Funct Polym. 2012;72(11):846–55.

    Article  CAS  Google Scholar 

  220. Zhang J, Liang Y, Li N, Zhao X, Hu R, Hu F, et al. Poly(ether-ester anhydride)-based amphiphilic block copolymer nanoparticle as delivery devices for paclitaxel. Micro Nano Lett. 2012;7(2):183–7.

    Article  CAS  Google Scholar 

  221. Zhao A, Zhou Q, Chen T, Weng J, Zhou S. Amphiphilic PEG-based ether-anhydride terpolymers: synthesis, characterization, and micellization. J Appl Polym Sci. 2010;118(6):3576–85.

    Article  CAS  Google Scholar 

  222. Morimoto N, Endo T, Iwasaki Y, Akiyoshi K. Design of hybrid hydrogels with self-assembled nanogels as cross-linkers: interaction with proteins and chaperone-like activity. Biomacromolecules. 2005;6(4):1829–34.

    Article  CAS  PubMed  Google Scholar 

  223. Bekkara-Aounallah F, Gref R, Othman M, Reddy LH, Pili B, Allain V, et al. Novel PEGylated nanoassemblies made of self-assembled squalenoyl nucleoside analogues. Adv Funct Mater. 2008;18(22):3715–25.

    Article  CAS  Google Scholar 

  224. Greenwald RB, Gilbert CW, Pendri A, Conover CD, Xia J, Martinez A. Drug delivery systems: water soluble taxol 2′-poly(ethylene glycol) ester prodrugs design and in vivo effectiveness. J Med Chem. 1996;39(2):424–31.

    Article  CAS  PubMed  Google Scholar 

  225. Gautrot JE, Zhu X. Macrocyclic bile acids: from molecular recognition to degradable biomaterial building blocks. J Mater Chem. 2009;19(32):5705–16.

    Article  CAS  Google Scholar 

  226. Zhu X-X, Nichifor M. Polymeric materials containing bile acids. Acc Chem Res. 2002;35(7):539–46.

    Article  CAS  PubMed  Google Scholar 

  227. Wang H, Zhao P, Liang X, Gong X, Song T, Niu R, et al. Folate-PEG coated cationic modified chitosan–cholesterol liposomes for tumor-targeted drug delivery. Biomaterials. 2010;31(14):4129–38.

    Article  CAS  PubMed  Google Scholar 

  228. Oba M, Miyata K, Osada K, Christie RJ, Sanjoh M, Li W, et al. Polyplex micelles prepared from ω-cholesteryl PEG-polycation block copolymers for systemic gene delivery. Biomaterials. 2011;32(2):652–63.

    Article  CAS  PubMed  Google Scholar 

  229. Wang Y, Wang L-S, Goh S-H, Yang Y-Y. Synthesis and characterization of cationic micelles self-assembled from a biodegradable copolymer for gene delivery. Biomacromolecules. 2007;8(3):1028–37.

    Article  CAS  PubMed  Google Scholar 

  230. Wen J, Mao HQ, Li W, Lin KY, Leong KW. Biodegradable polyphosphoester micelles for gene delivery. J Pharm Sci. 2004;93(8):2142–57.

    Article  CAS  PubMed  Google Scholar 

  231. Kim I-S, Kim S-H. Evaluation of polymeric nanoparticles composed of cholic acid and methoxy poly(ethylene glycol). Int J Pharm. 2001;226(1):23–9.

    Article  CAS  PubMed  Google Scholar 

  232. Kim C, Lee SC, Kang SW, Kwon IC, Kim Y-H, Jeong SY. Synthesis and the micellar characteristics of poly(ethylene oxide)-deoxycholic acid conjugates. Langmuir. 2000;16(11):4792–7.

    Article  CAS  Google Scholar 

  233. Hofmann AM, Wurm F, Hühn E, Nawroth T, Langguth P, Frey H. Hyperbranched polyglycerol-based lipids via oxyanionic polymerization: toward multifunctional stealth liposomes. Biomacromolecules. 2010;11(3):568–74.

    Article  CAS  PubMed  Google Scholar 

  234. Yang D-B, Zhu J-B, Huang Z-J, Ren H-X, Zheng Z-J. Synthesis and application of poly (ethylene glycol)–cholesterol (Chol–PEG m) conjugates in physicochemical characterization of nonionic surfactant vesicles. Colloids Surf B Biointerfaces. 2008;63(2):192–9.

    Article  CAS  PubMed  Google Scholar 

  235. Liu X-M, Wang L-S, Wang L, Huang J, He C. The effect of salt and pH on the phase-transition behaviors of temperature-sensitive copolymers based on N-isopropylacrylamide. Biomaterials. 2004;25(25):5659–66.

    Article  CAS  PubMed  Google Scholar 

  236. Xu JP, Ji J, Chen WD, Shen JC. Novel biomimetic surfactant: synthesis and micellar characteristics. Macromol Biosci. 2005;5(2):164–71.

    Article  CAS  PubMed  Google Scholar 

  237. Ray JG, Ly JT, Savin DA. Peptide-based lipid mimetics with tunable core properties via thiol–alkyne chemistry. Polym Chem. 2011;2(7):1536–41.

    Article  CAS  Google Scholar 

  238. Akiyoshi K, Ueminami A, Kurumada S, Nomura Y. Self-association of cholesteryl-bearing poly (L-lysine) in water and control of its secondary structure by host-guest interaction with cyclodextrin. Macromolecules. 2000;33(18):6752–6.

    Article  CAS  Google Scholar 

  239. Zhou Y, Briand VA, Sharma N, S-K A, Kasi RM. Polymers comprising cholesterol: synthesis, self-assembly, and applications. Materials. 2009;2(2):636–60.

    Article  CAS  Google Scholar 

  240. Xu J-P, Ji J, Chen W-D, Shen J-C. Novel biomimetic polymersomes as polymer therapeutics for drug delivery. J Control Release. 2005;107(3):502–12.

    Article  CAS  PubMed  Google Scholar 

  241. Chaw C-S, Chooi K-W, Liu X-M, Tan C-W, Wang L, Yang Y-Y. Thermally responsive core-shell nanoparticles self-assembled from cholesteryl end-capped and grafted polyacrylamides: drug incorporation and in vitro release. Biomaterials. 2004;25(18):4297–308.

    Article  CAS  PubMed  Google Scholar 

  242. Liu L, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC, et al. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG–TAT for drug delivery across the blood–brain barrier. Biomaterials. 2008;29(10):1509–17.

    Article  CAS  PubMed  Google Scholar 

  243. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomedicine. 2006;2(2):53–65.

    Article  CAS  PubMed  Google Scholar 

  244. Kokkoli E, Mardilovich A, Wedekind A, Rexeisen EL, Garg A, Craig JA. Self-assembly and applications of biomimetic and bioactive peptide-amphiphiles. Soft Matter. 2006;2(12):1015–24.

    Article  CAS  Google Scholar 

  245. Cui H, Webber MJ, Stupp SI. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Peptide Sci. 2010;94(1):1–18.

    Article  CAS  Google Scholar 

  246. Torchilin VP, Lukyanov AN. Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discov Today. 2003;8(6):259–66.

    Article  CAS  PubMed  Google Scholar 

  247. Mart RJ, Osborne RD, Stevens MM, Ulijn RV. Peptide-based stimuli-responsive biomaterials. Soft Matter. 2006;2(10):822–35.

    Article  CAS  Google Scholar 

  248. Elzoghby AO, Samy WM, Elgindy NA. Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release. 2012;161(1):38–49.

    Article  CAS  PubMed  Google Scholar 

  249. Chandna P, Khandare JJ, Ber E, Rodriguez-Rodriguez L, Minko T. Multifunctional tumor-targeted polymer-peptide-drug delivery system for treatment of primary and metastatic cancers. Pharm Res. 2010;27(11):2296–306.

    Article  CAS  PubMed  Google Scholar 

  250. Mumcuoglu D, Sardan M, Tekinay T, Guler MO, Tekinay AB. Oligonucleotide delivery with cell surface binding and cell penetrating peptide amphiphile nanospheres. Mol Pharm. 2015;12(5):1584–91.

    Article  CAS  PubMed  Google Scholar 

  251. Luan L, Meng Q, Xu L, Meng Z, Yan H, Liu K. Peptide amphiphiles with multifunctional fragments promoting cellular uptake and endosomal escape as efficient gene vectors. J Mater Chem B. 2015;3(6):1068–78.

    Article  CAS  Google Scholar 

  252. Leite DM, Barbu E, Pilkington GJ, Lalatsa A. Peptide self-assemblies for drug delivery. Curr Top Med Chem. 2015;15(22):2277–89.

    Article  CAS  PubMed  Google Scholar 

  253. Xu X, Li Y, Li H, Liu R, Sheng M, He B, et al. Smart nanovehicles based on pH-triggered disassembly of supramolecular peptide-amphiphiles for efficient intracellular drug delivery. Small. 2014;10(6):1133–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aman Ullah Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhang, S., Jin, L., Arshad, M., Ullah, A. (2017). Renewable Biomaterials as Nanocarriers for Drug and Gene Delivery. In: Sharma, H., Muresanu, D., Sharma, A. (eds) Drug and Gene Delivery to the Central Nervous System for Neuroprotection. Springer, Cham. https://doi.org/10.1007/978-3-319-57696-1_1

Download citation

Publish with us

Policies and ethics