Skip to main content

Implantable Medical Devices Treated with Antimicrobial Agents

  • Chapter
  • First Online:
Antimicrobial Coatings and Modifications on Medical Devices
  • 1240 Accesses

Abstract

Implantable medical devices possess great utility for patients who require medical intervention and/or replacement of biological functions. Though providing a critical purpose, medical devices are prone to complications such as infection that often result in significant morbidity and mortality. Medical device-associated infections present a large challenge to the healthcare industry in terms of treatment and cost. Several approaches to mitigate infection have been explored and most focus on preventing initial colonization of the device with infectious microorganisms. One method that has been employed successfully in the medical device industry is the incorporation of antimicrobial agents in devices to inhibit or kill invading microbes. This chapter discusses current products in use in the healthcare field as well as some promising active agents that are in the beginning or advanced stages of market approval and release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Medical devices guidance document, Classification of medical devices, European Commission DG Health and Consumer (2010)

    Google Scholar 

  2. Guidance document from U.S. Food and Drug Administration. Medical device Use-Safety: incorporating Human Factors Engineering into Risk management (2000)

    Google Scholar 

  3. Health care-associated infections, Fact Sheet from World Health Organization. http://www.who.int/gpsc/country_work/gpsc_ccisc_fact_sheet_en.pdf

  4. P.S. Stewart, Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol. 292(2), 107–113 (2002)

    Article  Google Scholar 

  5. E.R.M. Sydnor, T.M. Perl, Hospital epidemiology and infection control in acute-care settings. Clin. Microbiol. Rev. 24(1), 141–173 (2011)

    Article  Google Scholar 

  6. E. Zimlichman, D. Henderson, O. Tamir, et al., Health care–associated infections: a meta-analysis of costs and financial impact on the US health care system. JAMA Intern. Med. 173(22), 2039–2046 (2013)

    Article  Google Scholar 

  7. L.M. Baddour, A.E. Epstein, C.C. Erickson, B.P. Knight, M.E. Levison, P.B. Lockhart, F.A. Masoudi, E.J. Okum, W.R. Wilson, L.B. Beerman, A.F. Bolger, N.A.M. Estes III, M. Gewitz, J.W. Newburger, E.B. Schron, K.A. Taubert, Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association. Circulation 121, 458–477 (2010)

    Article  Google Scholar 

  8. M.A. Olsen, S. Chu-Ongsakul, K.E. Brandt, J.R. Dietz, J. Mayfeld, V.J. Fraser, Hospital-associated costs due to surgical site infection after breast surgery. Arch. Surg. 143, 53–60 (2008)

    Article  Google Scholar 

  9. S.M. Rizwan, C.A. Henrikson, M. Jo Braid-Forbes, K.F. Forbes, D.J. Lerner, Increased long-term mortality in patients with cardiovascular implantable electronic device infections. Pacing Clin. Electrophysiol. 38(2), 231–239 (2015)

    Article  Google Scholar 

  10. P.M. Olaechea, M. Palomar, F. Álvarez-Lerma, J.J. Otal, J. Insausti, M.J. López-Pueyo, ENVIN-HELICS Group, Morbidity and mortality associated with primary and catheter-related bloodstream infections in critically ill patients. Rev. Esp. Quimioter. 26(1), 21–29 (2013)

    Google Scholar 

  11. N.P. O’Grday, M. Alexander, E.P. Dellinger, et al., Guidelines for the prevention of intravascular catheter related infections. Infect. Control Hosp. Epidemiol. 23(12), 759–769 (2002)

    Article  Google Scholar 

  12. I.I. Siempos, P. Kopterides, I. Tsangaris, I. Dimopoulou, A.E. Armaganidis, Impact of catheter-related bloodstream infections on the mortality of critically ill patients: a meta-analysis. Crit. Care Med. 37(7), 2283–2289 (2009)

    Article  Google Scholar 

  13. D.G. Maki, D.M. Kluger, C.J. Crnich, The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin. Proc. 81(9), 1159–1171 (2006)

    Article  Google Scholar 

  14. D. Pittet, D. Tarara, R.P. Wenzel, Nosocomial bloodstream infection in critically ill patients. Excess length of stay, extra costs, and attributable mortality. JAMA 271(20), 1598–1601 (1994)

    Article  Google Scholar 

  15. R.D. Scott, The Direct Medical Costs of Healthcare-Associated Infections in U.S. Hospitals and the Benefits of Prevention. (Centers for Disease Control and Prevention, Atlanta, 2009). http://www.cdc.gov/HAI/pdfs/hai/Scott_CostPaper.pdf

  16. S. Venkatram, S. Rachmale, B. Kanna, Study of device use adjusted rates in health care-associated infections after implementation of “bundles” in a closed-model medical intensive care unit. J. Crit. Care 25(1), 174–178 (2010)

    Article  Google Scholar 

  17. M.M. Levy, R.P. Dellinger, S.R. Townsend, W.T. Linde-Zwirble, J.C. Marshall, J. Bion, et al., The surviving sepsis campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Intensive Care Med. 36(2), 222–231 (2010)

    Article  Google Scholar 

  18. T. Mayumi, T. Takada, K. Hirata, M. Yoshida, M. Sekimoto, M. Hirota, et al., Pancreatitis bundles. J. Hepatobiliary Pancreat. Sci. 17, 87 (2010)

    Article  Google Scholar 

  19. R.J. Powers, D.W. Wirtschafter, Decreasing central line associated bloodstream infection in neonatal intensive care. Clin. Perinatol. 37(1), 247–272 (2010)

    Article  Google Scholar 

  20. J. Rello, H. Lode, G. Cornaglia, R. Masterton, A European care bundle for prevention of ventilator-associated pneumonia. Intensive Care Med. 36(5), 773–780 (2010)

    Article  Google Scholar 

  21. V. Chopra, S.L. Krein, R.N. Olmsted, N. Safdar, S. Saint, Prevention of central line-associated bloodstream infections: brief update review, in Chapter 10 in Evidence Reports/Technology Assessments, (Agency for Healthcare Research and Quality (US), Rockville, 2013)

    Google Scholar 

  22. N.P. O’Grady, M. Alexander, L.A. Burns, E.P. Dellinger, J. Garland, S.O. Heard, P.A. Lipsett, H. Masur, L.A. Mermel, M.L. Pearson, I.I. Raad, A. Randolph, M.E. Rupp, S. Saint, the Healthcare Infection Control Practices Advisory Committee (HICPAC), Guidelines for the prevention of intravascular catheter-related infections. Clin. Infect. Dis. 52, e162 (2011).Centers for Disease Control and Prevention

    Google Scholar 

  23. I.I. Raad, Commentary: zero tolerance for catheter-related bloodstream infections: the nonnegotiable objective. Infect. Control Hosp. Epidemiol. 29, 951–953 (2008)

    Article  Google Scholar 

  24. M.Z. David, R.S. Daum, Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev. 23(3), 616–687 (2010). doi:10.1128/CMR.00081-09

    Article  Google Scholar 

  25. E.Y. Furuya et al., Central line bundle implementation in US intensive care units and impact on bloodstream infections. PLoS One 18, e15452 (2011)

    Article  Google Scholar 

  26. P. Pronovost et al., An intervention to decrease catheter-related bloodstream infections in the ICU. N. Engl. J. Med. 355, 2725–2732 (2006)

    Article  Google Scholar 

  27. M. Rupp, S. Lisco, P. Lipsett, T. Perl, et al., Effect of a second-generation venous catheter impregnated with chlorhexidine and silver sulfadiazine on central catheter related infections. Ann. Intern. Med. 143(8), 570–580 (2005)

    Article  Google Scholar 

  28. H. Hanna et al., Long-term silicone central venous catheter-related bloodstream infection in cancer patients: a prospective randomized clinical trial. J. Clin. Oncol. 22, 3163–3171 (2004)

    Article  Google Scholar 

  29. L. Lorente, M. Lecuona, A. Jiménez, L. Lorenzo, R. Santacreu, S. Ramos, E. Hurtado, M. Buitrago, M.L. Mora, Efficiency of chlorhexidine silver sulfadiazine-impregnated venous catheters at subclavian sites. Am. J. Infect. Control 43(7), 711–714 (2015)

    Article  Google Scholar 

  30. T. Ostendorf, A. Meinhold, C. Harter, H. Salwender, et al., Chlorhexidine and silver sulfadiazine coated central venous catheters in haematological patients – A doubleblind, randomized, prospective, controlled trial. Support Care Cancer 13, 993–1000 (2005)

    Article  Google Scholar 

  31. C. Brun-Buisson, F. Doyon, J. Sollet, J. Cochard, et al., Prevention of intravascular catheter-related infection with newer chlorhexidine-silver sulfadiazine-coated catheters: a randomized controlled trial. Intensive Care Med. 30, 837–843 (2004)

    Article  Google Scholar 

  32. I. Chatzinikolaou, H. Hanna, L. Graviss, G. Chaiban, C. Perego, R. Arbuckle, R. Champlin, R. Darouiche, G. Samonis, I. Raad, Clinical experience with minocycline and rifampin-impregnated central venous catheters in bone marrow transplantation recipients: efficacy and low risk of developing staphylococcal resistance. Infect. Control Hosp. Epidemiol. 24(12), 961–963 (2003)

    Article  Google Scholar 

  33. E.F. Matthew, F. Konstantinos, A.B. Ioannis, C. Ioannis, Rifampicin-impregnated central venous catheters: a meta-analysis of randomized controlled trials. J. Antimicrob. Chemother. 59, 359–369 (2007)

    Article  Google Scholar 

  34. J. Marschall, L.A. Mermel, M. Fakih, L. Hadaway, A. Kallen, N.P. O’Grady, A.M. Pettis, M.E. Rupp, T. Sandora, L.L. Maragakis, D.S. Yokoe, Society for Healthcare Epidemiology of America, Strategies to prevent central line-associated bloodstream infections in acute care hospitals: 2014 update. Infect. Control Hosp. Epidemiol. (ICHE) 35(7), 753 (2014)

    Google Scholar 

  35. G. Bertini, S. Elia, F. Ceciarini, C. Dani, Reduction of catheter-related bloodstream infections in preterm infants by the use of catheters with the AgION antimicrobial system. Early Hum. Dev. 89(1), 21–25 (2013)

    Article  Google Scholar 

  36. N. Shariff, E. Eby, E. Adelstein, S. Jain, A. Shalaby, S. Saba, N.C. Wang, D. Schwartzman, Health and economic outcomes associated with use of an antimicrobial envelope as a standard of care for cardiac implantable electronic device implantation. J. Cardiovasc. Electrophysiol. 26, 783–789 (2015)

    Article  Google Scholar 

  37. M.J. Kolek, W.F.D. Dresen, Q.S. Wells, C.R. Ellis, Use of an antibacterial envelope is associated with reduced cardiac implantable electronic device infections in high-risk patients. Pacing Clin. Electrophysiol. 36, 354–361 (2013)

    Article  Google Scholar 

  38. G.S. Rutkoff, The influence of an antimicrobial peripherally inserted central catheter on central line-associated bloodstream infections in a hospital environment. J. Assoc. Vasc. Access 19(3), 172–179 (2014)

    Article  Google Scholar 

  39. H.D. Tavianini, V. Deacon, J. Negrete, S. Salapka, Up for the challenge: eliminating peripherally inserted central catheter infections in a complex patient population. J. Assoc. Vasc. Access 19(3), 159–164 (2014)

    Article  Google Scholar 

  40. B.D. Ratter, A.S. Hoffmann, F.J. Schoen, J.E. Lemons, Biomaterials Science – An Introduction to Materials in Medicine (Elsevier Academic Press, London, 2004)

    Google Scholar 

  41. W.Y. Wong, J.D. Brozino, Biomaterials (CRC Press, Boca Raton, 2007)

    Book  Google Scholar 

  42. T.S. Hin, Engineering of Materials for Biomedical Applications (World Scientific Pub., Hackensack, 2004)

    Book  Google Scholar 

  43. A.H. Hogt, T.J. Dankert, J.A. De Vries, J. Feijen, Adhesion of coagulase-negative staphlococci to biomaterials. J. Gen. Microbiol. 129, 2959–2968 (1983)

    Google Scholar 

  44. H. Palza, Antimicrobial polymers with metal nanoparticles. Int. J. Mol. Sci. 16, 2099–2116 (2015)

    Article  Google Scholar 

  45. H. Shintani, Modification of medical device surface to attain anti-infection. Trends Biomater. Artif. Organs 18(1), 1–8 (2004)

    Google Scholar 

  46. Y.M. Chen, A.P. Dai, Y. Shi, Z.J. Liu, M.F. Gong, X.B. Yin, Effectiveness of silver-impregnated central venous catheters for preventing catheter-related blood stream infections: a meta-analysis. Int. J. Infect. Dis. 29, 279–286 (2014)

    Article  Google Scholar 

  47. L. Bouadma, M. Wolff, J.C. Lucet, Ventilator-associated pneumonia and its prevention. Curr. Opin. Infect. Dis. 25(4), 395–404 (2012)

    Article  Google Scholar 

  48. J.D. Hunter, Ventilator associated pneumonia. BMJ 344, e3325 (2012)

    Article  Google Scholar 

  49. X. Li, Q. Yuan, L. Wang, L. Du, L. Deng, Silver-coated endotracheal tube versus non-coated endotracheal tube for preventing ventilator-associated pneumonia among adults: a systematic review of randomized controlled trials. J. Evid. Based Med. 5(1), 25–30 (2012)

    Article  Google Scholar 

  50. T. Kane, F. Claman, Silver tube coatings in pneumonia prevention. Nurs. Times 108(36), 21–23 (2012)

    Google Scholar 

  51. T.B. Lam, M.I. Omar, E. Fisher, K. Gillies, S. MacLennan, Types of indwelling urethral catheters for short-term catheterization in hospitalized adults. Cochrane Database Syst. Rev. 9, CD004013 (2014)

    Google Scholar 

  52. J. Mahan, D. Seligson, S.L. Henry, P. Hynes, J. Dobbins, Factors in pin tract infections. Orthopedics 14, 305–308 (1991)

    Google Scholar 

  53. L.L. McKenzie, In search of a standard for pin site care. Orthop. Nurs. 18, 73–78 (1999)

    Article  Google Scholar 

  54. L.M. Coester, J.V. Nepola, J. Allen, J.L. Marsh, The effects of silver coated external fixation pins. Iowa Orthop. J. 26, 48–53 (2006)

    Google Scholar 

  55. A. Massè, A. Bruno, M. Bosetti, A. Biasibetti, M. Cannas, P. Gallinaro, Prevention of pin track infection in external fixation with silver coated pins: clinical and microbiological results. J. Biomed. Mater. Res. 53, 600–604 (2000)

    Article  Google Scholar 

  56. G. McDonnell, A.D. Russell, Antiseptics and disinfectants: activity, action, and resistance. Clin. Microbiol. Rev. 12(1), 147–179 (1999)

    Google Scholar 

  57. M.A. al-Tannir, H.S. Goodman, A review of chlorhexidine and its use in special populations. Spec. Care Dentist. 14, 116–122 (1994)

    Article  Google Scholar 

  58. S.F. Bloomfield, Chlorhexidine and Iodine Formulations, in Handbook of Disinfectants and Antiseptics, ed. by J. M. Ascenzi (Marcel Dekker, New York, 1996), pp. 133–158

    Google Scholar 

  59. D.S. Paulson, Efficacy evaluation of a 4% chlorhexidine gluconate as a full-body shower wash. Am. J. Infect. Control 21, 205–209 (1993)

    Article  Google Scholar 

  60. A.R. Longworth, Chlorhexidine, in Inhibition and Destruction of the Microbial Cell, ed. by W. B. Hugo (Academic Press Inc, New York, 1971), pp. 95–106

    Google Scholar 

  61. M. Teuber, Action of polymyxin B on bacterial membranes. II. Formation of lipophilic complexes with phosphatidic acid and phosphatidyl-glycerol. Z. Naturforsch. 28c, 476–477 (1973)

    Google Scholar 

  62. L. Lorente, M. Lecuona, A. Jiménez, L. Lorenzo, R. Santacreu, L. Raja, O. Gonzalez, M.L. Mora, Chlorhexidine-silver sulfadiazine-impregnated venous catheters save costs. Am. J. Infect. Control 42, 321–324 (2014)

    Article  Google Scholar 

  63. P. Ramritu, K. Halton, P. Collignon, D. Cook, D. Fraenkel, D. Battistutta, M. Whitby, N. Graves, A systematic review comparing the relative effectiveness of antimicrobial-coated catheters in intensive care units. Am. J. Infect. Control 36(2), 104–117 (2008)

    Article  Google Scholar 

  64. P. Broxton, P.M. Woodcock, P. Gilbert, Binding of some polyhexamethylene biguanides to the cell envelope of Escherichia coli ATCC 8739. Microbios 41(163), 15–22 (1984)

    Google Scholar 

  65. P. Broxton, P.M. Woodcock, F. Heatley, P. Gilbert, Interaction of some polyhexamethylene biguanides and membrane phospholipids in Escherichia coli. J. Appl. Bacteriol. 57(1), 115–124 (1984)

    Article  Google Scholar 

  66. T. Ikeda, A. Ledwith, C.H. Bamford, R.A. Hann, Interaction of a polymeric biguanide biocide with phospholipids membranes. Biochim. Biophys. Acta 769(1), 57–66 (1984)

    Article  Google Scholar 

  67. I. Krikava, M. Kolar, B. Garajova, T. Balik, A. Sevcikova, J. Pachl, P. Sevcik, R. Trubac, Polyhexanide anti-infective coating of central venous catheters in prevention of catheter colonization and bloodstream infection: study HC-G-H-0507. Crit. Care 15(Suppl 1), P229 (2011)

    Article  Google Scholar 

  68. A.M. Chaftari, A. El Zakhem, M.A. Jamal, Y. Jiang, R. Hachem, I. Raad, The use of minocycline-rifampin coated central venous catheters for exchange of catheters in the setting of Staphylococcus aureus central line associated bloodstream infections. BMC Infect. Dis. 14, 518 (2014)

    Article  Google Scholar 

  69. R. Pickard, T. Lam, G. Maclennan, K. Starr, M. Kilonzo, G. Mcpherson, K. Gillies, A. McDonald, K. Walton, B. Buckley, C. Glazener, C. Boachie, J. Burr, J. Norrie, L. Vale, A. Grant, J. N’dow, Types of urethral catheter for reducing symptomatic urinary tract infections in hospitalised adults requiring short-term catheterisation: multicentre randomised controlled trial and economic evaluation of antimicrobial-and antiseptic-impregnated urethral catheters (the CATHETER trial). Health Technol. Assess. 16(47), 1–197 (2012)

    Google Scholar 

  70. Centers for Disease Control and Prevention (CDC), U.S. Department of Health, and Human Services, REPORT—Antibiotic Resistance Threats in the United States (Centers for Disease Control and Prevention, Atlanta, 2013), pp. 1–114

    Google Scholar 

  71. S.M. Purrello, J. Garau, E. Giamarellos, T. Mazzei, F. Pea, A. Soriano, S. Stefani, Methicillin-resistant Staphylococcus aureus infections: A review of the currently available treatment options. J. Glob. Antimicrob Resist. 7, 178–186 (2016)

    Article  Google Scholar 

  72. H.P. Schweizer, Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiol. Lett. 202(1), 1–7 (2001.) Review

    Article  Google Scholar 

  73. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm517478.htm

  74. H. Brotherhood, D. Lange, B.H. Chew, Advances in ureteral stents. Transl. Androl. Urol. 3(3), 314–319 (2014)

    Google Scholar 

  75. C.E. Mendez-Probst, L.W. Goneau, K.W. MacDonald, L. Nott, S. Seney, C.N. Elwood, D. Lange, B.H. Chew, J.D. Denstedt, P.A. Cadieux, The use of triclosan eluting stents effectively reduces ureteral stent symptoms: a prospective randomized trial. BJU Int. 110(5), 749–754 (2012)

    Article  Google Scholar 

  76. S.P. Yazdankhah, A.A. Scheie, E.A. Høiby, B.T. Lunestad, E. Heir, T.Ø. Fotland, K. Naterstad, H. Kruse, Triclosan and antimicrobial resistance in bacteria: an overview. Microb. Drug Resist. 12(2), 83–90 (2006.) Review

    Article  Google Scholar 

  77. D.E. Carey, P.J. McNamara, The impact of triclosan on the spread of antibiotic resistance in the environment. Front. Microbiol. 5, 780 (2014)

    Google Scholar 

  78. S.M. Abdel-Malek, I.S. Al-Adham, C.L. Winder, T.E. Buultjens, K.M. Gartland, P.J. Collier, Antimicrobial susceptibility changes and T-OMP shifts in pyrithione-passaged planktonic cultures of Pseudomonas Aeruginosa PAO1. J. Appl. Microbiol. 92(4), 729–736 (2002)

    Article  Google Scholar 

  79. K. De Prijck, N. De Smet, K. Honraet, S. Christiaen, T. Coenye, E. Schacht, H.J. Nelis, Inhibition of Candida albicans biofilm formation by antimycotics released from modified polydimethyl siloxane. Mycopathologia 169(3), 167–174 (2010)

    Article  Google Scholar 

  80. J.N. Sharma, A. Al-Omran, S.S. Parvathy, Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15(6), 252–259 (2007)

    Article  Google Scholar 

  81. T.J. Guzik, R. Korbut, T. Adamek-Guzik, Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol. 54(4), 469–487 (2003.) Review

    Google Scholar 

  82. N. Barraud, D.J. Hassett, S.-H. Hwang, S.A. Rice, S. Kjelleberg, J.S. Webb, Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J. Bacteriol. 188(21), 7344–7353 (2006)

    Article  Google Scholar 

  83. Y. Wo, E.J. Brisbois, R.H. Bartlett, M.E. Meyerhoff, Recent advances in thromboresistant and antimicrobial polymers for biomedical applications: just say yes to nitric oxide (NO). Biomater. Sci. 4(8), 1161–1183 (2016)

    Article  Google Scholar 

  84. P. Domenico, L. Baldassarri, P.E. Schoch, K. Kaehler, M. Sasatsu, B.A. Cunha, Activities of bismuth Thiols against staphylococci and staphylococcal biofilms. Antimicrob. Agents Chemother. 45(5), 1417–1421 (2001)

    Article  Google Scholar 

  85. J.P. Folsom, B. Baker, P.S. Stewart, In vitro efficacy of bismuth Thiols against biofilms formed by bacteria isolated from human chronic wounds. J. Appl. Microbiol. 111(4), 989–996 (2011)

    Article  Google Scholar 

  86. P. Domenico, Bismuth Thiols as anti-biofilm agents. J. Microbiol. Exp 2(3), 00049 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria E. Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wagner, V.E., Gupta, N. (2017). Implantable Medical Devices Treated with Antimicrobial Agents. In: Zhang, Z., Wagner, V. (eds) Antimicrobial Coatings and Modifications on Medical Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-57494-3_5

Download citation

Publish with us

Policies and ethics