Skip to main content

Polar Microalgae: Functional Genomics, Physiology, and the Environment

  • Chapter
  • First Online:
Psychrophiles: From Biodiversity to Biotechnology

Abstract

Microalgae underpin most foodwebs in polar regions as terrestrial primary production is too limited to support these complex and productive ecosystems. The success of microalgae in these extreme and highly variable ecosystems is rooted in their evolution and adaptation. The recent application of omics approaches in addition to biochemical and physiological measurements enabled a step change in our understanding of how these important organisms are adapted to their environment and how they have evolved from non-polar anchestors. This chapter is focused on diatoms and green algae as both groups of microalgae are most prevalent in polar regions. First genomes, transcriptomes, and reverse genetic tools have recently become available for representative species from both groups. They serve as important platforms to advance studies on their ecology, evolution, and adaptation. We highlight some of the key findings from these studies and link them with biochemical and physiological data to give insights into how genes and their products have shaped important microalgae in their diverse polar environments such as oceans, sea ice, permanently frozen lakes, snow and glaciers. Data from these studies will pave the way for understanding how these key organisms and their communities are going to respond to global climate change. They already provide novel genetic resources for various different biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6:36–42. doi:10.1016/S1360-1385(00)01808-2

    Article  CAS  PubMed  Google Scholar 

  • Allen AE, Dupont CL, Oborník M et al (2011) Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473:203–207

    Article  CAS  PubMed  Google Scholar 

  • An M, Mou S, Zhang X et al (2013) Expression of fatty acid desaturase genes and fatty acid accumulation in Chlamydomonas sp. ICE-L under salt stress. Bioresour Technol 149:77–83. doi:10.1016/j.biortech.2013.09.027

    Article  CAS  PubMed  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  • Arrigo KR, Thomas DN (2004) Large scale importance of sea ice biology in the Southern Ocean. Antarct Sci 16:471–486. doi:10.1017/S0954102004002263

    Article  Google Scholar 

  • Aslam SN, Cresswell-Maynard T, Thomas DN, Underwood GJC (2012) Production and characterization of the intra- and extracellular carbohydrates and polymeric substances (Eps) of three sea-ice diatom species, and evidence for a cryoprotective role for Eps. J Phycol 48:1494–1509. doi:10.1111/jpy.12004

    Article  CAS  PubMed  Google Scholar 

  • Bayer-Giraldi M, Uhlig C, John U et al (2010) Antifreeze proteins in polar sea ice diatoms: diversity and gene expression in the genus Fragilariopsis. Environ Microbiol 12:1041–1052. doi:10.1111/j.1462-2920.2009.02149.x

    Article  CAS  PubMed  Google Scholar 

  • Bayer-Giraldi M, Weikusat I, Besir H, Dieckmann G (2011) Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice. Cryobiology 63:210–219. doi:10.1016/j.cryobiol.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  • Beil U, Thiede J (1990) Geophysical history of polar oceans: Arctic versus Antarctic. Kluwer Academic Publishers, Netherlands

    Book  Google Scholar 

  • Blanc G, Agarkova I, Grimwood J et al (2012) The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13:R39. doi:10.1186/gb-2012-13-5-r39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bluhm BA, Swadling KM, Gradinger R (2017) Sea ice as a habitat for macrograzers. In: Thomas DN (ed) Sea ice, 3rd edn. Wiley-Blackwell, Oxford, pp 394–414

    Google Scholar 

  • Bowman JP, Sa MC, Brown MV et al (1997) Diversity and association of psychrophilic bacteri in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd PW (2002) Review of environmental factors controlling phytoplankton processes in the Southern Ocean 1. J Phycol 38:844–861. doi:10.1046/j.1529-8817.2002.t01-1-01203.x

    Article  Google Scholar 

  • Boyd PW, Jickells T, Law CS et al (2007) Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions. Science 315:612–617. doi:10.1126/science.1131669

    Article  CAS  PubMed  Google Scholar 

  • Brierley AS, Thomas DN (2002) Ecology of Southern Ocean pack ice. Adv Mar Biol 43:171–276

    Article  PubMed  Google Scholar 

  • Cannone N, Guglielmin M, Gerdol R (2004) Relationships between vegetation patterns and periglacial landforms in northwestern Svalbard. Polar Biol 27:562–571. doi:10.1007/s00300-004-0622-4

    Article  Google Scholar 

  • Cao K, He M, Yang W et al (2016) The eurythermal adaptivity and temperature tolerance of a newly isolated psychrotolerant Arctic Chlorella sp. J Appl Phycol 28:877–888. doi:10.1007/s10811-015-0627-0

    Article  CAS  Google Scholar 

  • Caron DA, Gast RJ, Garneau M-E (2017) Sea ice for a habitat for micrograzers. Sea ice. In: Thomas DN (ed) Sea ice, 3rd edn. Wiley-Blackwell, Oxford, pp 370–393

    Google Scholar 

  • Cheng CHC (1998) Evolution of the diverse antifreeze proteins. Curr Opin Genet Dev 8:715–720. doi:10.1016/S0959-437X(98)80042-7

    Article  CAS  PubMed  Google Scholar 

  • Cockell CS, Stokes MD (2004) Widespread colonization by polar hypoliths H. Nature 431:414. doi:10.1038/nature03019

    Article  CAS  PubMed  Google Scholar 

  • Comiso J (2003) Large-scale characteristics and variability of the global sea ice cover. In: Thomas DN, Dieckmann G (eds) Sea ice: an introduction to its physics, chemistry, biology and geology. Blackwell Science, Oxford, pp 112–142

    Chapter  Google Scholar 

  • Cota GF (1985) Photoadaptation of high Arctic ice algae. Nature 315:219–222

    Article  CAS  Google Scholar 

  • Cottier F, Steele M, Nilsen F (2017) Sea ice and Arctic Ocean oceanography. In: Thomas DN (ed) Sea ice, 3rd edn. Wiley-Blackwell, Oxford, pp 197–215

    Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E et al (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93. doi:10.1038/nature04056

    Article  CAS  PubMed  Google Scholar 

  • De Riso V, Raniello R, Maumus F et al (2009) Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res 37:e96. doi:10.1093/nar/gkp448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309

    Article  CAS  PubMed  Google Scholar 

  • Devos N, Ingouff M, Loppes R, Matagne RF (1998) Rubisco adaptation to low temperatures: a comparative study in psychrophilic and mesophilic unicellular algae. J Phycol 34:655–660. doi:10.1046/j.1529-8817.1998.340655.x

    Article  CAS  Google Scholar 

  • Di Martino Rigano V, Vona V, Lobosco O et al (2006) Temperature dependence of nitrate reductase in the psychrophilic unicellular alga Koliella antarctica and the mesophilic alga Chlorella sorokiniana. Plant Cell Environ 29:1400–1409. doi:10.1111/j.1365-3040.2006.01523.x

    Article  CAS  Google Scholar 

  • Dieckmann GS, Hellmer HH (2003) The importance of sea ice: an overview. In: Thomas DN, Dieckmann GS (eds) Sea ice – an introduction to its physics, chemistry, biology and geology. Blackwell Science, Oxford, pp 1–21

    Google Scholar 

  • Dittmar T, Kattner G (2003) The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. Mar Chem 83:103–120. doi:10.1016/S0304-4203(03)00105-1

    Article  CAS  Google Scholar 

  • Ditullio GR, Garrison DL, Mathot S (1998) Dimethylsulfonopropionate in sea ice algae from the Ross Sea polynya. In: Lizotte M, Arrigo K (eds) Antarctic sea ice: biological processes, interaction and variability, Antarctic research series, vol 73, pp 139–146

    Chapter  Google Scholar 

  • Eddie B, Krembs C, Neuer S (2008) Characterization and growth response to temperature and salinity of psychrophilic, halotolerant Chlamydomonas sp. ARC isolated from Chukchi Sea ice. Mar Ecol Prog Ser 354:107–117. doi:10.3354/meps07243

    Article  CAS  Google Scholar 

  • Ehrenberg CG (1841) Einen Nachtrag zu dem Vortrage über Verbreitung und Einfluß des mikroskopischen Lebens in Süd- und Nordamerika. Berichte über die zur Bekanntmachung geeigneten Verhandlung der K Akad der Wissenschaften zu Berlin. Monatsberichte 1841:202–207

    Google Scholar 

  • Ehrenberg CG (1853) Über neue Anschauungen des kleinstein nördlichen Polarlebens. Berichte über die zur Bekanntmachung geeigneten Verhandlung der Königlich-Preussischen Akad der Wissenschaften zu Berlin. Monatsberichte 1853:522–529

    Google Scholar 

  • Eicken H (1992) The role of sea ice in structuring Antarctic ecosystems. Polar Biol 12:3–13

    Article  Google Scholar 

  • Eicken H, Bock C, Wittig R et al (2000) Magnetic resonance imaging of sea-ice pore fluids: methods and thermal evolution of pore microstructure. Cold Reg Sci Technol 31:207–225. doi:10.1016/S0165-232X(00)00016-1

    Article  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes; hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Fiala M, Oriol L (1990) Light-temperature interactions on the growth of Antarctic diatoms. Polar Biol 10:629–636

    Article  Google Scholar 

  • Friedmann EI, Kappen L, Meyer MA et al (1993) Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. Microb Ecol 25:51–69

    Article  CAS  PubMed  Google Scholar 

  • Fritsen CH, Priscu JC (1999) Seasonal change in the optical properties of the permanent ice cover on Lake Bonney, Antarctica: consequences for lake productivity and phytoplankton dynamics. Limnol Oceanogr 44(2):447–454

    Article  Google Scholar 

  • Fujita Y (2001) Chromatic variation of the abundance of PSII complexes observed with the red alga Prophyridium cruentum. Plant Cell Physiol 42:1239–1244. doi:10.1093/pcp/pce164

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Wright D, Li T et al (2014) TALE activation of endogenous genes in Chlamydomonas reinhardtii. Algal Res 5:52–60. doi:10.1016/j.algal.2014.05.003

    Article  Google Scholar 

  • Gleitz M, Thomas DN (1993) Variation in phytoplankton standing stock, chemical composition and physiology during sea-ice formation in the southeastern Weddell Sea, Antarctica. J Exp Mar Biol Ecol 173:211–230. doi:10.1016/0022-0981(93)90054-R

    Article  CAS  Google Scholar 

  • Gleitz M, v.d. Loeff MR, Thomas DN et al (1995) Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine. Mar Chem 51:81–91. doi:10.1016/0304-4203(95)00053-T

    Article  CAS  Google Scholar 

  • Gleitz M, Bartsch A, Dieckmann GS, Eicken H (1998) Composition and succession of sea ice diatom assemblages in the eastern and southern Weddell Sea, Antarctica. Antarct Res Ser 73:107–120

    Article  Google Scholar 

  • Granskog M, Kaartokallio H, Kuosa H et al (2006) Sea ice in the Baltic Sea – a review. Estuar Coast Shelf Sci 70:145–160. doi:10.1016/j.ecss.2006.06.001

    Article  Google Scholar 

  • Guo S, Garnham CP, Whitney JC, Graham LA, Davies PL, Hensel M (2012) Re-evaluation of a bacterial antifreeze protein as an adhesin with ice-binding activity. PLoS One 7(11):e48805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gwak IG, sic Jung W, Kim HJ et al (2010) Antifreeze protein in Antarctic marine diatom, Chaetoceros neogracile. Mar Biotechnol 12:630–639. doi:10.1007/s10126-009-9250-x

    Article  CAS  PubMed  Google Scholar 

  • Haas C (2017) Sea ice thickness distribution. In: Thomas DN (ed) Sea ice, 3rd edn. Wiley-Blackwell, Oxford, pp 42–64

    Google Scholar 

  • Haas C, Thomas DN, Bareiss J (2001) Surface properties and processes of perennial Antarctic sea ice in summer. J Glaciol 47:613–625. doi:10.3189/172756501781831864

    Article  CAS  Google Scholar 

  • Hällfors G (2004) Checklist of Baltic Sea phytoplankton species (including some heterotrophic protistan groups). Balt Sea Environ Proc 95:208

    Google Scholar 

  • Hansom J, Gordon J (1998) Antarctic environments and resources – a geographical perspective. Addison Wesley Longman, Harlow

    Google Scholar 

  • Hendey NI (1974) A revised checklist of British diatoms. J Mar Biol Assoc UK 54:277–300

    Article  Google Scholar 

  • Hodson AJ, Mumford PN, Kohler J, Wynn PM (2005) The High Arctic glacial ecosystem: new insights from nutrient budgets. Biogeochemistry 72:233–256. doi:10.1007/s10533-004-0362-0

    Article  CAS  Google Scholar 

  • Hoham RW, Duval B (2001) Microbial ecology of snow and freshwater ice with emphasis on snow algae. In: Jones HG, Pomeroy JW, Walker DA, Hoham RW (eds) Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge University Press, Cambridge, pp 168–228

    Google Scholar 

  • Hooker J (1847) The botany of the Antarctic voyage of H.M. Discovery ships Erebus and Terror in the years 1838–1843 Part 1. Flora Antarctica. Reeve Brothers, London

    Google Scholar 

  • Hopes A, Nekrasov V, Kamoun S, Mock T (2016) Editing of the urease gene by CRISPR-Cas in the diatom Thalassiosira pseudonana. Plant Methods 12:49–60. doi:10.1186/s13007-016-0148-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Horner R (1985) Sea ice biota. CRC Press, Baco Raton, FL

    Google Scholar 

  • Hsiao S (1983) A checklist of marine phytoplankton and sea ice microalgae recorded from Arctic Canada. Nova Hedwigia 37:225–314

    Google Scholar 

  • Hwang YS, Jung G, Jin E (2008) Transcriptome analysis of acclimatory responses to thermal stress in Antarctic algae. Biochem Biophys Res Commun 367:635–641. doi:10.1016/j.bbrc.2007.12.176

    Article  CAS  PubMed  Google Scholar 

  • Ikävalko J, Gradinger R (1997) Flagellates and heliozoans in the Greenland Sea ice studied alive using light microscopy. Polar Biol 17:473–481. doi:10.1007/s003000050145

    Article  Google Scholar 

  • Janech MG, Krell A, Mock T et al (2006) Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J Phycol 42:410–416. doi:10.1111/j.1529-8817.2006.00208.x

    Article  CAS  Google Scholar 

  • Janknegt PJ, Van De Poll WH, Visser RJW et al (2008) Oxidative stress responses in the marine antarctic diatom Chaetoceros brevis (Bacillariophyceae) during photoacclimation. J Phycol 44:957–966. doi:10.1111/j.1529-8817.2008.00553.x

    Article  CAS  PubMed  Google Scholar 

  • Johnston CG, Vestal JR (1991) Photosynthetic carbon incorporation and turnover in Antarctic cryptoendolithic microbial communities: are they the slowest-growing communities on earth? Appl Environ Microbiol 57:2308–2311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones EP, Swift JH, Anderson LG et al (2003) Tracing Pacific water in the North Atlantic Ocean. J Geophys Res 108:1–10. doi:10.1029/2001JC001141

    Google Scholar 

  • Jung W, Lee SG, Kang SW et al (2012) Analysis of expressed sequence tags from the Antarctic psychrophilic green algae, Pyramimonas gelidicola. J Microbiol Biotechnol 22:902–906. doi:10.4014/jmb.1201.01002

    Article  CAS  PubMed  Google Scholar 

  • Jung W, Gwak Y, Davies PL et al (2014) Isolation and characterization of antifreeze proteins from the Antarctic marine microalga Pyramimonas gelidicola. Mar Biotechnol 16:502–512. doi:10.1007/s10126-014-9567-y

    Article  CAS  PubMed  Google Scholar 

  • Jung W, Campbell RL, Gwak Y et al (2016) New cysteine-rich ice-binding protein secreted from antarctic microalga, chloromonas sp. PLoS ONE 11:1–26. doi:10.1371/journal.pone.0154056

    CAS  Google Scholar 

  • Junge K, Imhoff F, Staley T, Deming JW (2002) Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature. Microb Ecol 43:315–328. doi:10.1007/s00248-001-1026-4

    Article  CAS  PubMed  Google Scholar 

  • Junge K, Eicken H, Deming JW (2004) Bacterial Activity at -2 to -20 degrees C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557. doi:10.1128/AEM.70.1.550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kan GF, Miao JL, Shi CJ, Li GY (2006) Proteomic alterations of antarctic ice microalga Chlamydomonas sp. under low-temperature stress. J Integr Plant Biol 48:965–970. doi:10.1111/j.1744-7909.2006.00255.x

    Article  CAS  Google Scholar 

  • Kattner G, Thomas DN, Haas C et al (2004) Surface ice and gap layers in Antarctic sea ice: highly productive habitats. Mar Ecol Prog Ser 277:1–12. doi:10.3354/meps277001

    Article  Google Scholar 

  • Kennedy H, Thomas DN, Kattner G et al (2002) Particulate organic matter in Antarctic summer sea ice: concentration and stable isotopic composition. Mar Ecol Prog Ser 238:1–13. doi:10.3354/meps238001

    Article  CAS  Google Scholar 

  • Kirst GO, Wiencke C (1995) Ecophysiology of polar algae. J Phycol 31(2):181–199

    Article  Google Scholar 

  • Kooistra WHCF, Medlin LK (1996) Evolution of the diatoms (Bacillariophyta). Mol Phylogenet Evol 6:391–407

    Article  CAS  PubMed  Google Scholar 

  • Kopczynska EE, Weber LH, EI-Sayed SZ (1986) Phytoplankton species composition and abundance in the Indian sector of the Antarctic Ocean. Polar Biol 6:161–169

    Article  Google Scholar 

  • Krell A (2006) Salt stress tolerance in the psychrophilic diatom Fragilariopsis cylindrus. Dissertation, University of Bremen, Germany

    Google Scholar 

  • Krell A, Beszteri B, Dieckmann G et al (2008) A new class of ice-binding proteins discovered in a salt-stress-induced cDNA library of the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). Eur J Phycol 43:423–433. doi:10.1080/09670260802348615

    Article  CAS  Google Scholar 

  • Krembs C, Engel A (2001) Abundance and variability of microorganisms and transparent exopolymer particles across the ice-water interface of melting first-year sea ice in the Laptev Sea (Arctic). Mar Biol 138:173–185. doi:10.1007/s002270000396

    Article  Google Scholar 

  • Krembs C, Gradinger R, Spindler M (2000) Implications of brine channel geometry and surface area for the interaction of sympagic organisms in Arctic sea ice. J Exp Mar Biol Ecol 243:55–80. doi:10.1016/S0022-0981(99)00111-2

    Article  Google Scholar 

  • Krembs C, Eicken H, Deming JW (2011) Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. Proc Natl Acad Sci U S A 108:3653–3658. doi:10.1073/pnas.1100701108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leventer A (1998) The fate of Antarctic “Sea ice diatoms” and their use as paleoenvironmental indicators. Antarct Res Ser 73:121–137

    Article  Google Scholar 

  • Liu S, Zhang P, Cong B et al (2010) Molecular cloning and expression analysis of a cytosolic Hsp70 gene from Antarctic ice algae Chlamydomonas sp. ICE-L. Extremophiles 14:329–337. doi:10.1007/s00792-010-0313-8

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Wang Y, Gao H, Xu X (2011) Identification and characterization of genes encoding two novel LEA proteins in Antarctic and temperate strains of Chlorella vulgaris. Gene 482:51–58. doi:10.1016/j.gene.2011.05.006

    Article  CAS  PubMed  Google Scholar 

  • Lizotte MP (2001) The contributions of sea ice algae to Antarctic marine primary production. Am Zool 41:57–73. doi:10.1668/0003-1569(2001)041[0057:TCOSIA]2.0.CO;2

    Google Scholar 

  • Lizotte M (2003a) Microbiology of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice – an introduction to its physics, chemistry, biology and geology. Blackwell Science, Oxford, pp 184–210

    Google Scholar 

  • Lizotte M (2003b) The influence of sea ice on Ross Sea biogeochemical processes. Antarct Res Ser 78:107–122

    Article  Google Scholar 

  • Lizotte MP, Priscu J (1992) Spectral irradiance and biooptical properties in perennial ice-covered lakes of the dry valleys (McMurdo Sound Antarctica). Antarct Res Ser 57:1–14

    Article  Google Scholar 

  • Los D, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta Biomembr 1666:142–157. doi:10.1016/j.bbamem.2004.08.002

    Article  CAS  Google Scholar 

  • Lovejoy C, Massana R, Pedro C (2006) Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas diversity. Appl Environ Microbiol 72:3085–3095. doi:10.1128/AEM.72.5.3085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyon B, Mock T (2014) Polar microalgae: new approaches towards understanding sdaptations to an extreme and changing environment. Biology (Basel) 3:56–80. doi:10.3390/biology3010056

    Google Scholar 

  • Lyon BR, Lee P, Bennett JM et al (2011) Proteomic analysis of a sea-ice diatom: salinity acclimation provides new insight into the dimethylsulfoniopropionate production pathway. Plant Physiol 157:1926–1941. doi:10.1104/pp.111.185025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier W (2017) Losing Arctic sea ice: observations of th erecent decline and the long-term context. In: Thomas DN (ed) Sea ice, 3rd edn. Wiley-Blackwell, Oxford, pp 261–289

    Google Scholar 

  • Meredith MP, Brandon M (2017) Oceanography and sea ice in the Southern Ocean. In: Thomas DN (ed) Sea ice, 3rd edn. Wiley-Blackwell, Oxford, pp 216–238

    Google Scholar 

  • Merico A, Tyrrell T, Brown CW et al (2003) Analysis of satellite imagery for Emiliania huxleyi blooms in the Bering Sea before 1997. Geophys Res Lett 30:1337. doi:10.1029/2002GL016648

    Article  Google Scholar 

  • Mindl B, Anesio AM, Meirer K et al (2007) Factors influencing bacterial dynamics along a transect from supraglacial runoff to proglacial lakes of a high Arctic glacieri. FEMS Microbiol Ecol 59:307–317. doi:10.1111/j.1574-6941.2006.00262.x

    Article  CAS  PubMed  Google Scholar 

  • Mock T, Gradinger R (1999) Determination of Arctic ice algal production with a new in situ incubation technique. Mar Ecol Prog Ser 177:15–26. doi:10.3354/Meps177015

    Article  CAS  Google Scholar 

  • Mock T, Hoch N (2005) Long-term temperature acclimation of photosynthesis in steady-state cultures of the polar diatom Fragilariopsis cylindrus. Photosynth Res 85:307–317. doi:10.1007/s11120-005-5668-9

    Article  CAS  PubMed  Google Scholar 

  • Mock T, Kroon BM (2002a) Photosynthetic energy conversion under extreme conditions—I: important role of lipids as structural modulators and energy sink under N-limited growth in Antarctic sea ice diatoms. Phytochemistry 61:41–51. doi:10.1016/S0031-9422(02)00216-9

    Article  CAS  PubMed  Google Scholar 

  • Mock T, Kroon BM (2002b) Photosynthetic energy conversion under extreme conditions—II: the significance of lipids under light limited growth in Antarctic sea ice diatoms. Phytochemistry 61:53–60. doi:10.1016/S0031-9422(02)00216-9

    Article  CAS  PubMed  Google Scholar 

  • Mock T, Valentin K (2004) Photosynthesis and cold acclimation: molecular evidence from a polar diatom. J Phycol 40:732–741. doi:10.1111/j.1529-8817.2004.03224.x

    Article  CAS  Google Scholar 

  • Mock T, Thomas D (2005) Sea ice – recent advances in microbial studies. Environ Microbiol 7:605–619

    Article  CAS  PubMed  Google Scholar 

  • Mock T, Krell A, Glöckner G et al (2005) Analysis of expressed sequence tags (ESTS) from the polar diatom Fragilariopsis cylindrus. J Phycol 42:78–85. doi:10.1111/j.1529-8817.2005.00164.x

    Article  Google Scholar 

  • Mock T, Otillar RP, Strauss J et al (2017) Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541:536–540. doi:10.1038/nature20803

    Article  CAS  PubMed  Google Scholar 

  • Morgan-Kiss RM, Ivanov AG, Pocock T et al (2005) The antarctic psychrophile, Chlamydomonas raudensis Ettl (UWO241) (Chlorophyceae, Chlorophyta), exhibits a limited capacity to photoacclimate to red light. J Phycol 41:791–800. doi:10.1111/j.1529-8817.2005.04174.x

    Article  Google Scholar 

  • Morgan-Kiss RM, Priscu JC, Pocock T et al (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222–252. doi:10.1128/MMBR.70.1.222-252.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou S, Zhang X, Ye N et al (2012) Cloning and expression analysis of two different LhcSR genes involved in stress adaptation in an Antarctic microalga, Chlamydomonas sp. ICE-L. Extremophiles 16:193–203. doi:10.1007/s00792-011-0419-7

    Article  CAS  PubMed  Google Scholar 

  • Müller T, Bleiß W, Martin CD et al (1998) Snow algae from northwest Svalbard: their identification, distribution, pigment and nutrient content. Polar Biol 20:14–32. doi:10.1007/s003000050272

    Article  Google Scholar 

  • Nelson DM, Tréguer P, Brzezinski MA et al (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob Biogeochem Cycles 9:359–372

    Article  CAS  Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568. doi:10.1146/annurev.arplant.47.1.541

    Article  CAS  PubMed  Google Scholar 

  • Nymark M, Sharma AK, Sparstad T et al (2016) A CRISPR/Cas9 system adapted for gene editing in marine algae. Sci Rep 6:24951. doi:10.1038/srep24951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmisano AC, Garrison DL (1993) Microorganisms in Antarctic sea ice. In: Friedmann E (ed) Antarctic microbiology. Wiley-Liss, New York, NY, pp 167–218

    Google Scholar 

  • Park S, Jung G, Hwang YS, Jin E (2010) Dynamic response of the transcriptome of a psychrophilic diatom, Chaetoceros neogracile, to high irradiance. Planta 231:349–360. doi:10.1007/s00425-009-1044-x

    Article  CAS  PubMed  Google Scholar 

  • Perovich D (2017) Sea ice and sunlight. In: Thomas DN (ed) Sea ice, 3rd edn. Wiley-Blackwell, Oxford, pp 110–137

    Google Scholar 

  • Petrich C, Eicken H (2017) Overview of sea ice growth and properties. In: Thomas DN (ed) Sea ice, 3rd edn. Wiley-Blackwell, Oxford, pp 1–41

    Google Scholar 

  • Priscu JC (1995) Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica. Freshw Biol 34:215–227

    Article  Google Scholar 

  • Priscu JC (1998) Ecosystem dynamics in a Polar desert: the McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington, DC

    Book  Google Scholar 

  • Ralph PJ, McMinn A, Ryan KG, Ashworth C (2005) Short-term effect of temperature on the photokinetics of microalgae from the surface layers of Antarctic pack ice. J Phycol 41:763–769. doi:10.1111/j.1529-8817.2005.00106.x

    Article  Google Scholar 

  • Raymond J (2011) Algal ice-binding proteins change the structure of sea ice. Proc Natl Acad Sci 108:E198. doi:10.1073/pnas.1106288108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond J (2014) The ice-binding proteins of a snow alga, Chloromonas brevispina: probable acquisition by horizontal gene transfer. Extremophiles 18:987–994. doi:10.1007/s00792-014-0668-3

    Article  CAS  PubMed  Google Scholar 

  • Raymond J, Kim HJ (2012) Possible role of horizontal gene transfer in the colonization of sea ice by algae. PLoS ONE 7:35968. doi:10.1371/journal.pone.0035968

    Article  CAS  Google Scholar 

  • Raymond J, Morgan-Kiss R (2013) Separate origins of ice-binding proteins in Antarctic Chlamydomonas species. PLoS ONE 8:e59186. doi:10.1371/journal.pone.0059186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond J, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61:214–221. doi:10.1111/j.1574-6941.2007.00345.x

    Article  CAS  PubMed  Google Scholar 

  • Raymond J, Janech MG, Fritsen CH (2009) Novel ice-binding proteins from a psychrophilic antarctic alga (Chlamydomonadaceae, Chlorophyceae). J Phycol 45:130–136. doi:10.1111/j.1529-8817.2008.00623.x

    Article  CAS  PubMed  Google Scholar 

  • Remias D, Lutz-Meindl U, Lutz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40:259–268. doi:10.1080/09670260500202148

    Article  CAS  Google Scholar 

  • Robinson DH, Kolber Z, Sullivan CW (1997) Photophysiology and photoacclimation in surface sea ice algae from McMurdo Sound, Antarctica. Mar Ecol Prog Ser 147:243–256. doi:10.3354/meps147243

    Article  Google Scholar 

  • Ryan KG, Ralph P, McMinn A (2004) Acclimation of Antarctic bottom-ice algal communities to lowered salinities during melting. Polar Biol 27:679–686. doi:10.1007/s00300-004-0636-y

    Article  Google Scholar 

  • Sakshaug E, Slagstad D (1991) Light and productivity of phytoplankton in polar marine ecosystems: a physiological view. Polar Res 10:69–86. doi:10.1111/j.1751-8369.1991.tb00636.x

    Article  Google Scholar 

  • Säwström C, Mumford P, Marshall W et al (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79 degrees N). Polar Biol 25:591–596. doi:10.1007/s00300-002-0388-5

    Google Scholar 

  • Schriek R (2000) Effects of light and temperature on the enzymatic antioxidative defense systems in the Antarctic ice diatom Entomoneis kufferathii Manguin. Rep Polar Res 349:1–130

    Google Scholar 

  • Scott FJ, Marchant H (eds) (2005) Antarctic marine protists. Australian Biological Resources Study/Australian Antarctic Division, Canberra

    Google Scholar 

  • Shi H, Lee B, Wu S-J, Zhu J-K (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85. doi:10.1038/nbt766

    Article  CAS  PubMed  Google Scholar 

  • Shin S-E, Lim J-M, Koh HG et al (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810. doi:10.1038/srep27810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smetacek V (1998) Diatoms and the silicate factor. Nature 391:224–225. doi:10.1111/j.1600-0579.1998.tb00036.x

    Article  CAS  Google Scholar 

  • Smetacek V, Nicol S (2005) Polar ocean ecosystems in a changing world. Nature 437:362–368. doi:10.1038/nature04161

    Article  CAS  PubMed  Google Scholar 

  • Smetacek V, Klaas C, Menden-Deuer S, Rynearson TA (2002) Mesoscale distribution of dominant diatom species relative to the hydrographical field along the Antarctic Polar Front. Deep Res Part II Top Stud Oceanogr 49:3835–3848. doi:10.1016/S0967-0645(02)00113-3

    Article  CAS  Google Scholar 

  • Smith WO Jr, Codispoti LA, Nelson DM et al (1991) Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle. Nature 352:514–516

    Article  Google Scholar 

  • Sommer U (1989) Maximum growth rates of Antarctic phytoplankton: only weak dependence on cell size. Limnol Oceanogr 34:1109–1112

    Article  Google Scholar 

  • Sorhannus U (2011) Evolution of antifreeze protein genes in the diatom genus Fragilariopsis: evidence for horizontal gene transfer, gene duplication and episodic diversifying selection. Evol Bioinforma 2011:279–289. doi:10.4137/EBO.S8321

    Article  Google Scholar 

  • Stammerjohn S, Maksym T (2017) Gaining (and losing) Antarctic sea ice: variability, trends and mechanisms. In: Thomas DN (ed) Sea ice, 3rd edn. Wiley-Blackwell, Oxford, pp 290–303

    Google Scholar 

  • Stoecker DK, Gustafson DE, Merrell JR et al (1997) Excystment and growth of chryophytes and dinoflagellates at low temperatures and high salinities in Antarctic sea-ice. J Phycol 33:585–595

    Article  Google Scholar 

  • Stoecker DK, Gustafson DE, Black MMD, Baier CT (1998) Population dynamics of microalgae in the upper land-fast sea ice at a snow-free location. J Phycol 34:60–69. doi:10.1046/j.1529-8817.1998.340060.x

    Article  Google Scholar 

  • Stoecker DK, Gustafson DE, Baier CT, Black MMD (2000) Primary production in the upper sea ice. Aquat Microb Ecol 21:275–287

    Article  Google Scholar 

  • Stoeve J, Notz D (2015) Insights on past and future sea-ice evolution from combining observations and models. Glob Planet Chang 135:119–132

    Article  Google Scholar 

  • Strauss J, Gao S, Morrissey J, et al (2013) A light-driven rhodopsin proton pump from the psychrophilic diatom Fragilariopsis cylindrus. In: Proceeding of EMBO workshop: the molecular life of diatoms, Paris, France, 25–28 June 2013

    Google Scholar 

  • Streb P, Shang W, Feierabend J, Bligny R (1998) Divergent strategies of photoprotection in high-mountain plants. Planta 207:313–324. doi:10.1007/s004250050488

    Article  CAS  Google Scholar 

  • Stroeve JC, Serreze MC, Fetterer F et al (2005) Tracking the Arctic’s shrinking ice cover: another extreme September minimum in 2004. Geophys Res Lett 32:1–4. doi:10.1029/2004GL021810

    Article  Google Scholar 

  • Sutherland PC (1852) Journal of a voyage in Baffin’s Bay and Barrow Straits in the years 1850–51, performed by H.M. ships “Lady Franklin” and “Sophia,” under the command of Mr.William Penny in search of the missing crews of H.M. ships “Erebus” and “Terror”, vol 1 and 2. Longman, Brown, Green, and Longmans, London

    Google Scholar 

  • Takeuchi N (2002) Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite. Ann Glaciol 34:409–414

    Article  CAS  Google Scholar 

  • Tang EPY, Vincent WF, Proulx D et al (1997) Polar cyanobacteria versus green algae for tertiary wast-water treatment in cool climates. J Appl Phycol 9:371–381

    Article  CAS  Google Scholar 

  • Teoh ML, Phang SM, Chu WL (2013) Response of Antarctic, temperate, and tropical microalgae to temperature stress. J Appl Phycol 25:285–297. doi:10.1007/s10811-012-9863-8

    Article  CAS  Google Scholar 

  • Thomas DN, Dieckmann GS (2002) Antarctic sea ice–a habitat for extremophiles. Science 295:641–644. doi:10.1126/science.1063391

    Article  CAS  PubMed  Google Scholar 

  • Thomas DN, Fogg GE, Convey P et al (2008) Biology of polar regions. Oxford University Press, Oxford

    Book  Google Scholar 

  • Tomczak M, Godfrey JS (2003) Regional oceanography: an introduction, 2nd edn. Elsevier Science, Tarrytown, NY

    Google Scholar 

  • Toseland A, Daines SJ, Clark JR et al (2013) The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat Clim Chang 3:979–984. doi:10.1038/nclimate1989

    Article  CAS  Google Scholar 

  • Uhlig C, Kilpert F, Frickenhaus S et al (2015) In situ expression of eukaryotic ice-binding proteins in microbial communities of Arctic and Antarctic sea ice. ISME J 9:2537–2540. doi:10.1038/ismej.2015.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Underwood GJC, Fietz S, Papadimitriou S et al (2010) Distribution and composition of dissolved extracellular polymeric substances (EPS) in Antarctic sea ice. Mar Ecol Prog Ser 404:1–19. doi:10.3354/meps08557

    Article  CAS  Google Scholar 

  • Underwood GJC, Aslam SN, Michel C et al (2013) Broad-scale predictability of carbohydrates and exopolymers in Antarctic and Arctic sea ice. Proc Natl Acad Sci U S A 110:15734–15739. doi:10.1073/pnas.1302870110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Oijen T, van Leeuwe M, Gieskes WWC (2003) Variation of particulate carbohydrate pools over time and depth in a diatom-dominated plankton community at the Antarctic Polar Front. Polar Biol 26:195–201. doi:10.1007/s00300-002-0456-x

    Google Scholar 

  • von Quillfeldt C (2004) The diatom Fragilariopsis cylindrus and its potential as an indicator species for cold water rather than for sea ice. Vie Milieu 54:137–143

    Google Scholar 

  • Vincent WF, Ja G, Pienitz R et al (2000) Ice shelf microbial ecosystems in the high arctic and implications for life on snowball earth. Naturwissenschaften 87:137–141. doi:10.1007/s001140050692

    Article  CAS  PubMed  Google Scholar 

  • Wang DS, Xu D, Wang YT et al (2015) Adaptation involved in nitrogen metabolism in sea ice alga Chlamydomonas sp. ICE-L to Antarctic extreme environments. J Appl Phycol 27:787–796. doi:10.1007/s10811-014-0372-9

    Article  CAS  Google Scholar 

  • Wang Q, Lu Y, Xin Y et al (2016) Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. Plant J 88:1071–1081. doi:10.1111/tpj.13307

    Article  CAS  PubMed  Google Scholar 

  • Weissenberger J, Dieckmann G, Gradinger R, Spindler M (1992) Sea ice: a cast technique to examine and analyze brine pockets and channel structure. Limnol Oceanogr 37:179–183. doi:10.4319/lo.1992.37.1.0179

    Article  Google Scholar 

  • Werner I (2006) Seasonal dynamics, cryo-pelagic interactions and metabolic rates of arctic pack-ice and under-ice fauna – a review. Polarforschung 75:1–19

    Google Scholar 

  • Wheeler P, Watkins JM, Hansing RL (1997) Nutrients, organic carbon and organic nitrogen in the upper water column of the Arctic Ocean: implications for the sources of dissolved organic carbon. Deep Sea Res Part II Top Stud Oceanogr 44:1571–1592. doi:10.1016/S0967-0645(97)00051-9

    Article  CAS  Google Scholar 

  • Willem S, Srahna M, Devos N et al (1999) Protein adaptation to low temperatures: a comparative study of α-tubulin sequences in mesophilic and psychrophilic algae. Extremophiles 3:221–226. doi:10.1007/s007920050119

    Article  CAS  PubMed  Google Scholar 

  • Williams WE, Gorton HL, Vogelmann TC (2003) Surface gas-exchange processes of snow algae. Proc Natl Acad Sci U S A 100:562–566. doi:10.1073/pnas.0235560100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Wang Y, Fan X et al (2014) Long-term experiment on physiological responses to synergetic. Environ Sci Technol 48:7738–7746

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Liu S, Cong B et al (2011) A novel omega-3 fatty acid desaturase involved in acclimation processes of polar condition from Antarctic ice algae Chlamydomonas sp. ICE-L. Mar Biotechnol 13:393–401. doi:10.1007/s10126-010-9309-8

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hopes, A., Thomas, D.N., Mock, T. (2017). Polar Microalgae: Functional Genomics, Physiology, and the Environment. In: Margesin, R. (eds) Psychrophiles: From Biodiversity to Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-57057-0_14

Download citation

Publish with us

Policies and ethics