Skip to main content

Enzyme Catalysis in Psychrophiles

  • Chapter
  • First Online:
Psychrophiles: From Biodiversity to Biotechnology

Abstract

Cold-active enzymes are produced by organisms, known as psychrophiles, adapted to permanently cold habitats. Low temperatures have an exponential deleterious effct on reaction rates, and thus psychrophilic enzymes have to be adapted to secure appropriate reaction rates in their environment. These enzymes have a high specific activity at low temperatures, in any case higher than that of their mesophilic and thermophilic counterparts, and display a shift of the apparent optimum temperature for activity towards low temperatures as well as a reduced thermal stability and increased flexibility. The increased flexibility may be global, involving the overall edifice, or local, involving only those zones crucial for activity, be they near or distant from the active site. The reduced thermodynamic stability of cold-adapted enzymes is illustrated by a significantly lower stabilisation energy as compared to that of their mesophilic and thermophilic counterparts, yet maximum stability occurs at similar temperatures in all cases. The comparison of their three-dimensional structures with higher temperature-adapted homologues, in conjunction with various mutagenesis studies, has shown that their high activity results from rather discrete molecular changes that tend to decrease the stability of the molecular edifice. Each cold-adapted enzyme however adopts a specific strategy. There is apparently a continuum in the adaptation, with some enzymes showing extremely acute cold adaptation, as illustrated by a severe shift of the activity towards low temperatures, whereas others appear to cover a broader range of temperatures. This probably depends on the specific evolutionary history of the organisms which produce them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adekoya OA, Helland R, Willassen NP, Sylte I (2006) Comparative sequence and structure analysis reveal features of cold adaptation of an enzyme in the thermolysin family. Proteins 62:435–439

    Article  CAS  PubMed  Google Scholar 

  • Aghajari N, Feller G, Gerday C, Haser R (1998) Structures of the psychrophilic Alteromonas haloplanktis α-amylase give insights into cold adaptation at a molecular level. Structure 6:1503–1516

    Article  CAS  PubMed  Google Scholar 

  • Almog O, Gonzalez A, Godin N, de Leeuw M, Mekel MJ, Klein D, Braun S, Shoham G, Walter RL (2009) The crystal structure of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium loaded state. Proteins 74:489–496

    Article  CAS  PubMed  Google Scholar 

  • Altermark B, Niiranen L, Willassen NP, Smalas AO, Moe E (2007) Comparative studies of endonuclease I from cold-adapted Vibrio salmonicida and mesophilic Vibrio cholerae. FEBS J 274:252–263

    Article  CAS  PubMed  Google Scholar 

  • Angelaccio S, Florio R, Consalvi V, Festa G, Pascarella P (2012) Serine hydroxymethyltransferase from the cold-adapted microorganism Psychromonas ingrahamii: a low temperature active enzyme with broad specificity. Int J Mol Sci 13:1314–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arcus VL, Prentice EJ, Hobbs JK, Mulholland AJ, Van der Kamp MW, Pudney CR, Parker EJ, Schipper LA (2016) On the temperature dependence of enzyme-catalysed rates. Biochemistry 55:1681–1688

    Article  CAS  PubMed  Google Scholar 

  • Arnorsdóttir J, Helgadóttir S, Thorbjarnardóttir SH, Eggertsson G, Kristjansson MM (2007) Effect of selected Ser/Ala and Xaa/Pro mutations on the stability and catalytic properties of a cold adapted subtilisin-like serine proteinase. Biochim Biophys Acta 1774:749–755

    Article  PubMed  CAS  Google Scholar 

  • Arrhenius S (1889) Uber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzuckerdurch Säuren. Z Physic Chem 4:226–248

    Google Scholar 

  • Asgeirsson B, Adalbjörsson BV, Gylfason GA (2007) Engineered disulfide bonds increase active-site local stability and reduce catalytic activity of a cold-adapted alkaline phosphatase. Biochim Biophys Acta 1774:679–687

    Article  CAS  PubMed  Google Scholar 

  • Berg TO, Gurung MK, Altermark B, Smalas AO, Raeder H (2015) Characterization of the N-acetylneuraminic acid synthase (NeuB) from the psychrophilic fish pathogen Moritella viscosa. Carbohydr Res 402:133–145

    Article  CAS  PubMed  Google Scholar 

  • Bjelic S, Bransdal BO, Aqvist J (2008) Cold adaptation of enzyme reaction rates. Biochemistry 47:10049–10057

    Article  CAS  PubMed  Google Scholar 

  • Budiman C, Koga Y, Takano K, Kanaya S (2011) FK 506-binding protein 22 from a psychrophilic bacterium, a cold shock-inducible peptidyl prolyl isomerase with the ability to assist in protein folding. Int J Mol Sci 12:5261–5284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chess JP, Petrescu I, Bentahir M, Van Beeumen J, Gerday C (2000) Purification, physico-chemical characterization and sequence of the heat-labile alkaline metalloprotease from a psychrophilic Pseudomonas species. Biochim Biophys Acta 1479:265–274

    Article  Google Scholar 

  • Chiappori F, Pucciarelli S, Merelli I, Ballarini P, Miceli C, Milanesi L (2012) Structural thermal adaptation of β-tubulins from the Antarctic psychrophilic protozoan Euplotes focardii. Proteins 80:1154–1166

    Article  CAS  PubMed  Google Scholar 

  • Chiuri R, Majorano G, Rizello A, del Mercato LL, Cingolani R, Rinaldi R, Maffia M, Pompa PP (2009) Exploring local flexibility/rigidity in psychrophilic and mesophilic carbonic anhydrases. Biophys J 96:1586–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cipolla A, Delbrassine F, Da Lage JL, Feller G (2011) Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride-dependent alpha-amylases. Biochimie 94:1943–1950

    Article  CAS  Google Scholar 

  • Cipolla A, D’Amico S, Barumandzadeh R, Matagne A, Feller G (2012) Stepwise adaptation to low temperature as revealed by multiple mutants of psychrophilic α-amylase from Antarctic bacterium. J Biol Chem 286:38348–38355

    Article  CAS  Google Scholar 

  • Collins T, Claverie P, D’Amico S, Georlette D, Gratia E, Hoyoux A, Meuwis MA, Poncin J, Sonan G, Feller G, Gerday C (2002) Life in the cold: psychrophilic enzymes. In: Pandalai SG (ed) Recent research developments in proteins, vol 1. Transworld Research Network, Trivandrum, pp 13–26

    Google Scholar 

  • Collins T, Meuwis M-A, Gerday C, Feller G (2003) Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J Mol Biol 338:419–428

    Article  CAS  Google Scholar 

  • Collins T, D’Amico S, Marx J-C, Feller G, Gerday C (2007) Cold-adapted enzymes. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 165–179

    Chapter  Google Scholar 

  • Collins T, Roulling F, Piette F, Marx J-C, Feller G, Gerday C, D’Amico S (2008) Fundamentals of cold-adapted enzymes. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 211–227

    Chapter  Google Scholar 

  • Coquelle N, Fioravanti E, Weik M, Vellieux F, Madern D (2007) Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments. J Mol Biol 374:547–562

    Article  CAS  PubMed  Google Scholar 

  • D’Amico S, Gerday C, Feller G (2001) Structural determinants of cold adaptation and stability in a large protein. J Biol Chem 276:25791–25796

    Article  PubMed  Google Scholar 

  • D’Amico S, Gerday C, Feller G (2002) Dual effects of an extra disulphide bond on the activity and stability of a cold-adapted α-amylase. J Biol Chem 277:46110–46115

    Article  PubMed  CAS  Google Scholar 

  • D’Amico S, Marx J-C, Gerday C, Feller G (2003) Activity-stability relationship in extremophilic enzymes. J Biol Chem 278:7891–7896

    Article  PubMed  CAS  Google Scholar 

  • D’Amico S, Sohier J-S, Feller G (2006a) Kinetics and energetics of ligand binding determined by microcalorimetry: insight into active site mobility in a psychrophilic alpha-amylase. J Mol Biol 358:1296–1304

    Article  PubMed  CAS  Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006b) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniel RM, Danson MJ (2010) A new understanding of how temperature affects the catalytic activity of enzymes. Trends Biochem Sci 35:584–591

    Article  CAS  PubMed  Google Scholar 

  • Davail S, Feller G, Narinx E, Gerday C (1994) Cold adaptation of proteins. Purification, characterization, and sequence of the heat labile subtilisin from the Antarctic psychrophile Bacillus TA 41. J Biol Chem 269:17448–17453

    CAS  PubMed  Google Scholar 

  • De Santi C, Tutino ML, Mandrich L, Giuliani M, Parilli E, Del Vecchio P, De Pascale D (2010) The hormone sensitive lipase from Psychrobacter sp. TA144: new insight in the structure/functional characterization. Biochimie 92:949–957

    Article  PubMed  CAS  Google Scholar 

  • Demchenko AP, Rusyn OI, Saburova EA (1989) Kinetics of the lactate dehydrogenase reaction in high-viscosity media. Biochim Biophys Acta 998:196–203

    Article  CAS  PubMed  Google Scholar 

  • Dias CL, Ala-Nissila T, Wong E, Kabut J, Vattulainen I, Grant M, Karttunen M (2010) The hydrophobic effect and its role in cold denaturation. Cryobiology 60:91–99

    Article  CAS  PubMed  Google Scholar 

  • Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115

    Article  CAS  Google Scholar 

  • Fedoy A-E, Yang N, Martinez A, Leiros H-K, Stee H (2007) Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability. J Mol Biol 372:130–149

    Article  CAS  PubMed  Google Scholar 

  • Feller G (2008) Enzyme function at low temperatures in psychrophiles. In: Siddiqui KS, Thomas T (eds) Protein adaptation in extremophiles. Nova Science, New York, NY, pp 35–69

    Google Scholar 

  • Feller G (2010) Protein stability and enzyme activity at extreme biological temperatures. J Phys Condens 22:32101–32118

    Article  CAS  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Lonhienne T, Deroanne C, Libioulle C, Van Beeumen J, Gerday C (1992) Purification, characterization, and nucleotide sequence of the thermolabile α-amylase from the Antarctic psychrotroph Alteromonas haloplanktis A 23. J Biol Chem 267:5217–5221

    CAS  PubMed  Google Scholar 

  • Feller G, Narinx E, Arpigny JL, Zekhnini Z, Swings J, Gerday C (1994) Temperature dependence of growth, enzyme secretion and activity of psychrophilic Antarctic bacteria. Appl Microbiol Biotechnol 41:477–479

    Article  CAS  Google Scholar 

  • Feller G, Zekhnini Z, Lamotte-Brasseur J, Gerday C (1997) Enzymes from cold-adapted microorganisms. The class C beta-lactamase from the Antarctic psychrophile Psychrobacter immobilis A5. Eur J Biochem 244:186–191

    Article  CAS  PubMed  Google Scholar 

  • Feller G, D’Amico S, Gerday C (1999) Thermodynamic stability of a cold-active α-amylase from the Antarctic bacterium Alteromonas haloplanktis. Biochemistry 38:4613–4619

    Article  CAS  PubMed  Google Scholar 

  • Fields PA, Somero GN (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenases A4 orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci U S A 95:11476–11481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fields PA, Dong Y, Meng X, Somero GN (2015) Adaptations of protein structure and function to temperature: there is more than one way to ‘skin a cat’. J Exp Biol 2018:1801–1811

    Article  Google Scholar 

  • Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) How enzymes work: analysis by modern rate theory and computer simulations. Science 303:186–195

    Article  CAS  PubMed  Google Scholar 

  • Garsoux G, Lamotte-Brasseur J, Gerday C, Feller G (2004) Kinetic and structural optimisation to catalysis at low temperatures in a psychrophilic cellulase from the Antarctic bacterium Pseudoalteromonas haloplanktis. Biochem J 384:247–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georlette D, Jonsson ZO, Van Petegem F, Chessa J-P, Van Beeumen J, Hubscher U, Gerday C (2000) A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins at low temperatures. Eur J Biochem 267:3502–3512

    Article  CAS  PubMed  Google Scholar 

  • Georlette D, Damien B, Blaise V, Depiereux E, Uversky VN, Gerday C, Feller G (2003) Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. J Biol Chem 278:37015–37023

    Article  CAS  PubMed  Google Scholar 

  • Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx J-C, Sonan G, Feller G, Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28:25–42

    Article  CAS  PubMed  Google Scholar 

  • Gerday C (2013) Catalysis and protein folding in psychrophiles. In: Yumoto I (ed) Cold-adapted microorganisms. Caister Academic press, Norfolk, pp 137–157

    Google Scholar 

  • Gerday C (2014) Fundamentals of cold-active enzymes. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts. Springer, Berlin, pp 325–350

    Chapter  Google Scholar 

  • Gerike U, Danson MJ, Russell NJ, Hough DW (1997) Sequencing and expression of the gene encoding a cold-active citrate synthase from an Antarctic bacterium strain DS-3R. Eur J Biochem 248:49–57

    Article  CAS  PubMed  Google Scholar 

  • Gershenson A, Gierasch LM (2011) Protein folding in the cell: challenges and progress. Curr Opin Struct Biol 21:32–41

    Article  CAS  PubMed  Google Scholar 

  • Goodchild A, Saunders NF, Erlan H, Raftery M, Guilhaus M, Curmi PM, Cavicchioli R (2004) A proteomic determination of cold adaptation in the Antarctic archeon, Methanococcoides burtonii. Mol Microbiol 53:309–321

    Article  CAS  PubMed  Google Scholar 

  • Gudmundsdóttir A (2002) Cold-adapted and mesophilic brachyurins. Biol Chem 383:1125–1131

    Article  PubMed  Google Scholar 

  • Gudmundsdóttir E, Spilliaert R, Yang Q, Craik CS, Bjarnason JB, Gudmundsdóttir A (1996) Isolation and characterization of two cDNAs from Atlantic cod encoding two distinct psychrophilic elastases. Comp Biochem Physiol B 113:795–801

    Article  PubMed  Google Scholar 

  • Heidarsson PO, Sigurdsson ST, Asgeirsson B (2009) Structural features and dynamics of a cold-adapted alkaline phosphatase studied by EPR spectroscopy. FEBS J 276:2725–2735

    Article  CAS  PubMed  Google Scholar 

  • Hess E (1934) Effects of low temperatures on the growth of marine bacteria. Contribs Can Biol Fisheries Ser C 8:491–505

    Google Scholar 

  • Hochachka PW, Somero GN (1973) Strategies of biochemical adaptation. WB Saunders, Philadelphia, PA

    Google Scholar 

  • Hochachka PW, Somero GN (2002) Temperature. In: Hochachka PW, Somero GN (eds) Biochemical adaptation. Oxford University Press, New York, NY, 190 pp

    Google Scholar 

  • Homchaudhuri L, Sarma N, Swaminathan R (2006) Effect of crowding by dextrans and ficols on the rate of alkaline phosphatase-catalysed hydrolysis: a size-dependent investigation. Biopolymers 83:477–486

    Article  CAS  PubMed  Google Scholar 

  • Huston AL, Krieger-Brockett BB, Deming JW (2000) Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria sea ice. Environ Microbiol 4:383–388

    Article  Google Scholar 

  • Huston AL, Haeggström JZ, Feller G (2008) Cold adaptation of enzymes: structural, kinetic and microcalorimetric characterizations of an aminopeptidase from the Arctic psychrophile Colwellia psychrerythraea and of human leukotriene A (4) hydrolase. Biochim Biophys Acta 1784:1865–1872

    Article  CAS  PubMed  Google Scholar 

  • Ingraham JL, Stokes JL (1959) Psychrophilic bacteria. Bacteriol Rev 23:97–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isaksen GV, Aqvist J, Brandsdal BO (2016) Enzyme surface rigidity tunes the temperature dependence of catalytic rates. Proc Natl Acad Sci U S A 113:7822–7827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamoto J, Kurihara T, Kitagawa M, Kato l, Esaki N (2007) Proteomic studies of an Antarctic cold-adapted bacterium, Shewanella livingstonensis AC 10, for global identification of cold-inducible proteins. Extremophiles 10:819-826

    Google Scholar 

  • Kim HW, Wi AR, Jeon BW, Lee JH, Shin SC, Park H, Jeon SJ (2015) Cold adaptation of a psychrophilic chaperonin from Psychrobacter sp. and its application for heterologous protein expression. Biotechnol Lett 37:1887–1893

    Article  CAS  PubMed  Google Scholar 

  • Kobori H, Sullivan CW, Shizuya H (1984) Heat-labile alkaline phosphatase from Antarctic bacteria: rapid 5 end-labeling of nucleic acid. Proc Natl Acad Sci U S A 81:6691–6695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobus S, Widderich N, Hoeppner A, Bremer E, Smits SH (2015) Overproduction, crystallization and X-ray diffraction data analysis of ectoine synthase from the cold-adapted marine bacterium Sphingopyxis alaskensis. Acta Cristallogr F Struct Biol Commun 71:1027–1032

    Article  CAS  Google Scholar 

  • Koutsiolis D, Wang E, Tzanodaskalaki M, Nikiforaki D, Deli A, Feller G, Heikinheimo P, Bouriotis V (2008) Directed evolution on the cold adapted properties of TAB5 alkaline phosphatase. Protein Eng 21:319–327

    Article  CAS  Google Scholar 

  • Kuhn E (2012) Toward understanding life under subzero conditions: the significance of exploring psychrophilic “cold-shock” proteins. Astrobiology 12:1078–1086

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tsai CJ, Nussinov R (2002) Maximal stabilities of reversible two-state proteins. Biochemistry 41:5359–5374

    Article  CAS  PubMed  Google Scholar 

  • Leiros HK, Willassen NP, Smalas AO (2000) Structural comparison of psychrophilic and mesophilic trypsins. Elucidating the molecular basis of cold-adaptation. Eur J Biochem 267:1039–1049

    Article  CAS  PubMed  Google Scholar 

  • Leopold PE, Montal M, Onuchic JN (1992) Protein folding funnels: a kinetic approach to the sequence-structure relationship. Proc Natl Acad Sci U S A 89:8721–8725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lonhienne T, Baise E, Feller G, Bouriotis V, Gerday C (2001a) Enzyme activity determination on macromolecular substrates by isothermal calorimetry: application to mesophilic and psychrophilic chitinases. Biochim Biophys Acta 1545:349–356

    Article  CAS  PubMed  Google Scholar 

  • Lonhienne T, Zoidakis J, Vorgias E, Feller G, Gerday C, Bouriotis V (2001b) Modular structure, local flexibility and cold-activity of a novel chitobiase from a psychrophilic Antarctic bacterium. J Mol Biol 310:291–297

    Article  CAS  PubMed  Google Scholar 

  • Margesin R (2009) Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles 13:257–262

    Article  PubMed  Google Scholar 

  • Marshall CI (1997) Cold-adapted enzymes. Trends Biotechnol 15:359–364

    Article  CAS  PubMed  Google Scholar 

  • Marx J-C, Collins T, D’Amico S, Feller G, Gerday C (2007) Cold-adapted enzymes from marine Antarctic microorganisms. Mar Biotechnol 9:293–304

    Article  CAS  PubMed  Google Scholar 

  • Mastro AM, Keith AD (1984) Diffusion in the aqueous compartment. J Cell Biol 99:180–187

    Article  CAS  Google Scholar 

  • Matsuura A, Yao M, Aizawa T, Koganesawa N, Masaki K, Miyazawa M, Demura M, Tanaka I, Kawano K, Nitta K (2002) Structural analysis of an insect lysozyme exhibiting catalytic efficiency at low temperature. Biochemistry 41:12086–12092

    Article  CAS  PubMed  Google Scholar 

  • Mereghetti P, Riccardi L, Brandsdal BO, Fantucci P, De Gioia L, Papaleo E (2010) Near native-state conformational landscape of psychrophilic and mesophilic enzymes: probing the folding funnel model. J Phys Chem B 114:7609–7619

    Article  CAS  PubMed  Google Scholar 

  • Miao LL, Hou YJ, Fan HX, Qu J, Qi C, Liu Y, Li DF, Liu ZP (2016) Molecular structural basis for the cold adaptedness of the psychrophilic β-Glucosidase BgIU in Micrococcus antarcticus. Appl Environ Microbiol 82:2021–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki K, Wintrode PL, Grayling RA, Rubigh DN, Arnold FH (2000) Directed evolution study of temperature adaptation in a psychrophilic enzyme. J Mol Biol 297:1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Moe E, Leiros I, Rijse EK, Olufsen M, Lanes O, Smalas A, Willassen NP (2004) Optimisation of the surface electrostatics as a strategy for cold adaptation of uracil-DNA N-glycosylase. J Mol Biol 343:1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Mykytczuk NC, Trevors JT, Foote SJ, Leduc LG, Ferroni GD, Twine SM (2011) Proteomic insight into cold adaptation of psychrotrophic and mesophilic Acidithiobacillus ferrooxidans strains. Antonie Van Leeuwenhoek 100:259–277

    Article  CAS  PubMed  Google Scholar 

  • Naicker MC, Seul JI, Im H (2012) Identification of chaperones in freeze tolerance in Saccharomyces cerevisiae. J Microbiol 50:882–887

    Article  CAS  PubMed  Google Scholar 

  • Narinx E, Baise E, Gerday C (1997) Subtilisin from Antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold. Protein Eng 10:1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Pace CN, Laurents DV (1989) A new method for determining the heat capacity change for protein folding. Biochemistry 28:2520–2525

    Article  CAS  PubMed  Google Scholar 

  • Papaleo E, Olufsen M, De Gioia L, Bransdal BO (2007) Optimization of electrostatics as a strategy for cold-adaptation: a case study of cold- and warm-active elastases. J Mol Graph Model 26:93–103

    Article  CAS  PubMed  Google Scholar 

  • Papaleo E, Pasi M, Tiberti M, De Gioia L (2011) Molecular dynamics of mesophilic-like mutants of a cold-adapted enzyme: insight into distal effects induced by the mutations. PLoS ONE 6:e24214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paredes DI, Watters K, Pitman DJ, Bystrff C, Dordick JS (2011) Comparative void-volume analysis of psychrophilic and mesophilic enzymes: structural bioinformatics of psychrophilic enzymes reveals sources of core flexibility. BMC Struct Biol 11:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrescu I, Lamotte-Brasseur J, Chessa J-P, Ntarima P, Claeyssens M, Devreese B, Marino G, Gerday C (2000) Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles 4:137–144

    Article  CAS  PubMed  Google Scholar 

  • Piette F, D’Amico S, Struvay C, Mazzuchelli G, Remaut J, Tutino ML, Danchin A, Leprince P, Feller G (2010) Proteomics of life at low temperature: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125. Mol Microbiol 76:120–132

    Article  CAS  PubMed  Google Scholar 

  • Piette F, Struvay C, Feller G (2011) The protein folding in psychrophiles: facts and current issues. Environ Microbiol 13:1924–1933

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Kathariou S, Lubman DM (2006) Proteomic analysis of cold adaptation in a Siberian permafrost bacterium Exiguobacterium sibiricum 255-15 by two-dimensional liquid separation coupled with mass spectrometry. Proteomics 6:135–148

    Article  CAS  Google Scholar 

  • Qoura F, Elleuche S, Brueck T, Antranikian G (2014) Purification and characterization of a cold-adapted pullulanase from a psychrophilic bacterial isolate. Extremophiles 18:1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Radestock S, Gohlke H (2011) Protein rigidity and thermophilic adaptation. Proteins 79:1089–1108

    Article  CAS  PubMed  Google Scholar 

  • Ramli AN, Mahadi NM, Shamsir MS, Rabu A, Joyce-Tan KH, Murad AM, Illias RM (2012) Structural prediction of a novel chitinase from the psychrophilic Glaciozyma antarctica PI12 and an analysis of its structural properties and function. J Comput Aided Mol Des 26:947–961

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues DF, Ivanova N, He Z, Huebner M, Zhou J, Tiedje JM (2008) Architecture of thermal adaptation in Exiguobacterium sibiricum strain isolated from 3 million years old permafrost: a genome and transcriptome approach. BMC Genom 9:547

    Article  CAS  Google Scholar 

  • Roman EA, Faraj SE, Cousido-Siah A, Mitscler A, Podjarny A, Santos J (2013) Frataxin from Psychromonas ingrahamii as a model to study stability modulation within the CYaY protein family. Biochim Biophys Acta 1834:1168–1180

    Article  CAS  PubMed  Google Scholar 

  • Russell NJ (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4:83–90

    Article  CAS  PubMed  Google Scholar 

  • Russell RJ, Gerike U, Danson MJ, Hough DW, Taylor GL (1998) Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure 6:351–361

    Article  CAS  PubMed  Google Scholar 

  • Santarossa G, Gatti-Lafranconi P, Alquati C, De Gioia L, Alberghina L, Fantucci P, Lotti M (2005) Mutations in the « lid » region affect chain length specificity and thermostability of a Pseudomonas fragi lipase. FEBS Lett 579:2383–2386

    Article  CAS  PubMed  Google Scholar 

  • Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP (2016) Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front Microbiol 7:1408

    PubMed  PubMed Central  Google Scholar 

  • Sato Y, Watanabe S, Yamaoka N, Takada Y (2008) Gene cloning of cold-adapted isocitrate lyase from a psychrophilic bacterium, Colwellia psychrerythraea, and analysis of amino acid residues involved in cold adaptation of this enzyme. Extremophiles 12:107–117

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Nielsen S (1902) Ueber einige psychrophile Mikrooganismen und ihr Vorkommen. Centr Bakteriol Parasitenk Abt II 9:145–147

    Google Scholar 

  • Schwartz MH, Pan T (2016) Temperature dependent mistranslation in a hyperthermophile adapts proteins to lower temperature. Nucleic Acids Res 44:294–303

    Article  CAS  PubMed  Google Scholar 

  • Serrano L, Fersht AR (1989) Capping and alpha-helix stability. Nature 342:296–299

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui KS, Bokhari SA, Afzal AJ, Singh S (2004) A novel thermodynamic relationship based on Kramers Theory for studying enzyme kinetics under high viscosity. IUBMB Life 56:403–407

    Article  CAS  PubMed  Google Scholar 

  • Sigtryggsdóttir AR, Papaleo E, Thorbjarnardóttir SH, Kristjánsson MM (2014) Flexibility of cold-and-heat adapted subtilisin-like serine proteinase evaluated with fluorescence quenching and molecular dynamics. Biochim Biophys Acta 1844:705–712

    Article  PubMed  CAS  Google Scholar 

  • Simpson PJL, Codd R (2011) Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina. Biochem Biophys Res Commun 414:783–788

    Article  CAS  PubMed  Google Scholar 

  • Smalas AO, Leiros HK, Os V, Willassen NP (2000) Cold-adapted enzymes. Biotechnol Annu Rev 6:1–57

    Article  CAS  PubMed  Google Scholar 

  • Somero GN (1977) Temperature as a selective factor in protein evolution: the adaptational strategy of compromise. J Exp Zool 194:175–188

    Article  Google Scholar 

  • Somero GN (1995) Proteins and temperature. Annu Rev Physiol 57:43–68

    Article  CAS  PubMed  Google Scholar 

  • Sonan GK, Receveur-Brechot V, Duez C, Aghajari N, Czjzek M, Haser R, Gerday C (2007) The linker region plays a key role in the adaptation to cold of the cellulase from an Antarctic bacterium. Biochem J 407:293–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotelo-Mundo RR, Lopez-Zavala AA, Garcia-Orozco KD, Arvizu AA, Velazquez-Contreras EF, Valenzuela-Soto EM, Rojo-Dominguez A, Kanost MR (2007) The lysozyme from insect (Manduca sexta) is a cold-adapted enzyme. Protein Pept Lett 14:774–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiwok V, Lipovova P, Skalova T, Duskova J, Dohnalek J, Hasek J, Russell N, Kralova B (2007) Cold-active enzymes studied by comparative molecular dynamics simulation. J Mol Model 13:485–497

    Article  CAS  PubMed  Google Scholar 

  • Stadler AM, Garvey CJ, Bocahut A, Sacquin-Mora S, Digel I, Schneider GJ, Natali F, Artmann GM, Zaccai G (2012) Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics. J R Soc Interface 7:2845–2855

    Article  CAS  Google Scholar 

  • Sun-Yong K, Kwang-Yeon H, Sung-Hou K, Ha-Chin S, Ye-Sun H, Yunge C (1999) Structural basis for cold adaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum. J Biol Chem 274:11761–11767

    Article  Google Scholar 

  • Suzuki Y, Haruki M, Takano K, Morikawa M, Kanaya S (2004) Possible involvement of an FKBP family member protein from a psychrotrophic bacterium, Shewanella sp. SLB1 in cold adaptation. J Biochem 271:1372–1381

    CAS  Google Scholar 

  • Suzuki T, Yamamoto K, Tada H, Uda K (2012) Cold-adapted features of arginine kinase from the deep-sea Calyptogena kaikoi. Mar Biotechnol 14:294–303

    Article  CAS  PubMed  Google Scholar 

  • Talla-Singh D, Stites WE (2008) Refinement of noncalorimetric determination of the change in heat capacity, ΔCp, of protein unfolding and validation across a wide temperature range. Proteins 71:1607–1616

    Article  CAS  PubMed  Google Scholar 

  • Tang MA, Motoshima H, Watanabe K (2014) Cold adaptation: structural and functional characterizations of psychrophilic and mesophilic acetate kinase. Protein J 33:313–322

    Article  CAS  PubMed  Google Scholar 

  • Tehei M, Franzetti B, Madern D, Ginzburg M, Ginzburg BZ, Giudici-Orticoni MT, Bruschi M, Zaccai G (2004) Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering. EMBO Rep 5:66–70

    Article  CAS  PubMed  Google Scholar 

  • Thomas T, Cavicchioli R (1998) Archaeal cold-adapted proteins: structural and evolutionary analysis of elongation factor 2 proteins from psychrophilic, mesophilic and thermophilic methanogens. FEBS Lett 439:281–286

    Article  CAS  PubMed  Google Scholar 

  • Tiberti M, Papaleo E (2011) Dynamic properties of extremophilic subtilisin-like serine-proteases. J Struct Biol 174:69–83

    Article  CAS  PubMed  Google Scholar 

  • Tindbaek N, Svendsen A, Oestezrgaard PR, Draborg H (2004) Engineering a substrate-specific cold-adapted subtilisin. Protein Eng Des Sel 17:149–156

    Article  CAS  PubMed  Google Scholar 

  • Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, Cavicchioli R (2010) Cold adaptation in the marine bacterium, Sphingopyxis alaskensis assessed using quantitative proteomics. Environ Microbiol 12:2658–2676

    CAS  PubMed  Google Scholar 

  • Truongvan N, Jang SH, Lee CW (2016) Flexibility and stability trade-off in active site of cold-adapted Pseudomonas mandelii esterase EstK. Biochemistry 55:3542–3549

    Article  CAS  PubMed  Google Scholar 

  • Tsigos I, Velonia K, Smonou I, Bouriotis V (1998) Purification and characterization of an alcohol dehydrogenase from the Antarctic psychrophile Moraxella sp. TAE123. Eur J Biochem 254:356–362

    Article  CAS  PubMed  Google Scholar 

  • Vester JK, Glaring MA, Stougaard P (2015) An exceptionally cold-adapted alpha-amylase from a metagenomics library of a cold and alkaline environment. Appl Microbiol Biotechnol 99:717–727

    Article  CAS  PubMed  Google Scholar 

  • Vieille C, Zeikus G (2001) Hyperthermophilic enzymes: sources, uses and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Yasutake Y, Tanaka I, Takada Y (2005) Elucidation of stability determinants of cold-adapted monomeric isocitrate dehydrogenase from a psychrophilic bacterium, Colwellia maris, by construction of chimeric enzymes. Microbiology 151:1083–1094

    Article  CAS  PubMed  Google Scholar 

  • Wintrode PL, Miyazaki K, Arnold FH (2001) Patterns of adaptation in a laboratory evolved thermophilic enzyme. Biochim Biophys Acta 1549:1–8

    Article  CAS  PubMed  Google Scholar 

  • Xie BB, Bian F, Chen XL, He HL, Guo J, Gao X, Zeng YX, Chen B, Zhou BC, Zhang YZ (2009) Cold adaptation of zinc metalloprotease in the thermolysin family from deep sea and arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics: new insights into relationship between conformational flexibility and hydrogen bonding. J Biol Chem 284:9257–9269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Feller G, Gerday C, Glansdorff N (2003a) Moritella cold-active dihydrofolate reductase: are there natural limits to optimization of catalytic efficiency at low temperature. J Bacteriol 185:5519–5526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Feller G, Gerday C, Glansdorff N (2003b) Metabolic enzymes from psychrophilic bacteria: challenge of adaptation to low temperatures in ornithine carbamoyltransferase from Moritella abyssi. J Bacteriol 185:2161–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Li J, Mai Z, Tian X, Zhang S (2013) Purification, characterization, and gene cloning of a cold-adapted thermolysin-like protease from Halobacillus sp. SCSIO 20089. J Biosci Bioeng 115:628–632

    Article  CAS  PubMed  Google Scholar 

  • Yusof NA, Hashim NH, Beddoe T, Mahadi NM, Ililias RM, Bakar FD, Murad AM (2016) Thermotolerance and molecular chaperone function of an SGT1-like protein from the psychrophilic yeast, Glaciozyma Antarctica. Cell Stress Chaperones 4:707–715

    Article  CAS  Google Scholar 

  • Zheng S, Ponder MA, Shih JY, Tiedje JM, Thomashow MF, Lubman DM (2007) A proteomic analysis of Psychrobacter arcticus 273-4 adaptation to low temperature and salinity using 2-D liquid mapping approach. Electrophoresis 28:467–488

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Li Y, Liu W, Chen CC, Ko TP, He M, Xu Z, Liu M, Luo H, Guo RT, Yao B, Ma Y (2016) Structural insight into potential cold adaptation mechanism through a psychrophilic glycoside hydrolase family 10 endo-β-1,4-xylanase. J Struct Biol 193:206–211

    Article  CAS  PubMed  Google Scholar 

  • Zhong CQ, Song S, Fang N, Liang X, Zhu H, Tang XF, Tang B (2009) Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site directed mutagenesis. Biotechnol Bioeng 104:862–870

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Tony Collins is supported by the FCT, the European Social Fund, the Programa Operacional Potencial Humano and the Investigador FCT Programme (IF/01635/2014). The FCT is thanked for their funding through EXPL/BBB-BIO/1772/2013-FCOMP-01-0124-FEDER-041595, the strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569), and the ERDF through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI). All the technical staff at the CBMA is thanked for the skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Gerday .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Collins, T., Gerday, C. (2017). Enzyme Catalysis in Psychrophiles. In: Margesin, R. (eds) Psychrophiles: From Biodiversity to Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-57057-0_10

Download citation

Publish with us

Policies and ethics