Advertisement

Enzyme Catalysis in Psychrophiles

  • Tony Collins
  • Charles GerdayEmail author
Chapter

Abstract

Cold-active enzymes are produced by organisms, known as psychrophiles, adapted to permanently cold habitats. Low temperatures have an exponential deleterious effct on reaction rates, and thus psychrophilic enzymes have to be adapted to secure appropriate reaction rates in their environment. These enzymes have a high specific activity at low temperatures, in any case higher than that of their mesophilic and thermophilic counterparts, and display a shift of the apparent optimum temperature for activity towards low temperatures as well as a reduced thermal stability and increased flexibility. The increased flexibility may be global, involving the overall edifice, or local, involving only those zones crucial for activity, be they near or distant from the active site. The reduced thermodynamic stability of cold-adapted enzymes is illustrated by a significantly lower stabilisation energy as compared to that of their mesophilic and thermophilic counterparts, yet maximum stability occurs at similar temperatures in all cases. The comparison of their three-dimensional structures with higher temperature-adapted homologues, in conjunction with various mutagenesis studies, has shown that their high activity results from rather discrete molecular changes that tend to decrease the stability of the molecular edifice. Each cold-adapted enzyme however adopts a specific strategy. There is apparently a continuum in the adaptation, with some enzymes showing extremely acute cold adaptation, as illustrated by a severe shift of the activity towards low temperatures, whereas others appear to cover a broader range of temperatures. This probably depends on the specific evolutionary history of the organisms which produce them.

Notes

Acknowledgements

Tony Collins is supported by the FCT, the European Social Fund, the Programa Operacional Potencial Humano and the Investigador FCT Programme (IF/01635/2014). The FCT is thanked for their funding through EXPL/BBB-BIO/1772/2013-FCOMP-01-0124-FEDER-041595, the strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569), and the ERDF through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI). All the technical staff at the CBMA is thanked for the skillful technical assistance.

References

  1. Adekoya OA, Helland R, Willassen NP, Sylte I (2006) Comparative sequence and structure analysis reveal features of cold adaptation of an enzyme in the thermolysin family. Proteins 62:435–439PubMedCrossRefGoogle Scholar
  2. Aghajari N, Feller G, Gerday C, Haser R (1998) Structures of the psychrophilic Alteromonas haloplanktis α-amylase give insights into cold adaptation at a molecular level. Structure 6:1503–1516PubMedCrossRefGoogle Scholar
  3. Almog O, Gonzalez A, Godin N, de Leeuw M, Mekel MJ, Klein D, Braun S, Shoham G, Walter RL (2009) The crystal structure of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium loaded state. Proteins 74:489–496PubMedCrossRefGoogle Scholar
  4. Altermark B, Niiranen L, Willassen NP, Smalas AO, Moe E (2007) Comparative studies of endonuclease I from cold-adapted Vibrio salmonicida and mesophilic Vibrio cholerae. FEBS J 274:252–263PubMedCrossRefGoogle Scholar
  5. Angelaccio S, Florio R, Consalvi V, Festa G, Pascarella P (2012) Serine hydroxymethyltransferase from the cold-adapted microorganism Psychromonas ingrahamii: a low temperature active enzyme with broad specificity. Int J Mol Sci 13:1314–1326PubMedPubMedCentralCrossRefGoogle Scholar
  6. Arcus VL, Prentice EJ, Hobbs JK, Mulholland AJ, Van der Kamp MW, Pudney CR, Parker EJ, Schipper LA (2016) On the temperature dependence of enzyme-catalysed rates. Biochemistry 55:1681–1688PubMedCrossRefGoogle Scholar
  7. Arnorsdóttir J, Helgadóttir S, Thorbjarnardóttir SH, Eggertsson G, Kristjansson MM (2007) Effect of selected Ser/Ala and Xaa/Pro mutations on the stability and catalytic properties of a cold adapted subtilisin-like serine proteinase. Biochim Biophys Acta 1774:749–755PubMedCrossRefGoogle Scholar
  8. Arrhenius S (1889) Uber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzuckerdurch Säuren. Z Physic Chem 4:226–248Google Scholar
  9. Asgeirsson B, Adalbjörsson BV, Gylfason GA (2007) Engineered disulfide bonds increase active-site local stability and reduce catalytic activity of a cold-adapted alkaline phosphatase. Biochim Biophys Acta 1774:679–687PubMedCrossRefGoogle Scholar
  10. Berg TO, Gurung MK, Altermark B, Smalas AO, Raeder H (2015) Characterization of the N-acetylneuraminic acid synthase (NeuB) from the psychrophilic fish pathogen Moritella viscosa. Carbohydr Res 402:133–145PubMedCrossRefGoogle Scholar
  11. Bjelic S, Bransdal BO, Aqvist J (2008) Cold adaptation of enzyme reaction rates. Biochemistry 47:10049–10057PubMedCrossRefGoogle Scholar
  12. Budiman C, Koga Y, Takano K, Kanaya S (2011) FK 506-binding protein 22 from a psychrophilic bacterium, a cold shock-inducible peptidyl prolyl isomerase with the ability to assist in protein folding. Int J Mol Sci 12:5261–5284PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chess JP, Petrescu I, Bentahir M, Van Beeumen J, Gerday C (2000) Purification, physico-chemical characterization and sequence of the heat-labile alkaline metalloprotease from a psychrophilic Pseudomonas species. Biochim Biophys Acta 1479:265–274CrossRefGoogle Scholar
  14. Chiappori F, Pucciarelli S, Merelli I, Ballarini P, Miceli C, Milanesi L (2012) Structural thermal adaptation of β-tubulins from the Antarctic psychrophilic protozoan Euplotes focardii. Proteins 80:1154–1166PubMedCrossRefGoogle Scholar
  15. Chiuri R, Majorano G, Rizello A, del Mercato LL, Cingolani R, Rinaldi R, Maffia M, Pompa PP (2009) Exploring local flexibility/rigidity in psychrophilic and mesophilic carbonic anhydrases. Biophys J 96:1586–1596PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cipolla A, Delbrassine F, Da Lage JL, Feller G (2011) Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride-dependent alpha-amylases. Biochimie 94:1943–1950CrossRefGoogle Scholar
  17. Cipolla A, D’Amico S, Barumandzadeh R, Matagne A, Feller G (2012) Stepwise adaptation to low temperature as revealed by multiple mutants of psychrophilic α-amylase from Antarctic bacterium. J Biol Chem 286:38348–38355CrossRefGoogle Scholar
  18. Collins T, Claverie P, D’Amico S, Georlette D, Gratia E, Hoyoux A, Meuwis MA, Poncin J, Sonan G, Feller G, Gerday C (2002) Life in the cold: psychrophilic enzymes. In: Pandalai SG (ed) Recent research developments in proteins, vol 1. Transworld Research Network, Trivandrum, pp 13–26Google Scholar
  19. Collins T, Meuwis M-A, Gerday C, Feller G (2003) Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J Mol Biol 338:419–428CrossRefGoogle Scholar
  20. Collins T, D’Amico S, Marx J-C, Feller G, Gerday C (2007) Cold-adapted enzymes. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 165–179CrossRefGoogle Scholar
  21. Collins T, Roulling F, Piette F, Marx J-C, Feller G, Gerday C, D’Amico S (2008) Fundamentals of cold-adapted enzymes. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 211–227CrossRefGoogle Scholar
  22. Coquelle N, Fioravanti E, Weik M, Vellieux F, Madern D (2007) Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments. J Mol Biol 374:547–562PubMedCrossRefGoogle Scholar
  23. D’Amico S, Gerday C, Feller G (2001) Structural determinants of cold adaptation and stability in a large protein. J Biol Chem 276:25791–25796PubMedCrossRefGoogle Scholar
  24. D’Amico S, Gerday C, Feller G (2002) Dual effects of an extra disulphide bond on the activity and stability of a cold-adapted α-amylase. J Biol Chem 277:46110–46115PubMedCrossRefGoogle Scholar
  25. D’Amico S, Marx J-C, Gerday C, Feller G (2003) Activity-stability relationship in extremophilic enzymes. J Biol Chem 278:7891–7896PubMedCrossRefGoogle Scholar
  26. D’Amico S, Sohier J-S, Feller G (2006a) Kinetics and energetics of ligand binding determined by microcalorimetry: insight into active site mobility in a psychrophilic alpha-amylase. J Mol Biol 358:1296–1304PubMedCrossRefGoogle Scholar
  27. D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006b) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389PubMedPubMedCentralCrossRefGoogle Scholar
  28. Daniel RM, Danson MJ (2010) A new understanding of how temperature affects the catalytic activity of enzymes. Trends Biochem Sci 35:584–591PubMedCrossRefGoogle Scholar
  29. Davail S, Feller G, Narinx E, Gerday C (1994) Cold adaptation of proteins. Purification, characterization, and sequence of the heat labile subtilisin from the Antarctic psychrophile Bacillus TA 41. J Biol Chem 269:17448–17453PubMedGoogle Scholar
  30. De Santi C, Tutino ML, Mandrich L, Giuliani M, Parilli E, Del Vecchio P, De Pascale D (2010) The hormone sensitive lipase from Psychrobacter sp. TA144: new insight in the structure/functional characterization. Biochimie 92:949–957PubMedCrossRefGoogle Scholar
  31. Demchenko AP, Rusyn OI, Saburova EA (1989) Kinetics of the lactate dehydrogenase reaction in high-viscosity media. Biochim Biophys Acta 998:196–203PubMedCrossRefGoogle Scholar
  32. Dias CL, Ala-Nissila T, Wong E, Kabut J, Vattulainen I, Grant M, Karttunen M (2010) The hydrophobic effect and its role in cold denaturation. Cryobiology 60:91–99PubMedCrossRefGoogle Scholar
  33. Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115CrossRefGoogle Scholar
  34. Fedoy A-E, Yang N, Martinez A, Leiros H-K, Stee H (2007) Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability. J Mol Biol 372:130–149PubMedCrossRefGoogle Scholar
  35. Feller G (2008) Enzyme function at low temperatures in psychrophiles. In: Siddiqui KS, Thomas T (eds) Protein adaptation in extremophiles. Nova Science, New York, NY, pp 35–69Google Scholar
  36. Feller G (2010) Protein stability and enzyme activity at extreme biological temperatures. J Phys Condens 22:32101–32118CrossRefGoogle Scholar
  37. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208PubMedCrossRefGoogle Scholar
  38. Feller G, Lonhienne T, Deroanne C, Libioulle C, Van Beeumen J, Gerday C (1992) Purification, characterization, and nucleotide sequence of the thermolabile α-amylase from the Antarctic psychrotroph Alteromonas haloplanktis A 23. J Biol Chem 267:5217–5221PubMedGoogle Scholar
  39. Feller G, Narinx E, Arpigny JL, Zekhnini Z, Swings J, Gerday C (1994) Temperature dependence of growth, enzyme secretion and activity of psychrophilic Antarctic bacteria. Appl Microbiol Biotechnol 41:477–479CrossRefGoogle Scholar
  40. Feller G, Zekhnini Z, Lamotte-Brasseur J, Gerday C (1997) Enzymes from cold-adapted microorganisms. The class C beta-lactamase from the Antarctic psychrophile Psychrobacter immobilis A5. Eur J Biochem 244:186–191PubMedCrossRefGoogle Scholar
  41. Feller G, D’Amico S, Gerday C (1999) Thermodynamic stability of a cold-active α-amylase from the Antarctic bacterium Alteromonas haloplanktis. Biochemistry 38:4613–4619PubMedCrossRefGoogle Scholar
  42. Fields PA, Somero GN (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenases A4 orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci U S A 95:11476–11481PubMedPubMedCentralCrossRefGoogle Scholar
  43. Fields PA, Dong Y, Meng X, Somero GN (2015) Adaptations of protein structure and function to temperature: there is more than one way to ‘skin a cat’. J Exp Biol 2018:1801–1811CrossRefGoogle Scholar
  44. Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) How enzymes work: analysis by modern rate theory and computer simulations. Science 303:186–195PubMedCrossRefGoogle Scholar
  45. Garsoux G, Lamotte-Brasseur J, Gerday C, Feller G (2004) Kinetic and structural optimisation to catalysis at low temperatures in a psychrophilic cellulase from the Antarctic bacterium Pseudoalteromonas haloplanktis. Biochem J 384:247–253PubMedPubMedCentralCrossRefGoogle Scholar
  46. Georlette D, Jonsson ZO, Van Petegem F, Chessa J-P, Van Beeumen J, Hubscher U, Gerday C (2000) A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins at low temperatures. Eur J Biochem 267:3502–3512PubMedCrossRefGoogle Scholar
  47. Georlette D, Damien B, Blaise V, Depiereux E, Uversky VN, Gerday C, Feller G (2003) Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. J Biol Chem 278:37015–37023PubMedCrossRefGoogle Scholar
  48. Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx J-C, Sonan G, Feller G, Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28:25–42PubMedCrossRefGoogle Scholar
  49. Gerday C (2013) Catalysis and protein folding in psychrophiles. In: Yumoto I (ed) Cold-adapted microorganisms. Caister Academic press, Norfolk, pp 137–157Google Scholar
  50. Gerday C (2014) Fundamentals of cold-active enzymes. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts. Springer, Berlin, pp 325–350CrossRefGoogle Scholar
  51. Gerike U, Danson MJ, Russell NJ, Hough DW (1997) Sequencing and expression of the gene encoding a cold-active citrate synthase from an Antarctic bacterium strain DS-3R. Eur J Biochem 248:49–57PubMedCrossRefGoogle Scholar
  52. Gershenson A, Gierasch LM (2011) Protein folding in the cell: challenges and progress. Curr Opin Struct Biol 21:32–41PubMedCrossRefGoogle Scholar
  53. Goodchild A, Saunders NF, Erlan H, Raftery M, Guilhaus M, Curmi PM, Cavicchioli R (2004) A proteomic determination of cold adaptation in the Antarctic archeon, Methanococcoides burtonii. Mol Microbiol 53:309–321PubMedCrossRefGoogle Scholar
  54. Gudmundsdóttir A (2002) Cold-adapted and mesophilic brachyurins. Biol Chem 383:1125–1131PubMedCrossRefGoogle Scholar
  55. Gudmundsdóttir E, Spilliaert R, Yang Q, Craik CS, Bjarnason JB, Gudmundsdóttir A (1996) Isolation and characterization of two cDNAs from Atlantic cod encoding two distinct psychrophilic elastases. Comp Biochem Physiol B 113:795–801PubMedCrossRefGoogle Scholar
  56. Heidarsson PO, Sigurdsson ST, Asgeirsson B (2009) Structural features and dynamics of a cold-adapted alkaline phosphatase studied by EPR spectroscopy. FEBS J 276:2725–2735PubMedCrossRefGoogle Scholar
  57. Hess E (1934) Effects of low temperatures on the growth of marine bacteria. Contribs Can Biol Fisheries Ser C 8:491–505Google Scholar
  58. Hochachka PW, Somero GN (1973) Strategies of biochemical adaptation. WB Saunders, Philadelphia, PAGoogle Scholar
  59. Hochachka PW, Somero GN (2002) Temperature. In: Hochachka PW, Somero GN (eds) Biochemical adaptation. Oxford University Press, New York, NY, 190 ppGoogle Scholar
  60. Homchaudhuri L, Sarma N, Swaminathan R (2006) Effect of crowding by dextrans and ficols on the rate of alkaline phosphatase-catalysed hydrolysis: a size-dependent investigation. Biopolymers 83:477–486PubMedCrossRefGoogle Scholar
  61. Huston AL, Krieger-Brockett BB, Deming JW (2000) Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria sea ice. Environ Microbiol 4:383–388CrossRefGoogle Scholar
  62. Huston AL, Haeggström JZ, Feller G (2008) Cold adaptation of enzymes: structural, kinetic and microcalorimetric characterizations of an aminopeptidase from the Arctic psychrophile Colwellia psychrerythraea and of human leukotriene A (4) hydrolase. Biochim Biophys Acta 1784:1865–1872PubMedCrossRefGoogle Scholar
  63. Ingraham JL, Stokes JL (1959) Psychrophilic bacteria. Bacteriol Rev 23:97–108PubMedPubMedCentralGoogle Scholar
  64. Isaksen GV, Aqvist J, Brandsdal BO (2016) Enzyme surface rigidity tunes the temperature dependence of catalytic rates. Proc Natl Acad Sci U S A 113:7822–7827PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kawamoto J, Kurihara T, Kitagawa M, Kato l, Esaki N (2007) Proteomic studies of an Antarctic cold-adapted bacterium, Shewanella livingstonensis AC 10, for global identification of cold-inducible proteins. Extremophiles 10:819-826Google Scholar
  66. Kim HW, Wi AR, Jeon BW, Lee JH, Shin SC, Park H, Jeon SJ (2015) Cold adaptation of a psychrophilic chaperonin from Psychrobacter sp. and its application for heterologous protein expression. Biotechnol Lett 37:1887–1893PubMedCrossRefGoogle Scholar
  67. Kobori H, Sullivan CW, Shizuya H (1984) Heat-labile alkaline phosphatase from Antarctic bacteria: rapid 5 end-labeling of nucleic acid. Proc Natl Acad Sci U S A 81:6691–6695PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kobus S, Widderich N, Hoeppner A, Bremer E, Smits SH (2015) Overproduction, crystallization and X-ray diffraction data analysis of ectoine synthase from the cold-adapted marine bacterium Sphingopyxis alaskensis. Acta Cristallogr F Struct Biol Commun 71:1027–1032CrossRefGoogle Scholar
  69. Koutsiolis D, Wang E, Tzanodaskalaki M, Nikiforaki D, Deli A, Feller G, Heikinheimo P, Bouriotis V (2008) Directed evolution on the cold adapted properties of TAB5 alkaline phosphatase. Protein Eng 21:319–327CrossRefGoogle Scholar
  70. Kuhn E (2012) Toward understanding life under subzero conditions: the significance of exploring psychrophilic “cold-shock” proteins. Astrobiology 12:1078–1086PubMedCrossRefGoogle Scholar
  71. Kumar S, Tsai CJ, Nussinov R (2002) Maximal stabilities of reversible two-state proteins. Biochemistry 41:5359–5374PubMedCrossRefGoogle Scholar
  72. Leiros HK, Willassen NP, Smalas AO (2000) Structural comparison of psychrophilic and mesophilic trypsins. Elucidating the molecular basis of cold-adaptation. Eur J Biochem 267:1039–1049PubMedCrossRefGoogle Scholar
  73. Leopold PE, Montal M, Onuchic JN (1992) Protein folding funnels: a kinetic approach to the sequence-structure relationship. Proc Natl Acad Sci U S A 89:8721–8725PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lonhienne T, Baise E, Feller G, Bouriotis V, Gerday C (2001a) Enzyme activity determination on macromolecular substrates by isothermal calorimetry: application to mesophilic and psychrophilic chitinases. Biochim Biophys Acta 1545:349–356PubMedCrossRefGoogle Scholar
  75. Lonhienne T, Zoidakis J, Vorgias E, Feller G, Gerday C, Bouriotis V (2001b) Modular structure, local flexibility and cold-activity of a novel chitobiase from a psychrophilic Antarctic bacterium. J Mol Biol 310:291–297PubMedCrossRefGoogle Scholar
  76. Margesin R (2009) Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles 13:257–262PubMedCrossRefGoogle Scholar
  77. Marshall CI (1997) Cold-adapted enzymes. Trends Biotechnol 15:359–364PubMedCrossRefGoogle Scholar
  78. Marx J-C, Collins T, D’Amico S, Feller G, Gerday C (2007) Cold-adapted enzymes from marine Antarctic microorganisms. Mar Biotechnol 9:293–304PubMedCrossRefGoogle Scholar
  79. Mastro AM, Keith AD (1984) Diffusion in the aqueous compartment. J Cell Biol 99:180–187CrossRefGoogle Scholar
  80. Matsuura A, Yao M, Aizawa T, Koganesawa N, Masaki K, Miyazawa M, Demura M, Tanaka I, Kawano K, Nitta K (2002) Structural analysis of an insect lysozyme exhibiting catalytic efficiency at low temperature. Biochemistry 41:12086–12092PubMedCrossRefGoogle Scholar
  81. Mereghetti P, Riccardi L, Brandsdal BO, Fantucci P, De Gioia L, Papaleo E (2010) Near native-state conformational landscape of psychrophilic and mesophilic enzymes: probing the folding funnel model. J Phys Chem B 114:7609–7619PubMedCrossRefGoogle Scholar
  82. Miao LL, Hou YJ, Fan HX, Qu J, Qi C, Liu Y, Li DF, Liu ZP (2016) Molecular structural basis for the cold adaptedness of the psychrophilic β-Glucosidase BgIU in Micrococcus antarcticus. Appl Environ Microbiol 82:2021–2030PubMedPubMedCentralCrossRefGoogle Scholar
  83. Miyazaki K, Wintrode PL, Grayling RA, Rubigh DN, Arnold FH (2000) Directed evolution study of temperature adaptation in a psychrophilic enzyme. J Mol Biol 297:1015–1026PubMedCrossRefGoogle Scholar
  84. Moe E, Leiros I, Rijse EK, Olufsen M, Lanes O, Smalas A, Willassen NP (2004) Optimisation of the surface electrostatics as a strategy for cold adaptation of uracil-DNA N-glycosylase. J Mol Biol 343:1221–1230PubMedCrossRefGoogle Scholar
  85. Mykytczuk NC, Trevors JT, Foote SJ, Leduc LG, Ferroni GD, Twine SM (2011) Proteomic insight into cold adaptation of psychrotrophic and mesophilic Acidithiobacillus ferrooxidans strains. Antonie Van Leeuwenhoek 100:259–277PubMedCrossRefGoogle Scholar
  86. Naicker MC, Seul JI, Im H (2012) Identification of chaperones in freeze tolerance in Saccharomyces cerevisiae. J Microbiol 50:882–887PubMedCrossRefGoogle Scholar
  87. Narinx E, Baise E, Gerday C (1997) Subtilisin from Antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold. Protein Eng 10:1271–1279PubMedCrossRefGoogle Scholar
  88. Pace CN, Laurents DV (1989) A new method for determining the heat capacity change for protein folding. Biochemistry 28:2520–2525PubMedCrossRefGoogle Scholar
  89. Papaleo E, Olufsen M, De Gioia L, Bransdal BO (2007) Optimization of electrostatics as a strategy for cold-adaptation: a case study of cold- and warm-active elastases. J Mol Graph Model 26:93–103PubMedCrossRefGoogle Scholar
  90. Papaleo E, Pasi M, Tiberti M, De Gioia L (2011) Molecular dynamics of mesophilic-like mutants of a cold-adapted enzyme: insight into distal effects induced by the mutations. PLoS ONE 6:e24214PubMedPubMedCentralCrossRefGoogle Scholar
  91. Paredes DI, Watters K, Pitman DJ, Bystrff C, Dordick JS (2011) Comparative void-volume analysis of psychrophilic and mesophilic enzymes: structural bioinformatics of psychrophilic enzymes reveals sources of core flexibility. BMC Struct Biol 11:42PubMedPubMedCentralCrossRefGoogle Scholar
  92. Petrescu I, Lamotte-Brasseur J, Chessa J-P, Ntarima P, Claeyssens M, Devreese B, Marino G, Gerday C (2000) Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles 4:137–144PubMedCrossRefGoogle Scholar
  93. Piette F, D’Amico S, Struvay C, Mazzuchelli G, Remaut J, Tutino ML, Danchin A, Leprince P, Feller G (2010) Proteomics of life at low temperature: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125. Mol Microbiol 76:120–132PubMedCrossRefGoogle Scholar
  94. Piette F, Struvay C, Feller G (2011) The protein folding in psychrophiles: facts and current issues. Environ Microbiol 13:1924–1933PubMedCrossRefGoogle Scholar
  95. Qiu Y, Kathariou S, Lubman DM (2006) Proteomic analysis of cold adaptation in a Siberian permafrost bacterium Exiguobacterium sibiricum 255-15 by two-dimensional liquid separation coupled with mass spectrometry. Proteomics 6:135–148CrossRefGoogle Scholar
  96. Qoura F, Elleuche S, Brueck T, Antranikian G (2014) Purification and characterization of a cold-adapted pullulanase from a psychrophilic bacterial isolate. Extremophiles 18:1095–1102PubMedCrossRefGoogle Scholar
  97. Radestock S, Gohlke H (2011) Protein rigidity and thermophilic adaptation. Proteins 79:1089–1108PubMedCrossRefGoogle Scholar
  98. Ramli AN, Mahadi NM, Shamsir MS, Rabu A, Joyce-Tan KH, Murad AM, Illias RM (2012) Structural prediction of a novel chitinase from the psychrophilic Glaciozyma antarctica PI12 and an analysis of its structural properties and function. J Comput Aided Mol Des 26:947–961PubMedCrossRefGoogle Scholar
  99. Rodrigues DF, Ivanova N, He Z, Huebner M, Zhou J, Tiedje JM (2008) Architecture of thermal adaptation in Exiguobacterium sibiricum strain isolated from 3 million years old permafrost: a genome and transcriptome approach. BMC Genom 9:547CrossRefGoogle Scholar
  100. Roman EA, Faraj SE, Cousido-Siah A, Mitscler A, Podjarny A, Santos J (2013) Frataxin from Psychromonas ingrahamii as a model to study stability modulation within the CYaY protein family. Biochim Biophys Acta 1834:1168–1180PubMedCrossRefGoogle Scholar
  101. Russell NJ (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4:83–90PubMedCrossRefGoogle Scholar
  102. Russell RJ, Gerike U, Danson MJ, Hough DW, Taylor GL (1998) Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure 6:351–361PubMedCrossRefGoogle Scholar
  103. Santarossa G, Gatti-Lafranconi P, Alquati C, De Gioia L, Alberghina L, Fantucci P, Lotti M (2005) Mutations in the « lid » region affect chain length specificity and thermostability of a Pseudomonas fragi lipase. FEBS Lett 579:2383–2386PubMedCrossRefGoogle Scholar
  104. Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP (2016) Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front Microbiol 7:1408PubMedPubMedCentralGoogle Scholar
  105. Sato Y, Watanabe S, Yamaoka N, Takada Y (2008) Gene cloning of cold-adapted isocitrate lyase from a psychrophilic bacterium, Colwellia psychrerythraea, and analysis of amino acid residues involved in cold adaptation of this enzyme. Extremophiles 12:107–117PubMedCrossRefGoogle Scholar
  106. Schmidt-Nielsen S (1902) Ueber einige psychrophile Mikrooganismen und ihr Vorkommen. Centr Bakteriol Parasitenk Abt II 9:145–147Google Scholar
  107. Schwartz MH, Pan T (2016) Temperature dependent mistranslation in a hyperthermophile adapts proteins to lower temperature. Nucleic Acids Res 44:294–303PubMedCrossRefGoogle Scholar
  108. Serrano L, Fersht AR (1989) Capping and alpha-helix stability. Nature 342:296–299PubMedCrossRefGoogle Scholar
  109. Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433PubMedCrossRefGoogle Scholar
  110. Siddiqui KS, Bokhari SA, Afzal AJ, Singh S (2004) A novel thermodynamic relationship based on Kramers Theory for studying enzyme kinetics under high viscosity. IUBMB Life 56:403–407PubMedCrossRefGoogle Scholar
  111. Sigtryggsdóttir AR, Papaleo E, Thorbjarnardóttir SH, Kristjánsson MM (2014) Flexibility of cold-and-heat adapted subtilisin-like serine proteinase evaluated with fluorescence quenching and molecular dynamics. Biochim Biophys Acta 1844:705–712PubMedCrossRefGoogle Scholar
  112. Simpson PJL, Codd R (2011) Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina. Biochem Biophys Res Commun 414:783–788PubMedCrossRefGoogle Scholar
  113. Smalas AO, Leiros HK, Os V, Willassen NP (2000) Cold-adapted enzymes. Biotechnol Annu Rev 6:1–57PubMedCrossRefGoogle Scholar
  114. Somero GN (1977) Temperature as a selective factor in protein evolution: the adaptational strategy of compromise. J Exp Zool 194:175–188CrossRefGoogle Scholar
  115. Somero GN (1995) Proteins and temperature. Annu Rev Physiol 57:43–68PubMedCrossRefGoogle Scholar
  116. Sonan GK, Receveur-Brechot V, Duez C, Aghajari N, Czjzek M, Haser R, Gerday C (2007) The linker region plays a key role in the adaptation to cold of the cellulase from an Antarctic bacterium. Biochem J 407:293–302PubMedPubMedCentralCrossRefGoogle Scholar
  117. Sotelo-Mundo RR, Lopez-Zavala AA, Garcia-Orozco KD, Arvizu AA, Velazquez-Contreras EF, Valenzuela-Soto EM, Rojo-Dominguez A, Kanost MR (2007) The lysozyme from insect (Manduca sexta) is a cold-adapted enzyme. Protein Pept Lett 14:774–778PubMedPubMedCentralCrossRefGoogle Scholar
  118. Spiwok V, Lipovova P, Skalova T, Duskova J, Dohnalek J, Hasek J, Russell N, Kralova B (2007) Cold-active enzymes studied by comparative molecular dynamics simulation. J Mol Model 13:485–497PubMedCrossRefGoogle Scholar
  119. Stadler AM, Garvey CJ, Bocahut A, Sacquin-Mora S, Digel I, Schneider GJ, Natali F, Artmann GM, Zaccai G (2012) Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics. J R Soc Interface 7:2845–2855CrossRefGoogle Scholar
  120. Sun-Yong K, Kwang-Yeon H, Sung-Hou K, Ha-Chin S, Ye-Sun H, Yunge C (1999) Structural basis for cold adaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum. J Biol Chem 274:11761–11767CrossRefGoogle Scholar
  121. Suzuki Y, Haruki M, Takano K, Morikawa M, Kanaya S (2004) Possible involvement of an FKBP family member protein from a psychrotrophic bacterium, Shewanella sp. SLB1 in cold adaptation. J Biochem 271:1372–1381Google Scholar
  122. Suzuki T, Yamamoto K, Tada H, Uda K (2012) Cold-adapted features of arginine kinase from the deep-sea Calyptogena kaikoi. Mar Biotechnol 14:294–303PubMedCrossRefGoogle Scholar
  123. Talla-Singh D, Stites WE (2008) Refinement of noncalorimetric determination of the change in heat capacity, ΔCp, of protein unfolding and validation across a wide temperature range. Proteins 71:1607–1616PubMedCrossRefGoogle Scholar
  124. Tang MA, Motoshima H, Watanabe K (2014) Cold adaptation: structural and functional characterizations of psychrophilic and mesophilic acetate kinase. Protein J 33:313–322PubMedCrossRefGoogle Scholar
  125. Tehei M, Franzetti B, Madern D, Ginzburg M, Ginzburg BZ, Giudici-Orticoni MT, Bruschi M, Zaccai G (2004) Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering. EMBO Rep 5:66–70PubMedCrossRefGoogle Scholar
  126. Thomas T, Cavicchioli R (1998) Archaeal cold-adapted proteins: structural and evolutionary analysis of elongation factor 2 proteins from psychrophilic, mesophilic and thermophilic methanogens. FEBS Lett 439:281–286PubMedCrossRefGoogle Scholar
  127. Tiberti M, Papaleo E (2011) Dynamic properties of extremophilic subtilisin-like serine-proteases. J Struct Biol 174:69–83PubMedCrossRefGoogle Scholar
  128. Tindbaek N, Svendsen A, Oestezrgaard PR, Draborg H (2004) Engineering a substrate-specific cold-adapted subtilisin. Protein Eng Des Sel 17:149–156PubMedCrossRefGoogle Scholar
  129. Ting L, Williams TJ, Cowley MJ, Lauro FM, Guilhaus M, Raftery MJ, Cavicchioli R (2010) Cold adaptation in the marine bacterium, Sphingopyxis alaskensis assessed using quantitative proteomics. Environ Microbiol 12:2658–2676PubMedGoogle Scholar
  130. Truongvan N, Jang SH, Lee CW (2016) Flexibility and stability trade-off in active site of cold-adapted Pseudomonas mandelii esterase EstK. Biochemistry 55:3542–3549PubMedCrossRefGoogle Scholar
  131. Tsigos I, Velonia K, Smonou I, Bouriotis V (1998) Purification and characterization of an alcohol dehydrogenase from the Antarctic psychrophile Moraxella sp. TAE123. Eur J Biochem 254:356–362PubMedCrossRefGoogle Scholar
  132. Vester JK, Glaring MA, Stougaard P (2015) An exceptionally cold-adapted alpha-amylase from a metagenomics library of a cold and alkaline environment. Appl Microbiol Biotechnol 99:717–727PubMedCrossRefGoogle Scholar
  133. Vieille C, Zeikus G (2001) Hyperthermophilic enzymes: sources, uses and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43PubMedPubMedCentralCrossRefGoogle Scholar
  134. Watanabe S, Yasutake Y, Tanaka I, Takada Y (2005) Elucidation of stability determinants of cold-adapted monomeric isocitrate dehydrogenase from a psychrophilic bacterium, Colwellia maris, by construction of chimeric enzymes. Microbiology 151:1083–1094PubMedCrossRefGoogle Scholar
  135. Wintrode PL, Miyazaki K, Arnold FH (2001) Patterns of adaptation in a laboratory evolved thermophilic enzyme. Biochim Biophys Acta 1549:1–8PubMedCrossRefGoogle Scholar
  136. Xie BB, Bian F, Chen XL, He HL, Guo J, Gao X, Zeng YX, Chen B, Zhou BC, Zhang YZ (2009) Cold adaptation of zinc metalloprotease in the thermolysin family from deep sea and arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics: new insights into relationship between conformational flexibility and hydrogen bonding. J Biol Chem 284:9257–9269PubMedPubMedCentralCrossRefGoogle Scholar
  137. Xu Y, Feller G, Gerday C, Glansdorff N (2003a) Moritella cold-active dihydrofolate reductase: are there natural limits to optimization of catalytic efficiency at low temperature. J Bacteriol 185:5519–5526PubMedPubMedCentralCrossRefGoogle Scholar
  138. Xu Y, Feller G, Gerday C, Glansdorff N (2003b) Metabolic enzymes from psychrophilic bacteria: challenge of adaptation to low temperatures in ornithine carbamoyltransferase from Moritella abyssi. J Bacteriol 185:2161–2168PubMedPubMedCentralCrossRefGoogle Scholar
  139. Yang J, Li J, Mai Z, Tian X, Zhang S (2013) Purification, characterization, and gene cloning of a cold-adapted thermolysin-like protease from Halobacillus sp. SCSIO 20089. J Biosci Bioeng 115:628–632PubMedCrossRefGoogle Scholar
  140. Yusof NA, Hashim NH, Beddoe T, Mahadi NM, Ililias RM, Bakar FD, Murad AM (2016) Thermotolerance and molecular chaperone function of an SGT1-like protein from the psychrophilic yeast, Glaciozyma Antarctica. Cell Stress Chaperones 4:707–715CrossRefGoogle Scholar
  141. Zheng S, Ponder MA, Shih JY, Tiedje JM, Thomashow MF, Lubman DM (2007) A proteomic analysis of Psychrobacter arcticus 273-4 adaptation to low temperature and salinity using 2-D liquid mapping approach. Electrophoresis 28:467–488PubMedCrossRefGoogle Scholar
  142. Zheng Y, Li Y, Liu W, Chen CC, Ko TP, He M, Xu Z, Liu M, Luo H, Guo RT, Yao B, Ma Y (2016) Structural insight into potential cold adaptation mechanism through a psychrophilic glycoside hydrolase family 10 endo-β-1,4-xylanase. J Struct Biol 193:206–211PubMedCrossRefGoogle Scholar
  143. Zhong CQ, Song S, Fang N, Liang X, Zhu H, Tang XF, Tang B (2009) Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site directed mutagenesis. Biotechnol Bioeng 104:862–870PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Centre of Molecular and Environmental Biology (CBMA), Department of BiologyUniversity of MinhoBragaPortugal
  2. 2.Laboratory of BiochemistryInstitute of Chemistry, University of LiègeLiègeBelgium

Personalised recommendations