Skip to main content
Log in

Cold Adaptation: Structural and Functional Characterizations of Psychrophilic and Mesophilic Acetate Kinase

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Acetate kinase catalyzes the reversible magnesium-dependent phosphoryl transfer from ATP to acetate to form acetyl phosphate and ADP. Here, we report functional and some structural properties of cold-adapted psychrotrophic enzyme; acetate kinase with those from mesophilic counterpart in Escherichia coli K-12. Recombinant acetate kinase from Shewanella sp. AS-11 (SAK) and E. coli K-12 (EAK) were purified to homogeneity following affinity chromatography and followed by Super Q column chromatography as reported before [44]. Both purified enzymes are shared some of the common properties such as (similar molecular mass, amino acid sequence and similar optimum pH), but characterized shift in the apparent optimum temperature of specific activity to lower temperature as well as by a lower thermal stability compared with EAK. The functional comparisons reveal that SAK is a cold adapted enzyme, having a higher affinity to acetate than EAK. In the acetyl phosphate and ADP-forming direction, the catalytic efficiency (k cat/K m) for acetate was 8.0 times higher for SAK than EAK at 10 °C. The activity ratio of SAK to EAK was increased with decreasing temperature in both of the forward and backward reactions. Furthermore, the activation energy, enthalpy and entropy in both reaction directions that catalyzed by SAK were lower than those catalyzed by EAK. The model structure of SAK showed the significantly reduced numbers of salt bridges and cation-pi interactions as compared with EAK. These results suggest that weakening of intramolecular electrostatic interactions of SAK is involved in a more flexible structure which is likely to be responsible for its cold adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EAK:

Acetate kinase from Escherichia coli K-12

SAK:

Acetate kinase from Shewanella sp. AS-11

ES :

Enzyme-substrate complex

ES :

Transition state intermediate

ΔH :

Activation enthalpy

ΔS :

Activation entropy

E a :

Activation energy

References

  1. Aceti DJ, Ferry JG (1988) Purification and characterization of acetate kinase from acetate-grown Methanosarcina thermophila: evidence for regulation of synthesis. J Biol Chem 263:15444–15448

    CAS  Google Scholar 

  2. Aghajari N, Feller G, Gerday C, Haser R (1988) Structures of the psychrophilic Alteromonas haloplanctis alpha-amylase give insights into cold adaptation at a molecular level. Structure 6:1503–1516

    Article  Google Scholar 

  3. Allen S, Kellermeyer R, Stjernholm R, Wood HJ (1964) Purification and properties of enzymes involved in the propionic acid fermentation. J Bacteriol 87:171–187

    CAS  Google Scholar 

  4. Arnold FH, Wintrode PL, Miyazaki K, Gershenson A (2001) How enzymes adapt: lessons from directed evolution. Trends Biochem Sci 26:100–106

    Article  CAS  Google Scholar 

  5. Birolo L, Tutino ML, Fontanella B, Gerday C, Mainolfi K, Pascarella S, Sannia G, Vinci F, Marino G (2000) Aspartate aminotransferase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125. Cloning, expression, properties, and molecular modelling. Eur J Biochem 267:2790–2802

    Article  CAS  Google Scholar 

  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  7. Bowman MC, Valdez OR, Nishimura SJ (1976) Acetate kinase from Veillonella alcalescens. J Biol Chem 251:3117–3121

    CAS  Google Scholar 

  8. Brown TDK, Jones-Mortimer MC, Kornberg HL (1977) The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. J Gen Microbiol 102:327–336

    Article  CAS  Google Scholar 

  9. Buss KA, Cooper DR, Ingram-Smith C, Ferry JG, Sanders DA, Hasson MS (2001) Urkinase: structure of acetate kinase, a member of the ASKHA superfamily of phosphotransferases. J Bacteriol 183:680–686

    Article  CAS  Google Scholar 

  10. Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841

    Article  CAS  Google Scholar 

  11. Feller G, Arpigny JL, Narinx F, Gerday C (1997) Rethinking immunological privilege: implications for corneal and limbal stem cell transplantation. Comp Biochem Physiol 3:495–499

    Article  Google Scholar 

  12. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  Google Scholar 

  13. Ferry JG (1992) Biochemistry of methanogenesis. Crit Rev Biochem Mol Biol 27:473–503

    Article  CAS  Google Scholar 

  14. Ferry JG (1992) Methane from acetate. J Bacteriol 174:5489–5495

    CAS  Google Scholar 

  15. Fields PA, Somero GN (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. PNAS 95:11476–11481

    Article  CAS  Google Scholar 

  16. Fox DK, Roseman S (1986) Isolation and characterization of homogeneous acetate kinase from Salmonella typhimurium and Escherichia coli. J Biol Chem 261:13487–13497

    CAS  Google Scholar 

  17. Gallivan JP, Dougherty DA (1999) Cation-π interactions in structural biology. Biochemistry 96:9459–9464

    CAS  Google Scholar 

  18. Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107

    Article  CAS  Google Scholar 

  19. Gerday C, Aittaleb M, Arpigny JL, Baise E, Chessa JP, Garsoux G, Petrescu I, Feller G (1997) Psychrophilic enzymes: a thermodynamic challenge. Biochim Biophys Acta 1342:119–131

    Article  CAS  Google Scholar 

  20. Gerike U, Danson MJ, Russel NJ, Hough DW (1997) Sequencing and expression of the gene encoding a cold-active citrate synthase from an Antarctic bacterium, strain DS2-3R. Eur J Biochem 248:49–57

    Article  CAS  Google Scholar 

  21. Gorrell A, Lawrence SH, Ferry JG (2005) Structural and kinetic analyses of arginine residues in the active site of the acetate kinase from Methanosarcina thermophila. J Biol Chem 280:10731–10742

    Article  CAS  Google Scholar 

  22. Hochachka PW, Somero GN (1984) Biochemical adaptations. Princeton University Press, Princeton

    Book  Google Scholar 

  23. Iizasa E, Nagano Y (2006) Highly efficient yeast-based in vivo DNA cloning of multiple DNA fragments and the simultaneous construction of yeast/Escherichia coli shuttle vectors. Biotechniques 40:79–83

    Article  CAS  Google Scholar 

  24. Ingram-Smith C, Gorrel A, Lawrence SH, Iyer P, Smith K, Ferry JG (2005) Characterization of the acetate binding pocket in the Methanosarcina thermophila acetate kinase. J Bacteriol 187:2386–2394

    Article  CAS  Google Scholar 

  25. Knowles JR (1980) Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem 49:877–919

    Article  CAS  Google Scholar 

  26. Kreil-Kiss G, Hoffmann-Ostenhof O (1963) Enzymic formation of adenosine triphosphate with acetyl phosphate as donor in a yeast extract. Biochim Biophys Acta 67:168–170

    Article  CAS  Google Scholar 

  27. Kumar S, Nussinov R (1999) Salt bridge stability in monomeric proteins. J Mol Biol 293:1241–1255

    Article  CAS  Google Scholar 

  28. Latimer MT, Ferry JG (1993) Cloning, sequence analysis, and hyperexpression of the genes encoding phosphotransacetylase and acetate kinase from Methanosarcina thermophila. J Bacteriol 175:6822–6829

    CAS  Google Scholar 

  29. Lipmann F (1944) Enzymatic synthesis of acetyl phosphate. J Biol Chem 155:55–70

    CAS  Google Scholar 

  30. Lonhienne T, Mavromatis K, Vorgias CE, Buchon L, Gerday C, Bouriotis VJ (2001) Cloning, sequences, and characterization of two chitinase genes from the Antarctic Arthrobacter sp. strain TAD20: isolation and partial characterization of the enzymes. J Bacteriol 183:1773–1779

    Article  CAS  Google Scholar 

  31. Lonhienne T, Zoidakis J, Vorgias CE, Feller G, Gerday C, Bouriotis VJ (2001) Modular structure, local flexibility and cold-activity of a novel chitobiase from a psychrophilic Antarctic bacterium. Mol Biol 310:291–297

    Article  CAS  Google Scholar 

  32. Lonhienne T, Gerday C, Feller G (2000) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta 1543:1–10

    Article  CAS  Google Scholar 

  33. Marshall CJ (1997) Cold-adapted enzymes. Trends Biotechnol 15:359–364

    Article  CAS  Google Scholar 

  34. Miyazaki K, Wintrode PL, Grayling RA, Rubingh DN, Arnold FH (2000) Directed evolution study of temperature adaptation in a psychrophilic enzyme. J Mol Biol 297:1015–1026

    Article  CAS  Google Scholar 

  35. Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    CAS  Google Scholar 

  36. Nakajima H, Koichi S, Kazutomo I (1978) Purification and properties of acetate kinase from Bacillus stearothermophilus. J Biochem (Tokyo) 84:193–203

    CAS  Google Scholar 

  37. Ohtani N, Haruki M, Morikawa M, Kanaya S (2001) Heat labile ribonuclease HI from a psychrotrophic bacterium: gene cloning, characterization and site-directed mutagenesis. Protein Eng 14:975–982

    Article  CAS  Google Scholar 

  38. Purich DL, Fromm HJ (1972) Evaluation of the phosphoryl-enzyme intermediate concept in the acetate kinase and hexokinase reactions from kinetic studies. Arch Biochem Biophys 149:307–315

    Article  CAS  Google Scholar 

  39. Rose IA, Grunberg-Manago M, Korey SR, Ochoa S (1954) Enzymatic phosphorylation of acetate. J Biol Chem 211:737–756

    CAS  Google Scholar 

  40. Russell NJ (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4:83–90

    Article  CAS  Google Scholar 

  41. Russell RJ, Gerke U, Danson MJ, Hough DW, Taylor GL (1998) Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure 6:351–361

    Article  CAS  Google Scholar 

  42. Sakoda M, Hiromi K (1976) Determination of the best-fit values of kinetic parameters of the Michaelis–Menten equation by the method of least squares with the Taylor expansion. J Biochem 80:547–555

    CAS  Google Scholar 

  43. Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  44. Tang MAK, Motoshima H, Watanabe K (2012) Cloning, expression, purification of cold adapted acetate kinase from Shewanella species AS-11. Afr J Biotechnol 11:7454–7463

    Article  CAS  Google Scholar 

  45. Tang MAK, Motoshima H, Watanabe K (2012) Fluorescence studies on the stability, flexibility and substrate-induced conformational changes of acetate kinases from psychrophilic and mesophilic bacteria. Protein J 31:337–344. doi:10.1007/s10930-012-9408-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Abul Kashem Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, M.A.K., Motoshima, H. & Watanabe, K. Cold Adaptation: Structural and Functional Characterizations of Psychrophilic and Mesophilic Acetate Kinase. Protein J 33, 313–322 (2014). https://doi.org/10.1007/s10930-014-9562-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-014-9562-1

Keywords

Navigation