Skip to main content

Kinetic Modeling, Operational Conditions, and Biorefinery Products from Hemicellulose: Depolymerization and Solubilization During Hydrothermal Processing

  • Chapter
  • First Online:
Hydrothermal Processing in Biorefineries

Abstract

Hydrothermal processing is an interesting technology for the conversion of lignocellulosic biomass in biofuels and compounds in terms of a biorefinery. This process is based on the selective solubilization and depolymerization of hemicellulose fraction (xylan), producing a liquid phase of hemicellulose rich in oligomers (xylooligosaccharides), monosaccharides (mainly xylose), and degradation compounds (furfural and formic acid). Therefore, this chapter presents an overview of mathematical modeling based on pseudo-first-order kinetics and the operating conditions as temperature and time (“severity factor”) during the hydrothermal processing in order to predict the conversion and the produced compounds with high value-added in terms of biorefinery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguedo M, Ruiz HA, Richel A (2015) Non-alkaline solubilization of arabinoxylans from destarched wheat bran using hydrothermal microwave processing and comparison with the hydrolysis by an endoxylanase. Chem Eng Process Process Intensif 96:72–82

    Article  Google Scholar 

  • Aguilar-Reynosa A, Romaní A, Rodríguez-Jasso RM, Aguilar CN, Garrote G, Ruiz HA (2017) Microwave heating processing as alternative of pretreatment in second-generation biorefinery: an overview. Energ Conver Manage 136:50–65

    Article  Google Scholar 

  • Archambault-Leger V, Shao X, Lynd LR (2012) Integrated analysis of hydrothermal flow through pretreatment. Biotechnol Biofuels 5:49

    Article  Google Scholar 

  • Bajpai P (2013) Products from hemicellulose. In: Bajpai P (ed) Biorefinery in the pulp and paper industry. Academic Press, Elsevier, London, UK, pp 65–98

    Chapter  Google Scholar 

  • Bobleter O, Bonn G (1983) The hydrothermolysis of cellobiose and its reaction-product D-glucose. Carbohydr Res 23:185–193

    Article  Google Scholar 

  • Brennan MA, Wyman CE (2004) Initial evaluation of simple mass transfer models to describe hemicellulose hydrolysis in corn stover. Appl Biochem Biotechnol 113/116:965–976

    Article  Google Scholar 

  • Bruggeman JP, Bettinger CJ, Langer R (2010) Biodegradable xylitol-based elastomers: in vivo behavior and biocompatibility. J Biomed Mater Res A 95:92–104

    Article  Google Scholar 

  • Carvalheiro F, Garrote G, Parajó JC, Pereira H, Gírio FM (2005) Kinetic modeling of brewery’s spent grain autohydrolysis. Biotechnol Prog 21:233–243

    Article  Google Scholar 

  • Carvalho AFA, de Oliva NP, Da Silva DF, Pastore GM (2013) Xylo-oligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Res Int 51:75–85

    Article  Google Scholar 

  • Chapla D, Pandit P, Shah A (2012) Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour Technol 115:215–221

    Article  Google Scholar 

  • Chornet E, Overend RP (1991) Phenomenological kinetics and reaction engineering aspects of steam/aqueous treatments. In: Focher B, Marzetti A (eds) Steam explosion techniques. Fundamentals and industrial applications. Gordon and Breach Science, Philadelphia, pp 21–58

    Google Scholar 

  • Christopher L (2012) Adding value prior to pulping: bioproducts from hemicellulose. In: Okia CA (ed) Global perspectives on sustainable forest management. InTech. Doi: 10.5772/36849

  • Dekker RFH, Wallis AFA (1983) Autohydrolysis-explosion as pretreatment for the enzymic saccharification of sunflower seed hulls. Biotechnol Lett 5:311–316

    Article  Google Scholar 

  • Edlund U, Ryberg YZ, Albertsson AC (2010) Barrier films from renewable forestry waste. Biomacromolecules 11:2532–2538

    Article  Google Scholar 

  • Fang H, Deng J, Zhang X (2011) Continuous steam explosion of wheat straw by high pressure mechanical refining system to produce sugars for bioconversion. Bioresources 6:4468–4480

    Google Scholar 

  • Fogler HS (1999) Elements of chemical reaction engineering, 3rd edn. Prentice Hall, Upper Saddle River, pp 68–123

    Google Scholar 

  • Garrote G, Domínguez H, Parajó JC (1999a) Hydrothermal processing of lignocellulosic materials. HolzRohWerkst 57:191–202

    Google Scholar 

  • Garrote G, Domínguez H, Parajó JC (1999b) Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharides production from wood. J Chem Technol Biotechnol 74:1101–1109

    Article  Google Scholar 

  • Garrote G, Domínguez H, Parajó JC (2001) Kinetics modelling of corncob autohydrolysis. Process Biochem 36:571–578

    Article  Google Scholar 

  • Goli JK, Panda SH, Linga VR (2012) Molecular mechanism of D-xylitol production in yeasts: focus on molecular transportation, catabolic sensing and stress response. In: da Silva SS, Kumar CA (eds) D-Xylitol. Springer, Berlin, pp 85–107

    Chapter  Google Scholar 

  • González-Figueredo C, Sánchez A, Díaz G, Rodríguez F, Flores R, Ceballos MA, Ruiz HA (2015) Dynamic modelling and experimental validation of a pilot-Scale tubular continuous reactor for the autohydrolysis of lignocellulosic materials. In: Gernay KV, Huusom JK, Gani R (eds) 12th International symposium on process systems engineering and 25th European symposium on computer aided process engineering. Elsevier, pp 431–436

    Google Scholar 

  • Gonçalves FA, Ruiz HA, Dos-Santos ES, Teixeira JA, de Macedo GR (2015) Bioethanol production from coconuts and cactus pretreated by autohydrolysis. Ind Crop Prod 77:1–12

    Article  Google Scholar 

  • Gonçalves FA, Ruiz HA, dos Santos ES, Teixeira JA, de Macedo GR (2016) Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept. Renew Energy 94:353–365

    Article  Google Scholar 

  • González-Muñoz MJ, Rivas S, Santos V, Parajó JC (2013) Aqueous processing of Pinus pinaster wood: kinetics of polysaccharides. Chem Eng J 231:380–387

    Article  Google Scholar 

  • Gullón P, Romaní A, Vila C, Garrote G, Parajó JC (2012) Potential of hydrothermal treatments in lignocellulose biorefineries. Biofuels Bioprod Biorefin 6:219–232

    Article  Google Scholar 

  • Hansen NM, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromolecules 9:1493–1505

    Article  Google Scholar 

  • IEA. IEA bioenergy Task 42. http://www.iea-bioenergy.task42-biorefineries.com/en/ieabiorefinery/Factsheets.htm. Accessed 16 Jun 2016

  • INBICON – DONG Energy. http://www.inbicon.com/en. Accessed 29 Jun 2016

  • Jacobsen SE, Wyman CE (2002) Xylose monomer and oligomer yields for uncatalyzed hydrolysis of sugarcane bagasse hemicellulose at varying solids concentration. Ind Eng Chem Res 41:1454–1461

    Article  Google Scholar 

  • Kim Y, Hendrickson R, Mosier N, Ladisch MR (2005) Plug-flow reactor for continuous hydrolysis of glucans and xylans from pretreated corn fiber. Energy Fuel 19:2189–2200

    Article  Google Scholar 

  • Kabel MA, Warard P, Schols HA, Voragen AGJ (2003) Location of O-acetyl substituents in xylo-oligosaccharides obtained from hydrothermally treated Eucalyptus wood. Carbohydr Res 338:69–77

    Article  Google Scholar 

  • Lima DU, Oliveira RC, Buckeridge MS (2003) Seed storage hemicelluloses as wet-end additives in papermaking. Carbohydr Polym 52:367–373

    Article  Google Scholar 

  • Liang X, Montoya A, Haynes BS (2016) Mechanistic insights and kinetic modeling of cellobiose decomposition in hot compressed water. Energy Fuels. In press Doi: 10.1021/acs.energyfuels.6b02187

  • Liu Z, Fatehi P, Sadeghi S, Ni Y (2011) Application of hemicelluloses precipitated via ethanol treatment of pre-hydrolysis liquor in high-yield pulp. Bioresour Technol 102:9613–9618

    Article  Google Scholar 

  • Lora JH, Wayman M (1980) Autohydrolysis of aspen milled wood lignin. Can J Chem 58:669–676

    Article  Google Scholar 

  • Marinova M, Mateos-Espejel E, Jemaa N, Paris J (2009) Addressing the increased energy demand of a Kraft mill biorefinery: the hemicellulose extraction case. Chem Eng Res Des 87:1269–1275

    Article  Google Scholar 

  • Michelin M, Ruiz HA, Silva DP, Ruzene DS, Teixeira JA, Polizeli MD (2015) Cellulose from lignocellulosic waste. In: Ramawat KG, Mérillon JM (eds) Polysaccharides: bioactivity and biotechnology. Springer, Switzerland, pp 475–511

    Chapter  Google Scholar 

  • Mittal A, Chatterjee SG, Scott GM, Amidon TE (2009a) Modeling xylan solubilization during autohydrolysis of sugar maple wood meal: reaction kinetics. Holzforschung 63:307–314

    Article  Google Scholar 

  • Mittal A, Chatterjee SG, Scott GM, Amidon TE (2009b) Modeling xylan solubilization during autohydrolysis of sugar maple and aspen wood chips: Reaction kinetics and mass transfer. Chem Eng Sci 64:3031–3041

    Article  Google Scholar 

  • Montané D, Overend RP, Chornet E (1998) Kinetic models for non-homogeneous complex system with a time-dependent rate constant. Can J Chem Eng 76:58–68

    Article  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  Google Scholar 

  • Mosier NS (2013) Fundamentals of aqueous pretreatment of biomass. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, Chichester, pp 129–143

    Chapter  Google Scholar 

  • Moure A, Gullón P, Domínguez H, Parajó JC (2006) Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem 41:1913–1923

    Article  Google Scholar 

  • Nabarlatz D, Farriol X, Montané D (2004) Kinetic modeling of the autohydrolysis of lignocellulosic biomass for the production of hemicellulose-derived oligosaccharides. Ind Eng Chem Res 43:4124–4131

    Article  Google Scholar 

  • Nabarlatz D, Farriol X, Montané D (2005) Autohydrolysis of almond shells for the production of xylo-oligosaccharides: product characteristics and reaction kinetics. Ind Eng Chem Res 44:7746–7755

    Article  Google Scholar 

  • Otieno DO, Ahring BK (2012) The potential for oligosaccharide production from the hemicellulose fraction of biomasses through pretreatment processes: xylooligosaccharides (XOS), arabinooligosaccharides (AOS), and mannooligosaccharides (MOS). Carbohydr Res 360:84–92

    Article  Google Scholar 

  • Overend RP, Chornet E (1987) Fractionation of lignocellulosic by steam-aqueous pretreatments. Philos Trans R Soc Lond A 321:523–536

    Article  Google Scholar 

  • Parajó JC, Garrote G, Cruz JM, Dominguez H (2004) Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials. Trends Food Sci Technol 15:115–120

    Article  Google Scholar 

  • Pereira FB, Romaní A, Ruiz HA, Teixeira JA, Domingues L (2014) Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass. Bioresour Technol 161:192–199

    Article  Google Scholar 

  • Pronyk C, Mazza G (2010) Kinetic modeling of hemicellulose hydrolysis from triticale straw in a pressurized low polarity water flow-through reactor. Ind Eng Chem Res 49:6367–6375

    Article  Google Scholar 

  • Rocha MSRS, Pratto B, Júnior RS, Almeida RMRG, Cruz AJG (2017) A kinetic model for hydrothermal pretreatment of sugarcane straw. Bioresour Technol 228:176–185

    Article  Google Scholar 

  • Romaní A, Ruiz HA, Pereira FB, Domingues L, Teixeira JA (2014) Effect of hemicellulose liquid phase on the enzymatic hydrolysis of autohydrolyzed Eucalyptus globulus wood. Biomass Conv Biorefin 4:77–86

    Article  Google Scholar 

  • Romaní A, Ruiz HA, Teixeira JA, Domingues L (2016) Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: an integrated and intensified approach. Renew Energy 95:1–9

    Article  Google Scholar 

  • Ruiz HA, Ruzene DS, Silva DP, Quintas MAC, Vicente AA, Teixeira JA (2011a) Evaluation of a hydrothermal process for pretreatment of wheat straw – effect of particle size and process conditions. J Chem Technol Biotechnol 86:88–94

    Article  Google Scholar 

  • Ruiz HA, Ruzene DS, Silva DP, da Silva FFM, Vicente AA, Teixeira JA (2011b) Development and characterization of an environmentally friendly process sequence (autohydrolysis and organosolv) for wheat straw delignification. Appl Biochem Biotechnol 164:629–641

    Article  Google Scholar 

  • Ruiz HA, Vicente AA, Teixeira JA (2012) Kinetic modeling of enzymatic saccharification using wheat straw under autohydrolysis and organosolv process. Ind Crop Prod 36:100–107

    Article  Google Scholar 

  • Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013a) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sustain Energy Rev 21:35–51

    Article  Google Scholar 

  • Ruiz HA, Cerqueira MA, Silva HD, Rodríguez-Jasso RM, Vicente AA, Teixeira JA (2013b) Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohydr Polym 92:2154–2162

    Article  Google Scholar 

  • Ruiz HA, Rodríguez-Jasso RM, Aguedo M, Kádár S (2015) Hydrothermal pretreatments of macroalgal biomass for biorefineries. In: Prokop A, Bajpai RK, Zappi ME (eds) Algal biorefineries, vol 2: Products and refinery design. Springer, Switzerland, pp 467–491

    Chapter  Google Scholar 

  • Ruiz HA, Martínez A, Vermerris W (2016) Bioenergy potential, energy crops, and biofuel production in Mexico. Bioenergy Res 9:981–984

    Article  Google Scholar 

  • Sabiha-Hanim S, Siti-Norsafurah AM (2012) Physical properties of hemicellulose films from sugarcane bagasse. Proc Eng 42:1390–1395

    Article  Google Scholar 

  • Samanta AK, Jayapal N, Jayaram C, Roy S, Kolte AP, Senani S, Sridhar M (2015) Xylooligosaccharides as prebiotics from agricultural by-products: production and applications. Bioact Carbohydr Diet Fibre 5:62–71

    Article  Google Scholar 

  • Sedlmeyer FB (2011) Xylan as by-product of biorefineries: characteristics and potential use for food applications. Food Hydrocoll 25:1891–1898

    Article  Google Scholar 

  • Shao X, Lynd L (2013) Kinetic modeling of xylan hydrolysis in co- and countercurrent liquid hot water flow-through pretreatments. Bioresour Technol 130:117–124

    Article  Google Scholar 

  • Tavast D, Mansoor ZA, Brännvall E (2014) Xylan from agro waste as a strength enhancing chemical in kraft pulping of softwood. Ind Eng Chem Res 53:9738–9742

    Article  Google Scholar 

  • Téllez-Luis SJ, Ramírez JA, Vázquez M (2002) Mathematical modelling of hemicellulosic sugar production from sorghum straw. Int J Food Eng 52:285–291

    Article  Google Scholar 

  • Vallejos ME, Felissia FE, Kruyeniski J, Area MC (2015) Kinetic study of the extraction of hemicellulosic carbohydrates from sugarcane bagasse by hot water treatment. Ind Crop Prod 67:1–6

    Article  Google Scholar 

  • Walch E, Zemann A, Schinner F, Bon G, Bobleter O (1992) Enzymatic saccharification of hemicellulose obtained from hydrothermally pretreated sugar cane bagasse and beech bark. Bioresour Technol 39:173–177

    Article  Google Scholar 

  • Walsum GPV, Allen SG, Spencer MJ, Laser MS, Antal MJ, Lynd LR (1996) Conversion of lignocellulosics pretreated with liquid hot water to ethanol. Appl Biochem Biotechnol 57(58):157–170

    Article  Google Scholar 

  • Wyman CE (2013) Introduction. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, Chichester, pp 1–15

    Chapter  Google Scholar 

  • Xiao LP, Shi ZJ, Xu F, Sun RC (2013) Hydrothermal treatment and enzymatic hydrolysis of Tamarix ramosissima: evaluation of the process as a conversion method in a biorefinery concept. Bioresour Technol 153:73–81

    Article  Google Scholar 

  • Yu Y, Wu H (2010) Understanding the primary liquid products of cellulose hydrolysis in hot-compressed water at various reaction temperatures. Energy Fuel 24:1963–1971

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Energy Sustainability Fund 2014-05 (CONACYT-SENER), Mexican Centre for Innovation in Bioenergy (Cemie-Bio), and Cluster of Bioalcohols (Ref. 249564) is gratefully acknowledged. We also gratefully acknowledge support for this research by the Mexican Science and Technology Council (CONACYT, Mexico) for the infrastructure project—INFR201601 (Ref. 269461) and CB-2015-01 (Ref. 254808). The authors Daniela Aguilar, Anely Lara, and Jesús Velázquez thank the National Council of Science and Technology (CONACYT, Mexico) for their master fellowship grant, and Elisa Zanuso thanks Energy Sustainability Fund 2014-05 (CONACYT-SENER, Ref. 249564) for undergraduate fellowship grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor A. Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zanuso, E. et al. (2017). Kinetic Modeling, Operational Conditions, and Biorefinery Products from Hemicellulose: Depolymerization and Solubilization During Hydrothermal Processing. In: Ruiz, H., Hedegaard Thomsen, M., Trajano, H. (eds) Hydrothermal Processing in Biorefineries. Springer, Cham. https://doi.org/10.1007/978-3-319-56457-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56457-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56456-2

  • Online ISBN: 978-3-319-56457-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics