Skip to main content

Neuroprotective Properties of Glutamate Metabotropic Glutamate Receptors in Parkinson’s Disease and Other Brain Disorders

  • Chapter
  • First Online:
mGLU Receptors

Part of the book series: The Receptors ((REC,volume 31))

Abstract

Because of their modulatory role, cell-type-specific expression in the CNS, and anti-inflammatory properties, the metabotropic glutamate receptors (mGluRs) have generated significant interest as potential therapeutic targets for various brain disorders. In addition, preclinical studies in animal models of Parkinson’s disease have revealed that specific mGluR subtypes mediate significant neuroprotective effects that reduce midbrain dopaminergic neuronal death. Although the underlying mechanisms of these effects remain to be established, there is evidence that intracellular calcium regulation, anti-inflammatory effects, and glutamatergic network regulation contribute to these properties. These protective effects extend beyond midbrain dopaminergic neurons for some mGluRs. In this review, we discuss recent evidence for mGluR-mediated neuroprotection in PD and highlight the challenges to translate these findings into human trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre JA, Kehr J, Yoshitake T, Liu FL, Rivera A, Fernandez-Espinola S, Andbjer B, Leo G, Medhurst AD, Agnati LF, Fuxe K (2005) Protection but maintained dysfunction of nigral dopaminergic nerve cell bodies and striatal dopaminergic terminals in MPTP-lesioned mice after acute treatment with the mGluR5 antagonist MPEP. Brain Res 1033:216–220

    Article  CAS  PubMed  Google Scholar 

  • Alagarsamy S, Marino MJ, Rouse ST, Gereau RW, Heinemann SF, Conn PJ (1999) Activation of NMDA receptors reverses desensitization of mGluR5 in native and recombinant systems. Nat Neurosci 2:234–240

    Article  CAS  PubMed  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  CAS  PubMed  Google Scholar 

  • Allen JW, Ivanova SA, Fan L, Espey MG, Basile AS, Faden AI (1999) Group II metabotropic glutamate receptor activation attenuates traumatic neuronal injury and improves neurological recovery after traumatic brain injury. J Pharmacol Exp Ther 290:112–120

    CAS  PubMed  Google Scholar 

  • Amalric M (2015) Targeting metabotropic glutamate receptors (mGluRs) in Parkinson’s disease. Curr Opin Pharmacol 20:29–34

    Article  CAS  PubMed  Google Scholar 

  • Anwyl R (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Brain Res Rev 29:83–120

    Article  CAS  PubMed  Google Scholar 

  • Armentero MT, Fancellu R, Nappi G, Bramanti P, Blandini F (2006) Prolonged blockade of NMDA or mGluR5 glutamate receptors reduces nigrostriatal degeneration while inducing selective metabolic changes in the basal ganglia circuitry in a rodent model of Parkinson’s disease. Neurobiol Dis 22:1–9

    Article  CAS  PubMed  Google Scholar 

  • Awad H, Hubert GW, Smith Y, Levey AI, Conn PJ (2000) Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J Neurosci 20:7871–7879

    CAS  PubMed  Google Scholar 

  • Ayala JE, Chen Y, Banko JL, Sheffler DJ, Williams R, Telk AN, Watson NL, Xiang Z, Zhang Y, Jones PJ, Lindsley CW, Olive MF, Conn PJ (2009) mGluR5 positive allosteric modulators facilitate both hippocampal LTP and LTD and enhance spatial learning. Neuropsychopharmacology 34:2057–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banasik T, Jasinski A, Pilc A, Majcher K, Brzegowy P (2005) Application of magnetic resonance diffusion anisotropy imaging for the assessment neuroprotecting effects of MPEP, a selective mGluR5 antagonist, on the rat spinal cord injury in vivo. Pharmacol Rep 57:861–866

    CAS  PubMed  Google Scholar 

  • Bao WL, Williams AJ, Faden AI, Tortella FC (2001) Selective mGluR5 receptor antagonist or agonist provides neuroprotection in a rat model of focal cerebral ischemia. Brain Res 922:173–179

    Article  CAS  PubMed  Google Scholar 

  • Barger SW, Basile AS (2001) Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function. J Neurochem 76:846–854

    Article  CAS  PubMed  Google Scholar 

  • Barger SW, Goodwin ME, Porter MM, Beggs ML (2007) Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation. J Neurochem 101:1205–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnum CJ, Chen X, Chung J, Chang J, Williams M, Grigoryan N, Tesi RJ, Tansey MG (2014) Peripheral administration of the selective inhibitor of soluble tumor necrosis factor (TNF) XPro(R)1595 attenuates nigral cell loss and glial activation in 6-OHDA hemiparkinsonian rats. J Parkinsons Dis 4:349–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Battaglia G, Fornai F, Busceti CL, Aloisi G, Cerrito F, De Blasi A, Melchiorri D, Nicoletti F (2002) Selective blockade of mGlu5 metabotropic glutamate receptors is protective against methamphetamine neurotoxicity. J Neurosci 22:2135–2141

    CAS  PubMed  Google Scholar 

  • Battaglia G, Busceti CL, Pontarelli F, Biagioni F, Fornai F, Paparelli A, Bruno V, Ruggieri S, Nicoletti F (2003) Protective role of group-II metabotropic glutamate receptors against nigro-striatal degeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Neuropharmacology 45:155–166

    Article  CAS  PubMed  Google Scholar 

  • Battaglia G, Busceti CL, Molinaro G, Biagioni F, Storto M, Fornai F, Nicoletti F, Bruno V (2004) Endogenous activation of mGlu5 metabotropic glutamate receptors contributes to the development of nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. J Neurosci 24:828–835

    Article  CAS  PubMed  Google Scholar 

  • Battaglia G, Busceti CL, Molinaro G, Biagioni F, Traficante A, Nicoletti F, Bruno V (2006) Pharmacological activation of mGlu4 metabotropic glutamate receptors reduces nigrostriatal degeneration in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurosci 26:7222–7229

    Article  CAS  PubMed  Google Scholar 

  • Battaglia G, Molinaro G, Riozzi B, Storto M, Busceti CL, Spinsanti P, Bucci D, Di Liberto V, Mudo G, Corti C, Corsi M, Nicoletti F, Belluardo N, Bruno V (2009) Activation of mGlu3 receptors stimulates the production of GDNF in striatal neurons. PLoS One 4:e6591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Battaglia G, Riozzi B, Bucci D, Di Menna L, Molinaro G, Pallottino S, Nicoletti F, Bruno V (2015) Activation of mGlu3 metabotropic glutamate receptors enhances GDNF and GLT-1 formation in the spinal cord and rescues motor neurons in the SOD-1 mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 74:126–136

    Article  CAS  PubMed  Google Scholar 

  • Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181:3733–3739

    Article  CAS  PubMed  Google Scholar 

  • Berg D, Godau J, Trenkwalder C, Eggert K, Csoti I, Storch A, Huber H, Morelli-Canelo M, Stamelou M, Ries V, Wolz M, Schneider C, Di Paolo T, Gasparini F, Hariry S, Vandemeulebroecke M, Abi-Saab W, Cooke K, Johns D, Gomez-Mancilla B (2011) AFQ056 treatment of levodopa-induced dyskinesias: results of 2 randomized controlled trials. Mov Disord 26:1243–1250

    Article  PubMed  Google Scholar 

  • Bergeron R, Coyle JT, Tsai G, Greene RW (2005) NAAG reduces NMDA receptor current in CA1 hippocampal pyramidal neurons of acute slices and dissociated neurons. Neuropsychopharmacology 30:7–16

    Article  CAS  PubMed  Google Scholar 

  • Besong G, Battaglia G, D’Onofrio M, Di Marco R, Ngomba RT, Storto M, Castiglione M, Mangano K, Busceti CL, Nicoletti FR, Bacon K, Tusche M, Valenti O, Conn PJ, Bruno V, Nicoletti F (2002) Activation of group III metabotropic glutamate receptors inhibits the production of RANTES in glial cell cultures. J Neurosci 22:5403–5411

    CAS  PubMed  Google Scholar 

  • Betts MJ, O’Neill MJ, Duty S (2012) Allosteric modulation of the group III mGlu4 receptor provides functional neuroprotection in the 6-hydroxydopamine rat model of Parkinson’s disease. Br J Pharmacol 166:2317–2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezard E, Bioulac B, Gross CE (1998) Glutamatergic compensatory mechanisms in experimental parkinsonism. Prog Neuro-Psychopharmacol Biol Psychiatry 22:609–623

    Article  CAS  Google Scholar 

  • Biber K, Laurie DJ, Berthele A, Sommer B, Tolle TR, Gebicke-Harter PJ, van Calker D, Boddeke HW (1999) Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia. J Neurochem 72:1671–1680

    Article  CAS  PubMed  Google Scholar 

  • Blandini F, Armentero MT, Fancellu R, Blaugrund E, Nappi G (2004) Neuroprotective effect of rasagiline in a rodent model of Parkinson’s disease. Exp Neurol 187:455–459

    Article  CAS  PubMed  Google Scholar 

  • Bond A, O’Neill MJ, Hicks CA, Monn JA, Lodge D (1998) Neuroprotective effects of a systemically active group II metabotropic glutamate receptor agonist LY354740 in a gerbil model of global ischaemia. Neuroreport 9:1191–1193

    Article  CAS  PubMed  Google Scholar 

  • Bond A, Ragumoorthy N, Monn JA, Hicks CA, Ward MA, Lodge D, O’Neill MJ (1999) LY379268, a potent and selective group II metabotropic glutamate receptor agonist, is neuroprotective in gerbil global, but not focal, cerebral ischaemia. Neurosci Lett 273:191–194

    Article  CAS  PubMed  Google Scholar 

  • Bonsi P, Cuomo D, Picconi B, Sciamanna G, Tscherter A, Tolu M, Bernardi G, Calabresi P, Pisani A (2007) Striatal metabotropic glutamate receptors as a target for pharmacotherapy in Parkinson’s disease. Amino Acids 32:189–195

    Article  CAS  PubMed  Google Scholar 

  • Bradley SR, Marino MJ, Wittmann M, Rouse ST, Awad H, Levey AI, Conn PJ (2000) Activation of group II metabotropic glutamate receptors inhibits synaptic excitation of the substantia Nigra pars reticulata. J Neurosci 20:3085–3094

    CAS  PubMed  Google Scholar 

  • Breysse N, Baunez C, Spooren W, Gasparini F, Amalric M (2002) Chronic but not acute treatment with a metabotropic glutamate 5 receptor antagonist reverses the akinetic deficits in a rat model of parkinsonism. J Neurosci 22:5669–5678

    CAS  PubMed  Google Scholar 

  • Breysse N, Amalric M, Salin P (2003) Metabotropic glutamate 5 receptor blockade alleviates akinesia by normalizing activity of selective basal-ganglia structures in parkinsonian rats. J Neurosci 23:8302–8309

    CAS  PubMed  Google Scholar 

  • Bruno V, Sureda FX, Storto M, Casabona G, Caruso A, Knopfel T, Kuhn R, Nicoletti F (1997) The neuroprotective activity of group-II metabotropic glutamate receptors requires new protein synthesis and involves a glial-neuronal signaling. J Neurosci 17:1891–1897

    CAS  PubMed  Google Scholar 

  • Bruno V, Battaglia G, Casabona G, Copani A, Caciagli F, Nicoletti F (1998a) Neuroprotection by glial metabotropic glutamate receptors is mediated by transforming growth factor-beta. J Neurosci 18:9594–9600

    CAS  PubMed  Google Scholar 

  • Bruno V, Wroblewska B, Wroblewski JT, Fiore L, Nicoletti F (1998b) Neuroprotective activity of N-acetylaspartylglutamate in cultured cortical cells. Neuroscience 85:751–757

    Article  CAS  PubMed  Google Scholar 

  • Bruno V, Battaglia G, Ksiazek I, van der Putten H, Catania MV, Giuffrida R, Lukic S, Leonhardt T, Inderbitzin W, Gasparini F, Kuhn R, Hampson DR, Nicoletti F, Flor PJ (2000) Selective activation of mGlu4 metabotropic glutamate receptors is protective against excitotoxic neuronal death. J Neurosci 20:6413–6420

    CAS  PubMed  Google Scholar 

  • Byrnes KR, Stoica B, Loane DJ, Riccio A, Davis MI, Faden AI (2009a) Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity. Glia 57:550–560

    Article  PubMed  PubMed Central  Google Scholar 

  • Byrnes KR, Stoica B, Riccio A, Pajoohesh-Ganji A, Loane DJ, Faden AI (2009b) Activation of metabotropic glutamate receptor 5 improves recovery after spinal cord injury in rodents. Ann Neurol 66:63–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Z, Lin S, Rhodes PG (2002) Neuroprotective effects of N-acetylaspartylglutamate in a neonatal rat model of hypoxia-ischemia. Eur J Pharmacol 437:139–145

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, Maj R, Pisani A, Mercuri NB, Bernardi G (1992) Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J Neurosci 12:4224–4233

    CAS  PubMed  Google Scholar 

  • Cannon JR, Greenamyre JT (2010) Neurotoxic in vivo models of Parkinson’s disease recent advances. Prog Brain Res 184:17–33

    Article  CAS  PubMed  Google Scholar 

  • Caraci F, Molinaro G, Battaglia G, Giuffrida ML, Riozzi B, Traficante A, Bruno V, Cannella M, Merlo S, Wang X, Heinz BA, Nisenbaum ES, Britton TC, Drago F, Sortino MA, Copani A, Nicoletti F (2011) Targeting group II metabotropic glutamate (mGlu) receptors for the treatment of psychosis associated with Alzheimer’s disease: selective activation of mGlu2 receptors amplifies beta-amyloid toxicity in cultured neurons, whereas dual activation of mGlu2 and mGlu3 receptors is neuroprotective. Mol Pharmacol 79:618-626.

    Google Scholar 

  • Cartmell J, Schoepp DD (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 75:889–907

    Article  CAS  PubMed  Google Scholar 

  • Caudle WM, Zhang J (2009) Glutamate, excitotoxicity, and programmed cell death in Parkinson disease. Exp Neurol 220:230–233

    Article  CAS  PubMed  Google Scholar 

  • Chan CS, Gertler TS, Surmeier DJ (2009) Calcium homeostasis, selective vulnerability and Parkinson’s disease. Trends Neurosci 32:249–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan CS, Gertler TS, Surmeier DJ (2010) A molecular basis for the increased vulnerability of substantia nigra dopamine neurons in aging and Parkinson’s disease. Mov Disord 25(Suppl 1):S63–S70

    Article  PubMed  Google Scholar 

  • Chen L, Liu J, Ali U, Gui ZH, Hou C, Fan LL, Wang Y, Wang T (2011) Chronic, systemic treatment with a metabotropic glutamate receptor 5 antagonist produces anxiolytic-like effects and reverses abnormal firing activity of projection neurons in the basolateral nucleus of the amygdala in rats with bilateral 6-OHDA lesions. Brain Res Bull 84:215–223

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Cao L, Dong W, Luo P, Liu W, Qu Y, Fei Z (2012a) Protective effects of mGluR5 positive modulators against traumatic neuronal injury through PKC-dependent activation of MEK/ERK pathway. Neurochem Res 37:983–990

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Zhang L, Qu Y, Huo K, Jiang X, Fei Z (2012b) The selective mGluR5 agonist CHPG protects against traumatic brain injury in vitro and in vivo via ERK and Akt pathway. Int J Mol Med 29:630–636

    CAS  PubMed  Google Scholar 

  • Chiamulera C, Albertini P, Valerio E, Reggiani A (1992) Activation of metabotropic receptors has a neuroprotective effect in a rodent model of focal ischaemia. Eur J Pharmacol 216:335–336

    Article  CAS  PubMed  Google Scholar 

  • Cleva RM, Gass JT, Widholm JJ, Olive MF (2010) Glutamatergic targets for enhancing extinction learning in drug addiction. Curr Neuropharmacol 8:394–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colwell CS, Levine MS (1999) Metabotropic glutamate receptor modulation of excitotoxicity in the neostriatum: role of calcium channels. Brain Res 833:234–241

    Article  CAS  PubMed  Google Scholar 

  • Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    Article  CAS  PubMed  Google Scholar 

  • Conn PJ, Battaglia G, Marino MJ, Nicoletti F (2005) Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 6:787–798

    Article  CAS  PubMed  Google Scholar 

  • Corti C, Aldegheri L, Somogyi P, Ferraguti F (2002) Distribution and synaptic localisation of the metabotropic glutamate receptor 4 (mGluR4) in the rodent CNS. Neuroscience 110:403–420

    Article  CAS  PubMed  Google Scholar 

  • Corti C, Battaglia G, Molinaro G, Riozzi B, Pittaluga A, Corsi M, Mugnaini M, Nicoletti F, Bruno V (2007) The use of knock-out mice unravels distinct roles for mGlu2 and mGlu3 metabotropic glutamate receptors in mechanisms of neurodegeneration/neuroprotection. J Neurosci 27:8297–8308

    Article  CAS  PubMed  Google Scholar 

  • Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH (2005) Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 25:9275–9284

    Article  CAS  PubMed  Google Scholar 

  • D’Antoni S, Berretta A, Seminara G, Longone P, Giuffrida-Stella AM, Battaglia G, Sortino MA, Nicoletti F, Catania MV (2011) A prolonged pharmacological blockade of type-5 metabotropic glutamate receptors protects cultured spinal cord motor neurons against excitotoxic death. Neurobiol Dis 42:252–264

    Article  PubMed  CAS  Google Scholar 

  • D’Onofrio M, Cuomo L, Battaglia G, Ngomba RT, Storto M, Kingston AE, Orzi F, De Blasi A, Di Iorio P, Nicoletti F, Bruno V (2001) Neuroprotection mediated by glial group-II metabotropic glutamate receptors requires the activation of the MAP kinase and the phosphatidylinositol-3-kinase pathways. J Neurochem 78:435–445

    Article  PubMed  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  PubMed  Google Scholar 

  • De Blasi A, Conn PJ, Pin J, Nicoletti F (2001) Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol Sci 22:114–120

    Article  PubMed  Google Scholar 

  • Degos V, Peineau S, Nijboer C, Kaindl AM, Sigaut S, Favrais G, Plaisant F, Teissier N, Gouadon E, Lombet A, Saliba E, Collingridge GL, Maze M, Nicoletti F, Heijnen C, Mantz J, Kavelaars A, Gressens P (2013) G protein-coupled receptor kinase 2 and group I metabotropic glutamate receptors mediate inflammation-induced sensitization to excitotoxic neurodegeneration. Ann Neurol 73:667–678

    Article  CAS  PubMed  Google Scholar 

  • Dekundy A, Pietraszek M, Schaefer D, Cenci MA, Danysz W (2006) Effects of group I metabotropic glutamate receptors blockade in experimental models of Parkinson’s disease. Brain Res Bull 69:318–326

    Article  CAS  PubMed  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  CAS  PubMed  Google Scholar 

  • Di Liberto V, Bonomo A, Frinchi M, Belluardo N, Mudo G (2010) Group II metabotropic glutamate receptor activation by agonist LY379268 treatment increases the expression of brain derived neurotrophic factor in the mouse brain. Neuroscience 165:863–873

    Article  PubMed  CAS  Google Scholar 

  • Domenici MR, Potenza RL, Martire A, Coccurello R, Pezzola A, Reggio R, Tebano MT, Popoli P (2005) Chronic treatment with the mGlu5R antagonist MPEP reduces the functional effects of the mGlu5R agonist CHPG in the striatum of 6-hydroxydopamine-lesioned rats: possible relevance to the effects of mGlu5R blockade in Parkinson’s disease. J Neurosci Res 80:646–654

    Article  CAS  PubMed  Google Scholar 

  • Domin H, Jantas D, Smialowska M (2015) Neuroprotective effects of the allosteric agonist of metabotropic glutamate receptor 7 AMN082 on oxygen-glucose deprivation- and kainate-induced neuronal cell death. Neurochem Int.

    Google Scholar 

  • Doria JG, Silva FR, de Souza JM, Vieira LB, Carvalho TG, Reis HJ, Pereira GS, Dobransky T, Ribeiro FM (2013) Metabotropic glutamate receptor 5 positive allosteric modulators are neuroprotective in a mouse model of Huntington’s disease. Br J Pharmacol 169:909–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doria JG, de Souza JM, Andrade JN, Rodrigues HA, Guimaraes IM, Carvalho TG, Guatimosim C, Dobransky T, Ribeiro FM (2015) The mGluR5 positive allosteric modulator, CDPPB, ameliorates pathology and phenotypic signs of a mouse model of Huntington’s disease. Neurobiol Dis 73:163–173

    Article  CAS  PubMed  Google Scholar 

  • Drouin-Ouellet J, Brownell AL, Saint-Pierre M, Fasano C, Emond V, Trudeau LE, Levesque D, Cicchetti F (2011) Neuroinflammation is associated with changes in glial mGluR5 expression and the development of neonatal excitotoxic lesions. Glia 59:188–199

    Article  PubMed  Google Scholar 

  • Durand D, Carniglia L, Caruso C, Lasaga M (2013) mGlu3 receptor and astrocytes: partners in neuroprotection. Neuropharmacology 66:1–11

    Article  CAS  PubMed  Google Scholar 

  • Faden AI, Ivanova SA, Yakovlev AG, Mukhin AG (1997) Neuroprotective effects of group III mGluR in traumatic neuronal injury. J Neurotrauma 14:885–895

    Article  CAS  PubMed  Google Scholar 

  • Faden AI, O’Leary DM, Fan L, Bao W, Mullins PG, Movsesyan VA (2001) Selective blockade of the mGluR1 receptor reduces traumatic neuronal injury in vitro and improvesoOutcome after brain trauma. Exp Neurol 167:435–444

    Article  CAS  PubMed  Google Scholar 

  • Fazal A, Parker F, Palmer AM, Croucher MJ (2003) Characterisation of the actions of group I metabotropic glutamate receptor subtype selective ligands on excitatory amino acid release and sodium-dependent re-uptake in rat cerebrocortical minislices. J Neurochem 86:1346–1358

    Article  CAS  PubMed  Google Scholar 

  • Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114(Pt 5):2283–2301

    Article  PubMed  Google Scholar 

  • Fei Z, Zhang X, Bai HM, Jiang XF, Wang XL (2006) Metabotropic glutamate receptor antagonists and agonists: potential neuroprotectors in diffuse brain injury. J Clin Neurosci 13:1023–1027

    Article  CAS  PubMed  Google Scholar 

  • Feng JF, Zhao X, Gurkoff GG, Van KC, Shahlaie K, Lyeth BG (2012) Post-traumatic hypoxia exacerbates neuronal cell death in the hippocampus. J Neurotrauma 29:1167–1179

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferraguti F, Shigemoto R (2006) Metabotropic glutamate receptors. Cell Tissue Res 326:483–504

    Article  CAS  PubMed  Google Scholar 

  • Ferraguti F, Crepaldi L, Nicoletti F (2008) Metabotropic glutamate 1 receptor: current concepts and perspectives. Pharmacol Rev 60:536–581

    Article  CAS  PubMed  Google Scholar 

  • Ferrigno A, Vairetti M, Ambrosi G, Rizzo V, Richelmi P, Blandini F, Fuzzati-Armentero MT (2015) Selective blockade of mGlu5 metabotropic glutamate receptors is protective against hepatic mitochondrial dysfunction in 6-OHDA lesioned Parkinsonian rats. Clin Exp Pharmacol Physiol 42:695–703

    Article  CAS  PubMed  Google Scholar 

  • Finlay C, Duty S (2014) Therapeutic potential of targeting glutamate receptors in Parkinson’s disease. J Neural Transm 121:861–880

    Article  CAS  PubMed  Google Scholar 

  • Fiorillo CD, Williams JT (1998) Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature 394:78–82

    Article  CAS  PubMed  Google Scholar 

  • Flor PJ, Battaglia G, Nicoletti F, Gasparini F, Bruno V (2002) Neuroprotective activity of metabotropic glutamate receptor ligands. Adv Exp Med Biol 513:197–223

    Article  CAS  PubMed  Google Scholar 

  • Fornai F, Vaglini F, Maggio R, Bonuccelli U, Corsini GU (1997) Species differences in the role of excitatory amino acids in experimental parkinsonism. Neurosci Biobehav Rev 21:401–415

    Article  CAS  PubMed  Google Scholar 

  • Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272

    Article  CAS  PubMed  Google Scholar 

  • Fuzzati-Armentero MT, Cerri S, Levandis G, Ambrosi G, Montepeloso E, Antoninetti G, Blandini F, Baqi Y, Muller CE, Volpini R, Costa G, Simola N, Pinna A (2015) Dual target strategy: combining distinct non-dopaminergic treatments reduces neuronal cell loss and synergistically modulates l-DOPA-induced rotational behavior in a rodent model of Parkinson’s disease. J Neurochem 134:740–747

    Article  CAS  PubMed  Google Scholar 

  • Galvan A, Kuwajima M, Smith Y (2006) Glutamate and GABA receptors and transporters in the basal ganglia: what does their subsynaptic localization reveal about their function? Neuroscience 143:351–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao HM, Hong JS (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29:357–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao HM, Hong JS, Zhang W, Liu B (2002a) Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 22:782–790

    CAS  PubMed  Google Scholar 

  • Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002b) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81:1285–1297

    Article  CAS  PubMed  Google Scholar 

  • Gasparini F, Bruno V, Battaglia G, Lukic S, Leonhardt T, Inderbitzin W, Laurie D, Sommer B, Varney MA, Hess SD, Johnson EC, Kuhn R, Urwyler S, Sauer D, Portet C, Schmutz M, Nicoletti F, Flor PJ (1999) (R,S)-4-phosphonophenylglycine, a potent and selective group III metabotropic glutamate receptor agonist, is anticonvulsive and neuroprotective in vivo. J Pharmacol Exp Ther 289:1678–1687

    CAS  PubMed  Google Scholar 

  • Gasparini F, Bilbe G, Gomez-Mancilla B, Spooren W (2008) mGluR5 antagonists: discovery, characterization and drug development. Curr Opin Drug Discov Devel 11:655–665

    CAS  PubMed  Google Scholar 

  • Gass JT, Olive MF (2009) Positive allosteric modulation of mGluR5 receptors facilitates extinction of a cocaine contextual memory. Biol Psychiatry 65:717–720

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  CAS  PubMed  Google Scholar 

  • Geurts JJ, Wolswijk G, Bo L, van der Valk P, Polman CH, Troost D, Aronica E (2003) Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis. Brain 126:1755–1766

    Article  CAS  PubMed  Google Scholar 

  • Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290:985–989

    Article  CAS  PubMed  Google Scholar 

  • Golembiowska K, Konieczny J, Ossowska K, Wolfarth S (2002) The role of striatal metabotropic glutamate receptors in degeneration of dopamine neurons: review article. Amino Acids 23:199–205

    Article  CAS  PubMed  Google Scholar 

  • Golembiowska K, Konieczny J, Wolfarth S, Ossowska K (2003) Neuroprotective action of MPEP, a selective mGluR5 antagonist, in methamphetamine-induced dopaminergic neurotoxicity is associated with a decrease in dopamine outflow and inhibition of hyperthermia in rats. Neuropharmacology 45:484–492

    Article  CAS  PubMed  Google Scholar 

  • Gravius A, Dekundy A, Nagel J, More L, Pietraszek M, Danysz W (2008) Investigation on tolerance development to subchronic blockade of mGluR5 in models of learning, anxiety, and levodopa-induced dyskinesia in rats. J Neural Transm 115:1609–1619

    Article  CAS  PubMed  Google Scholar 

  • Greenamyre JT, MacKenzie G, Peng TI, Stephans SE (1999) Mitochondrial dysfunction in Parkinson’s disease. Biochem Soc Symp 66:85–97

    Article  CAS  PubMed  Google Scholar 

  • Gregoire L, Morin N, Ouattara B, Gasparini F, Bilbe G, Johns D, Vranesic I, Sahasranaman S, Gomez-Mancilla B, Di Paolo T (2011) The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor type 5 antagonist, in L-Dopa-treated parkinsonian monkeys. Parkinsonism Relat Disord 17:270–276

    Article  PubMed  Google Scholar 

  • Gubellini P, Pisani A, Centonze D, Bernardi G, Calabresi P (2004) Metabotropic glutamate receptors and striatal synaptic plasticity: implications for neurological diseases. Prog Neurobiol 74:271–300

    Article  CAS  PubMed  Google Scholar 

  • Hamilton A, Esseltine JL, DeVries RA, Cregan SP, Ferguson SS (2014) Metabotropic glutamate receptor 5 knockout reduces cognitive impairment and pathogenesis in a mouse model of Alzheimer’s disease. Mol Brain 7:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He X, Lakkaraju SK, Hanscom M, Zhao Z, Wu J, Stoica B, MacKerell AD Jr, Faden AI, Xue F (2015) Acyl-2-aminobenzimidazoles: a novel class of neuroprotective agents targeting mGluR5. Bioorg Med Chem 23:2211–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henrich-Noack P, Hatton CD, Reymann KG (1998) The mGlu receptor ligand (S)-4C3HPG protects neurons after global ischaemia in gerbils. Neuroreport 9:985–988

    Article  CAS  PubMed  Google Scholar 

  • Henrich-Noack P, Flor PJ, Sabelhaus CF, Prass K, Dirnagl U, Gasparini F, Sauter A, Rudin M, Reymann KG (2000) Distinct influence of the group III metabotropic glutamate receptor agonist (R,S)-4-phosphonophenylglycine [(R,S)-PPG] on different forms of neuronal damage. Neuropharmacol 39:911–917

    Article  CAS  Google Scholar 

  • Herrera AJ, Tomas-Camardiel M, Venero JL, Cano J, Machado A (2005) Inflammatory process as a determinant factor for the degeneration of substantia nigra dopaminergic neurons. J Neural Transm 112:111–119

    Article  CAS  PubMed  Google Scholar 

  • Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 28:8354–8360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homayoun H, Stefani MR, Adams BW, Tamagan GD, Moghaddam B (2004) Functional interaction between NMDA and mGlu5 receptors: effects on working memory, instrumental learning, motor behaviors, and dopamine release. Neuropsychopharmacology 29:1259–1269

    Article  CAS  PubMed  Google Scholar 

  • Hornykiewicz O (1975) Brain monoamines and Parkinsonism. Psychopharmacol Bull 11:34–35

    CAS  PubMed  Google Scholar 

  • Hornykiewicz O (1998) Biochemical aspects of Parkinson’s disease. Neurology 51:S2–S9

    Article  CAS  PubMed  Google Scholar 

  • Jantas D, Greda A, Golda S, Korostynski M, Grygier B, Roman A, Pilc A, Lason W (2014) Neuroprotective effects of metabotropic glutamate receptor group II and III activators against MPP(+)-induced cell death in human neuroblastoma SH-SY5Y cells: the impact of cell differentiation state. Neuropharmacology 83:36–53

    Article  CAS  PubMed  Google Scholar 

  • Jantzie LL, Talos DM, Selip DB, An L, Jackson MC, Folkerth RD, Deng W, Jensen FE (2010) Developmental regulation of group I metabotropic glutamate receptors in the premature brain and their protective role in a rodent model of periventricular leukomalacia. Neuron Glia Biol 6:277–288

    Article  PubMed  Google Scholar 

  • Jiang Q, Yan Z, Feng J (2006) Activation of group III metabotropic glutamate receptors attenuates rotenone toxicity on dopaminergic neurons through a microtubule-dependent mechanism. J Neurosci 26:4318–4328

    Article  CAS  PubMed  Google Scholar 

  • Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R, Ruano D, Vizuete M, Gutierrez A, Vitorica J (2008) Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 28:11650–11661

    Article  CAS  PubMed  Google Scholar 

  • Johnson KA, Conn PJ, Niswender CM (2009) Glutamate receptors as therapeutic targets for Parkinson’s disease. CNS Neurol Disord Drug Targets 8:475–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston TH, Fox SH, McIldowie MJ, Piggott MJ, Brotchie JM (2010) Reduction of L-DOPA-induced dyskinesia by the selective metabotropic glutamate receptor 5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J Pharmacol Exp Ther 333:865–873

    Article  CAS  PubMed  Google Scholar 

  • Kim WT, Rioult MG, Cornell-Bell AH (1994) Glutamate-induced calcium signaling in astrocytes. Glia 11:173–184

    Article  CAS  PubMed  Google Scholar 

  • Kingston AE, O’Neill MJ, Bond A, Bruno V, Battaglia G, Nicoletti F, Harris JR, Clark BP, Monn JA, Lodge D, Schoepp DD (1999) Neuroprotective actions of novel and potent ligands of group I and group II metabotropic glutamate receptors. Ann N Y Acad Sci 890:438–449

    Article  CAS  PubMed  Google Scholar 

  • Kinney GG, Burno M, Campbell UC, Hernandez LM, Rodriguez D, Bristow LJ, Conn PJ (2003) Metabotropic glutamate subtype 5 receptors modulate locomotor activity and sensorimotor gating in rodents. J Pharmacol Exp Ther 306:116–123

    Article  CAS  PubMed  Google Scholar 

  • Kinney GG, O’Brien JA, Lemaire W, Burno M, Bickel DJ, Clements MK, Chen TB, Wisnoski DD, Lindsley CW, Tiller PR, Smith S, Jacobson MA, Sur C, Duggan ME, Pettibone DJ, Conn PJ, Williams DL Jr (2005) A novel selective positive allosteric modulator of metabotropic glutamate receptor subtype 5 has in vivo activity and antipsychotic-like effects in rat behavioral models. J Pharmacol Exp Ther 313:199–206

    Article  CAS  PubMed  Google Scholar 

  • Kohara A, Takahashi M, Yatsugi S, Tamura S, Shitaka Y, Hayashibe S, Kawabata S, Okada M (2008) Neuroprotective effects of the selective type 1 metabotropic glutamate receptor antagonist YM-202074 in rat stroke models. Brain Res 1191:168–179

    Article  CAS  PubMed  Google Scholar 

  • Konitsiotis S, Blanchet PJ, Verhagen L, Lamers E, Chase TN (2000) AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology 54:1589–1595

    Article  CAS  PubMed  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  CAS  PubMed  Google Scholar 

  • Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712

    Article  PubMed  Google Scholar 

  • Lafon-Cazal M, Fagni L, Guiraud MJ, Mary S, Lerner-Natoli M, Pin JP, Shigemoto R, Bockaert J (1999) mGluR7-like metabotropic glutamate receptors inhibit NMDA-mediated excitotoxicity in cultured mouse cerebellar granule neurons. Eur J Neurosci 11:663–672

    Article  CAS  PubMed  Google Scholar 

  • Lam AG, Soriano MA, Monn JA, Schoepp DD, Lodge D, McCulloch J (1998) Effects of the selective metabotropic glutamate agonist LY354740 in a rat model of permanent ischaemia. Neurosci Lett 254:121–123

    Article  CAS  PubMed  Google Scholar 

  • Landucci E, Boscia F, Gerace E, Scartabelli T, Cozzi A, Moroni F, Mannaioni G, Pellegrini-Giampietro DE (2009) Involvement of endocannabinoid signaling in the neuroprotective effects of subtype 1 metabotropic glutamate receptor antagonists in models of cerebral ischemia. Int Rev Neurobiol 85:337–350

    Article  CAS  PubMed  Google Scholar 

  • Lang AE (2009) When and how should treatment be started in Parkinson disease? Neurology 72:S39–S43

    Article  CAS  PubMed  Google Scholar 

  • Lecourtier L, Homayoun H, Tamagnan G, Moghaddam B (2007) Positive allosteric modulation of metabotropic glutamate 5 (mGlu5) receptors reverses N-Methyl-D-aspartate antagonist-induced alteration of neuronal firing in prefrontal cortex. Biol Psychiatry 62:739–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JK, Tran T, Tansey MG (2009) Neuroinflammation in Parkinson’s disease. J NeuroImmune Pharmacol 4:419–429

    Article  PubMed  PubMed Central  Google Scholar 

  • Levandis G, Bazzini E, Armentero MT, Nappi G, Blandini F (2008) Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-DOPA-induced dyskinesias in a rodent model of Parkinson’s disease. Neurobiol Dis 29:161–168

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Hong JS (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 304:1–7

    Article  CAS  PubMed  Google Scholar 

  • Loane DJ, Stoica BA, Pajoohesh-Ganji A, Byrnes KR, Faden AI (2009) Activation of metabotropic glutamate receptor 5 modulates microglial reactivity and neurotoxicity by inhibiting NADPH oxidase. J Biol Chem 284:15629–15639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loane DJ, Stoica BA, Faden AI (2012) Metabotropic glutamate receptor-mediated signaling in neuroglia. Wiley Interdiscip Rev Membr Transp Signal 1:136–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loane DJ, Stoica BA, Byrnes KR, Jeong W, Faden AI (2013) Activation of mGluR5 and inhibition of NADPH oxidase improves functional recovery after traumatic brain injury. J Neurotrauma 30:403–412

    Article  PubMed  PubMed Central  Google Scholar 

  • Loane DJ, Stoica BA, Tchantchou F, Kumar A, Barrett JP, Akintola T, Xue F, Conn PJ, Faden AI (2014) Novel mGluR5 positive allosteric modulator improves functional recovery, attenuates neurodegeneration, and alters microglial polarization after experimental traumatic brain injury. Neurotherapeutics 11:857–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovinger DM (2010) Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacol 58:951–961

    Article  CAS  Google Scholar 

  • Lovinger DM, McCool BA (1995) Metabotropic glutamate receptor-mediated presynaptic depression at corticostriatal synapses involves mGLuR2 or 3. J Neurophysiol 73:1076–1083

    CAS  PubMed  Google Scholar 

  • Lovinger DM, Tyler E, Fidler S, Merritt A (1993) Properties of a presynaptic metabotropic glutamate receptor in rat neostriatal slices. J Neurophysiol 69:1236–1244

    CAS  PubMed  Google Scholar 

  • Luo P, Chen T, Zhao Y, Zhang L, Yang Y, Liu W, Li S, Rao W, Dai S, Yang J, Fei Z (2014) Postsynaptic scaffold protein Homer 1a protects against traumatic brain injury via regulating group I metabotropic glutamate receptors. Cell Death Dis 5:e1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maesawa S, Kaneoke Y, Kajita Y, Usui N, Misawa N, Nakayama A, Yoshida J (2004) Long-term stimulation of the subthalamic nucleus in hemiparkinsonian rats: neuroprotection of dopaminergic neurons. J Neurosurg 100:679–687

    Article  CAS  PubMed  Google Scholar 

  • Maj M, Bruno V, Dragic Z, Yamamoto R, Battaglia G, Inderbitzin W, Stoehr N, Stein T, Gasparini F, Vranesic I, Kuhn R, Nicoletti F, Flor PJ (2003) (-)-PHCCC, a positive allosteric modulator of mGluR4: characterization, mechanism of action, and neuroprotection. Neuropharmacology 45:895–906

    Article  CAS  PubMed  Google Scholar 

  • Makarewicz D, Duszczyk M, Gadamski R, Danysz W, Lazarewicz JW (2006) Neuroprotective potential of group I metabotropic glutamate receptor antagonists in two ischemic models. Neurochem Int 48:485–490

    Article  CAS  PubMed  Google Scholar 

  • Mandel S, Weinreb O, Youdim MB (2003) Using cDNA microarray to assess Parkinson’s disease models and the effects of neuroprotective drugs. Trends Pharmacol Sci 24:184–191

    Article  CAS  PubMed  Google Scholar 

  • Marino MJ, Conn PJ (2006) Glutamate-based therapeutic approaches: allosteric modulators of metabotropic glutamate receptors. Curr Opin Pharmacol 6:98–102

    Article  CAS  PubMed  Google Scholar 

  • Marino MJ, Awad H, Poisik O, Wittmann M, Conn PJ (2002) Localization and physiological roles of metabotropic glutamate receptors in the direct and indirect pathways of the basal ganglia. Amino Acids 23:185–191

    Article  CAS  PubMed  Google Scholar 

  • Marino MJ, Valenti O, Conn PJ (2003a) Glutamate receptors and Parkinson’s disease: opportunities for intervention. Drugs Aging 20:377–397

    Article  CAS  PubMed  Google Scholar 

  • Marino MJ, Williams DL Jr, O’Brien JA, Valenti O, McDonald TP, Clements MK, Wang R, DiLella AG, Hess JF, Kinney GG, Conn PJ (2003b) Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson’s disease treatment. Proc Natl Acad Sci U S A 100:13668–13673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masilamoni GJ, Bogenpohl JW, Alagille D, Delevich K, Tamagnan G, Votaw JR, Wichmann T, Smith Y (2011) Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain 134:2057–2073

    Article  PubMed  PubMed Central  Google Scholar 

  • Matarredona ER, Santiago M, Venero JL, Cano J, Machado A (2001) Group II metabotropic glutamate receptor activation protects striatal dopaminergic nerve terminals against MPP+-induced neurotoxicity along with brain-derived neurotrophic factor induction. J Neurochem 76:351–360

    Article  CAS  PubMed  Google Scholar 

  • McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McGeer PL, McGeer EG (2002) Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 26:459–470

    Article  CAS  PubMed  Google Scholar 

  • Mela F, Marti M, Dekundy A, Danysz W, Morari M, Cenci MA (2007) Antagonism of metabotropic glutamate receptor type 5 attenuates l-DOPA-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson’s disease. J Neurochem 101:483–497

    Article  CAS  PubMed  Google Scholar 

  • Meltzer LT, Serpa KA, Christoffersen CL (1997) Metabotropic glutamate receptor-mediated inhibition and excitation of substantia nigra dopamine neurons. Synapse 26:184–193

    Article  CAS  PubMed  Google Scholar 

  • Milanese M, Giribaldi F, Melone M, Bonifacino T, Musante I, Carminati E, Rossi PI, Vergani L, Voci A, Conti F, Puliti A, Bonanno G (2014) Knocking down metabotropic glutamate receptor 1 improves survival and disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 64:48–59

    Article  CAS  PubMed  Google Scholar 

  • Mineff E, Valtschanoff J (1999) Metabotropic glutamate receptors 2 and 3 expressed by astrocytes in rat ventrobasal thalamus. Neurosci Lett 270:95–98

    Article  CAS  PubMed  Google Scholar 

  • Moller T (2010) Neuroinflammation in Huntington’s disease. J Neural Transm 117:1001–1008

    Article  PubMed  Google Scholar 

  • Montastruc JL, Rascol O, Senard JM, Rascol A (1992) A pilot study of N-methyl-D-aspartate (NMDA) antagonist in Parkinson’s disease. J Neurol Neurosurg Psychiatry 55:630–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin N, Gregoire L, Gomez-Mancilla B, Gasparini F, Di Paolo T (2010) Effect of the metabotropic glutamate receptor type 5 antagonists MPEP and MTEP in parkinsonian monkeys. Neuropharmacol 58:981–986

    Article  CAS  Google Scholar 

  • Movsesyan VA, O’Leary DM, Fan L, Bao W, Mullins PG, Knoblach SM, Faden AI (2001) mGluR5 antagonists 2-methyl-6-(phenylethynyl)-pyridine and (E)-2-methyl-6-(2-phenylethenyl)-pyridine reduce traumatic neuronal injury in vitro and in vivo by antagonizing N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 296:41–47

    CAS  PubMed  Google Scholar 

  • Muir KW (2006) Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr Opin Pharmacol 6:53–60

    Article  CAS  PubMed  Google Scholar 

  • Murray TK, Messenger MJ, Ward MA, Woodhouse S, Osborne DJ, Duty S, O’Neill MJ (2002) Evaluation of the mGluR2/3 agonist LY379268 in rodent models of Parkinson’s disease. Pharmacol Biochem Behav 73:455–466

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi S, Nakajima Y, Masu M, Ueda Y, Nakahara K, Watanabe D, Yamaguchi S, Kawabata S, Okada M (1998) Glutamate receptors: brain function and signal transduction. Brain Res Brain Res Rev 26:230–235

    Article  PubMed  Google Scholar 

  • Nash JE, Hill MP, Brotchie JM (1999) Antiparkinsonian actions of blockade of NR2B-containing NMDA receptors in the reserpine-treated rat. Exp Neurol 155:42–48

    Article  CAS  PubMed  Google Scholar 

  • Nickols HH, Conn PJ (2014) Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol Dis 61:55–71

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti F, Bruno V, Copani A, Casabona G, Knopfel T (1996) Metabotropic glutamate receptors: a new target for the therapy of neurodegenerative disorders? Trends Neurosci 19:267–271

    Article  CAS  PubMed  Google Scholar 

  • Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP (2011) Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacol 60:1017–1041

    Article  CAS  Google Scholar 

  • Nicoletti F, Bruno V, Ngomba RT, Gradini R, Battaglia G (2015) Metabotropic glutamate receptors as drug targets: what’s new? Curr Opin Pharmacol 20:89–94

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olanow CW (2009) Can we achieve neuroprotection with currently available anti-parkinsonian interventions? Neurology 72:S59–S64

    Article  CAS  PubMed  Google Scholar 

  • Orlando LR, Luthi-Carter R, Standaert DG, Coyle JT, Penney JB Jr, Young AB (1997) N-acetylaspartylglutamate (NAAG) protects against rat striatal quinolinic acid lesions in vivo. Neurosci Lett 236:91–94

    Article  CAS  PubMed  Google Scholar 

  • Ossowska K, Konieczny J, Wardas J, Pietraszek M, Kuter K, Wolfarth S, Pilc A (2007) An influence of ligands of metabotropic glutamate receptor subtypes on parkinsonian-like symptoms and the striatopallidal pathway in rats. Amino Acids 32:179–188

    Article  CAS  PubMed  Google Scholar 

  • Parker MA, Bazan HE, Marcheselli V, Rodriguez de Turco EB, Bazan NG (2002) Platelet-activating factor induces permeability transition and cytochrome c release in isolated brain mitochondria. J Neurosci Res 69:39–50

    Article  CAS  PubMed  Google Scholar 

  • Parkinson Progression Marker I (2011) The Parkinson Progression Marker Initiative (PPMI). Prog Neurobiol 95:629–635

    Article  Google Scholar 

  • Pellegrini-Giampietro DE (2003) The distinct role of mGlu1 receptors in post-ischemic neuronal death. Trends Pharmacol Sci 24:461–470

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini-Giampietro DE, Peruginelli F, Meli E, Cozzi A, Albani-Torregrossa S, Pellicciari R, Moroni F (1999) Protection with metabotropic glutamate 1 receptor antagonists in models of ischemic neuronal death: time-course and mechanisms. Neuropharmacol 38:1607–1619

    Article  CAS  Google Scholar 

  • Piallat B, Polosan M, Fraix V, Goetz L, David O, Fenoy A, Torres N, Quesada JL, Seigneuret E, Pollak P, Krack P, Bougerol T, Benabid AL, Chabardes S (2011) Subthalamic neuronal firing in obsessive-compulsive disorder and Parkinson disease. Ann Neurol 69:793–802

    Article  PubMed  Google Scholar 

  • Piers TM, Heales SJ, Pocock JM (2011) Positive allosteric modulation of metabotropic glutamate receptor 5 down-regulates fibrinogen-activated microglia providing neuronal protection. Neurosci Lett 505:140–145

    Article  CAS  PubMed  Google Scholar 

  • Pin JP, Acher F (2002) The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr Drug Targets CNS Neurol Disord 1:297–317

    Article  CAS  PubMed  Google Scholar 

  • Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1–26

    Article  CAS  PubMed  Google Scholar 

  • Pinteaux-Jones F, Sevastou IG, Fry VA, Heales S, Baker D, Pocock JM (2008) Myelin-induced microglial neurotoxicity can be controlled by microglial metabotropic glutamate receptors. J Neurochem 106:442–454

    Article  CAS  PubMed  Google Scholar 

  • Pisani A, Calabresi P, Centonze D, Bernardi G (1997) Enhancement of NMDA responses by group I metabotropic glutamate receptor activation in striatal neurones. Br J Pharmacol 120:1007–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pisani A, Gubellini P, Bonsi P, Conquet F, Picconi B, Centonze D, Bernardi G, Calabresi P (2001) Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-D-aspartate responses in medium spiny striatal neurons. Neuroscience 106:579–587

    Article  CAS  PubMed  Google Scholar 

  • Pizzi M, Consolandi O, Memo M, Spano PF (1996) Activation of multiple metabotropic glutamate receptor subtypes prevents NMDA-induced excitotoxicity in rat hippocampal slices. Eur J Neurosci 8:1516–1521

    Article  CAS  PubMed  Google Scholar 

  • Popoli P, Pintor A, Tebano MT, Frank C, Pepponi R, Nazzicone V, Grieco R, Pezzola A, Reggio R, Minghetti L, De Berardinis MA, Martire A, Potenza RL, Domenici MR, Massotti M (2004) Neuroprotective effects of the mGlu5R antagonist MPEP towards quinolinic acid-induced striatal toxicity: involvement of pre- and post-synaptic mechanisms and lack of direct NMDA blocking activity. J Neurochem 89:1479–1489

    Article  CAS  PubMed  Google Scholar 

  • Przedborski S (2005) Pathogenesis of nigral cell death in Parkinson’s disease. Parkinsonism Relat Disord 11(Suppl 1):S3–S7

    Article  PubMed  Google Scholar 

  • Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007a) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin Z, Hu D, Han S, Reaney SH, Di Monte DA, Fink AL (2007b) Effect of 4-hydroxy-2-nonenal modification on alpha-synuclein aggregation. J Biol Chem 282:5862–5870

    Article  CAS  PubMed  Google Scholar 

  • Rascol O (2009) “Disease-modification” trials in Parkinson disease: target populations, endpoints and study design. Neurology 72:S51–S58

    Article  CAS  PubMed  Google Scholar 

  • Reichel CM, Schwendt M, McGinty JF, Olive MF, See RE (2011) Loss of object recognition memory produced by extended access to methamphetamine self-administration is reversed by positive allosteric modulation of metabotropic glutamate receptor 5. Neuropsychopharmacol 36:782–792

    Article  CAS  Google Scholar 

  • Reiner A, Wang HB, Del Mar N, Sakata K, Yoo W, Deng YP (2012) BDNF may play a differential role in the protective effect of the mGluR2/3 agonist LY379268 on striatal projection neurons in R6/2 Huntington’s disease mice. Brain Res 1473:161–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rentzos M, Nikolaou C, Andreadou E, Paraskevas GP, Rombos A, Zoga M, Tsoutsou A, Boufidou F, Kapaki E, Vassilopoulos D (2007) Circulating interleukin-15 and RANTES chemokine in Parkinson’s disease. Acta Neurol Scand 116:374–379

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro FM, Paquet M, Ferreira LT, Cregan T, Swan P, Cregan SP, Ferguson SS (2010) Metabotropic glutamate receptor-mediated cell signaling pathways are altered in a mouse model of Huntington’s disease. J Neurosci 30:316–324

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro FM, Pires RG, Ferguson SS (2011) Huntington’s disease and group I metabotropic glutamate receptors. Mol Neurobiol 43:1–11

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro FM, Hamilton A, Doria JG, Guimaraes IM, Cregan SP, Ferguson SS (2014) Metabotropic glutamate receptor 5 as a potential therapeutic target in Huntington’s disease. Expert Opin Ther Targets 18:1293–1304

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez MC, Obeso JA, Olanow CW (1998) Subthalamic nucleus-mediated excitotoxicity in Parkinson’s disease: a target for neuroprotection. Ann Neurol 44:S175–S188

    Article  CAS  PubMed  Google Scholar 

  • Rossi D, Brambilla L, Valori CF, Roncoroni C, Crugnola A, Yokota T, Bredesen DE, Volterra A (2008) Focal degeneration of astrocytes in amyotrophic lateral sclerosis. Cell Death Differ 15:1691–1700

    Article  CAS  PubMed  Google Scholar 

  • Rouse ST, Marino MJ, Bradley SR, Awad H, Wittmann M, Conn PJ (2000) Distribution and roles of metabotropic glutamate receptors in the basal ganglia motor circuit: implications for treatment of Parkinson’s disease and related disorders. Pharmacol Ther 88:427–435

    Article  CAS  PubMed  Google Scholar 

  • Rylander D, Recchia A, Mela F, Dekundy A, Danysz W, Cenci MA (2009) Pharmacological modulation of glutamate transmission in a rat model of L-DOPA-induced dyskinesia: effects on motor behavior and striatal nuclear signaling. J Pharmacol Exp Ther 330:227–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rylander D, Iderberg H, Li Q, Dekundy A, Zhang J, Li H, Baishen R, Danysz W, Bezard E, Cenci MA (2010) A mGluR5 antagonist under clinical development improves L-DOPA-induced dyskinesia in parkinsonian rats and monkeys. Neurobiol Dis 39:352–361

    Article  CAS  PubMed  Google Scholar 

  • Sabelhaus CF, Schroder UH, Breder J, Henrich-Noack P, Reymann KG (2000) Neuroprotection against hypoxic/hypoglycaemic injury after the insult by the group III metabotropic glutamate receptor agonist (R, S)-4-phosphonophenylglycine. Br J Pharmacol 131:655–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sala C, Roussignol G, Meldolesi J, Fagni L (2005) Key role of the postsynaptic density scaffold proteins Shank and Homer in the functional architecture of Ca2+ homeostasis at dendritic spines in hippocampal neurons. J Neurosci 25:4587–4592

    Article  CAS  PubMed  Google Scholar 

  • Sarnico I, Boroni F, Benarese M, Sigala S, Lanzillotta A, Battistin L, Spano P, Pizzi M (2008) Activation of NF-kappaB p65/c-Rel dimer is associated with neuroprotection elicited by mGlu5 receptor agonists against MPP(+) toxicity in SK-N-SH cells. J Neural Transm 115:669–676

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH (2004) Disease modification in Parkinson’s disease. Lancet Neurol 3:362–368

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH (2009a) Molecular and clinical pathways to neuroprotection of dopaminergic drugs in Parkinson disease. Neurology 72:S44–S50

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH (2009b) Neurobiology and treatment of Parkinson’s disease. Trends Pharmacol Sci 30:41–47

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH (2009c) Neuroprotection in Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 4):S41–S43

    Article  PubMed  Google Scholar 

  • Schapira AH, Olanow CW, Greenamyre JT, Bezard E (2014) Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: future therapeutic perspectives. Lancet 384:545–555

    Article  CAS  PubMed  Google Scholar 

  • Schiefer J, Sprunken A, Puls C, Luesse HG, Milkereit A, Milkereit E, Johann V, Kosinski CM (2004) The metabotropic glutamate receptor 5 antagonist MPEP and the mGluR2 agonist LY379268 modify disease progression in a transgenic mouse model of Huntington’s disease. Brain Res 1019:246–254

    Article  CAS  PubMed  Google Scholar 

  • Schoepp DD, Conn PJ (1993) Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol Sci 14:13–20

    Article  CAS  PubMed  Google Scholar 

  • Sekiguchi M, Wada K, Wenthold RJ (1992) N-acetylaspartylglutamate acts as an agonist upon homomeric NMDA receptor (NMDAR1) expressed in Xenopus oocytes. FEBS Lett 311:285–289

    Article  CAS  PubMed  Google Scholar 

  • Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M, Panov AV, Cookson MR, Greenamyre JT (2002) An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 22:7006–7015

    CAS  PubMed  Google Scholar 

  • Shimo Y, Wichmann T (2009) Neuronal activity in the subthalamic nucleus modulates the release of dopamine in the monkey striatum. Eur J Neurosci 29:104–113

    Article  PubMed  Google Scholar 

  • Siderowf A, Stern MB (2008) Premotor Parkinson’s disease: clinical features, detection, and prospects for treatment. Ann Neurol 64(Suppl 2):S139–S147

    PubMed  Google Scholar 

  • Smith Y, Charara A, Hanson JE, Paquet M, Levey AI (2000) GABA(B) and group I metabotropic glutamate receptors in the striatopallidal complex in primates. J Anat 196(Pt 4):555–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith Y, Wichmann T, Factor SA, DeLong MR (2012) Parkinson’s disease therapeutics: new developments and challenges since the introduction of levodopa. Neuropsychopharmacol 37:213–246

    Article  CAS  Google Scholar 

  • Solomon JN, Lewis CA, Ajami B, Corbel SY, Rossi FM, Krieger C (2006) Origin and distribution of bone marrow-derived cells in the central nervous system in a mouse model of amyotrophic lateral sclerosis. Glia 53:744–753

    Article  PubMed  Google Scholar 

  • Sonsalla PK, Albers DS, Zeevalk GD (1998) Role of glutamate in neurodegeneration of dopamine neurons in several animal models of parkinsonism. Amino Acids 14:69–74

    Article  CAS  PubMed  Google Scholar 

  • Souza LC, Wilhelm EA, Bortolatto CF, Nogueira CW, Boeira SP, Jesse CR (2014) Involvement of mGlu5 receptor in 3-nitropropionic acid-induced oxidative stress in rat striatum. Neurol Res 36:833–840

    Article  CAS  PubMed  Google Scholar 

  • Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M (1998) Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 251:205–208

    Article  CAS  PubMed  Google Scholar 

  • Stocchi F, Rascol O, Destee A, Hattori N, Hauser RA, Lang AE, Poewe W, Stacy M, Tolosa E, Gao H, Nagel J, Merschhemke M, Graf A, Kenney C, Trenkwalder C (2013) AFQ056 in Parkinson patients with levodopa-induced dyskinesia: 13-week, randomized, dose-finding study. Mov Disord 28:1838–1846

    Article  CAS  PubMed  Google Scholar 

  • Storey E, Hyman BT, Jenkins B, Brouillet E, Miller JM, Rosen BR, Beal MF (1992) 1-Methyl-4-phenylpyridinium produces excitotoxic lesions in rat striatum as a result of impairment of oxidative metabolism. J Neurochem 58:1975–1978

    Article  CAS  PubMed  Google Scholar 

  • Stover JF, Sakowitz OW, Beyer TF, Dohse NK, Kroppenstedt SN, Thomale UW, Schaser KD, Unterberg AW (2003) Effects of LY379268, a selective group II metabotropic glutamate receptor agonist on EEG activity, cortical perfusion, tissue damage, and cortical glutamate, glucose, and lactate levels in brain-injured rats. J Neurotrauma 20:315–326

    Article  PubMed  Google Scholar 

  • Szydlowska K, Kaminska B, Baude A, Parsons CG, Danysz W (2007) Neuroprotective activity of selective mGlu1 and mGlu5 antagonists in vitro and in vivo. Eur J Pharmacol 554:18–29

    Article  CAS  PubMed  Google Scholar 

  • Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37:510–518

    Article  CAS  PubMed  Google Scholar 

  • Taylor DL, Diemel LT, Cuzner ML, Pocock JM (2002) Activation of group II metabotropic glutamate receptors underlies microglial reactivity and neurotoxicity following stimulation with chromogranin A, a peptide up-regulated in Alzheimer’s disease. J Neurochem 82:1179–1191

    Article  CAS  PubMed  Google Scholar 

  • Taylor DL, Diemel LT, Pocock JM (2003) Activation of microglial group III metabotropic glutamate receptors protects neurons against microglial neurotoxicity. J Neurosci 23:2150–2160

    CAS  PubMed  Google Scholar 

  • Taylor DL, Pirianov G, Holland S, McGinnity CJ, Norman AL, Reali C, Diemel LT, Gveric D, Yeung D, Mehmet H (2010) Attenuation of proliferation in oligodendrocyte precursor cells by activated microglia. J Neurosci Res 88:1632–1644

    Article  CAS  PubMed  Google Scholar 

  • Testa CM, Standaert DG, Young AB, Penney JB Jr (1994) Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J Neurosci 14:3005–3018

    CAS  PubMed  Google Scholar 

  • Trombley PQ, Westbrook GL (1992) L-AP4 inhibits calcium currents and synaptic transmission via a G-protein-coupled glutamate receptor. J Neurosci 12:2043–2050

    CAS  PubMed  Google Scholar 

  • Tu JC, Xiao B, Naisbitt S, Yuan JP, Petralia RS, Brakeman P, Doan A, Aakalu VK, Lanahan AA, Sheng M, Worley PF (1999) Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23:583–592

    Article  CAS  PubMed  Google Scholar 

  • Turski L, Bressler K, Rettig KJ, Loschmann PA, Wachtel H (1991) Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature 349:414–418

    Article  CAS  PubMed  Google Scholar 

  • Valenti O, Conn PJ, Marino MJ (2002) Distinct physiological roles of the Gq-coupled metabotropic glutamate receptors Co-expressed in the same neuronal populations. J Cell Physiol 191:125–137

    Article  CAS  PubMed  Google Scholar 

  • Valenti O, Marino MJ, Conn PJ (2003) Modulation of excitatory transmission onto midbrain dopaminergic neurons of the rat by activation of group III metabotropic glutamate receptors. Ann N Y Acad Sci 1003:479–480

    Article  PubMed  Google Scholar 

  • Valenti O, Mannaioni G, Seabrook GR, Conn PJ, Marino MJ (2005) Group III metabotropic glutamate-receptor-mediated modulation of excitatory transmission in rodent substantia nigra pars compacta dopamine neurons. J Pharmacol Exp Ther 313:1296–1304

    Article  CAS  PubMed  Google Scholar 

  • Van Laar VS, Arnold B, Cassady SJ, Chu CT, Burton EA, Berman SB (2011) Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization. Hum Mol Genet 20:927–940

    Article  PubMed  CAS  Google Scholar 

  • Vardi N, Duvoisin R, Wu G, Sterling P (2000) Localization of mGluR6 to dendrites of ON bipolar cells in primate retina. J Comp Neurol 423:402–412

    Article  CAS  PubMed  Google Scholar 

  • Venero JL, Santiago M, Tomas-Camardiel M, Matarredona ER, Cano J, Machado A (2002) DCG-IV but not other group-II metabotropic receptor agonists induces microglial BDNF mRNA expression in the rat striatum Correlation with neuronal injury. Neuroscience 113:857–869

    Article  CAS  PubMed  Google Scholar 

  • Vernon AC, Palmer S, Datla KP, Zbarsky V, Croucher MJ, Dexter DT (2005) Neuroprotective effects of metabotropic glutamate receptor ligands in a 6-hydroxydopamine rodent model of Parkinson’s disease. Eur J Neurosci 22:1799–1806

    Article  CAS  PubMed  Google Scholar 

  • Vernon AC, Zbarsky V, Datla KP, Croucher MJ, Dexter DT (2007) Subtype selective antagonism of substantia nigra pars compacta group I metabotropic glutamate receptors protects the nigrostriatal system against 6-hydroxydopamine toxicity in vivo. J Neurochem 103:1075–1091

    Article  CAS  PubMed  Google Scholar 

  • Vernon AC, Croucher MJ, Dexter DT (2008) Additive neuroprotection by metabotropic glutamate receptor subtype-selective ligands in a rat Parkinson’s model. Neuroreport 19:475–478

    Article  CAS  PubMed  Google Scholar 

  • Wallace BA, Ashkan K, Heise CE, Foote KD, Torres N, Mitrofanis J, Benabid AL (2007) Survival of midbrain dopaminergic cells after lesion or deep brain stimulation of the subthalamic nucleus in MPTP-treated monkeys. Brain 130:2129–2145

    Article  PubMed  Google Scholar 

  • Wang L, Kitai ST, Xiang Z (2005) Modulation of excitatory synaptic transmission by endogenous glutamate acting on presynaptic group II mGluRs in rat substantia nigra compacta. J Neurosci Res 82:778–787

    Article  CAS  PubMed  Google Scholar 

  • Westbrook GL, Mayer ML, Namboodiri MA, Neale JH (1986) High concentrations of N-acetylaspartylglutamate (NAAG) selectively activate NMDA receptors on mouse spinal cord neurons in cell culture. J Neurosci 6:3385–3392

    CAS  PubMed  Google Scholar 

  • Wichmann T, DeLong MR (2006) Basal ganglia discharge abnormalities in Parkinson’s disease. J Neural Transm Suppl:21–25

    Google Scholar 

  • Wigmore MA, Lacey MG (1998) Metabotropic glutamate receptors depress glutamate-mediated synaptic input to rat midbrain dopamine neurones in vitro. Br J Pharmacol 123:667–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams CJ, Dexter DT (2014) Neuroprotective and symptomatic effects of targeting group III mGlu receptors in neurodegenerative disease. J Neurochem 129:4–20

    Article  CAS  PubMed  Google Scholar 

  • Winklhofer KF, Haass C (2010) Mitochondrial dysfunction in Parkinson’s disease. Biochim Biophys Acta 1802:29–44

    Article  CAS  PubMed  Google Scholar 

  • Wroblewska B, Wroblewski JT, Pshenichkin S, Surin A, Sullivan SE, Neale JH (1997) N-acetylaspartylglutamate selectively activates mGluR3 receptors in transfected cells. J Neurochem 69:174–181

    Article  CAS  PubMed  Google Scholar 

  • Xue F, Stoica BA, Hanscom M, Kabadi SV, Faden AI (2014) Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGluR5) attenuate microglial activation. CNS Neurol Disord Drug Targets 13:558–566

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Rodriguez AL, Conn PJ (2005) Allosteric potentiators of metabotropic glutamate receptor subtype 5 have differential effects on different signaling pathways in cortical astrocytes. J Pharmacol Exp Ther 315:1212–1219

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Xu W, Liao G, Bi X, Baudry M (2009) Neuroprotection against neonatal hypoxia/ischemia-induced cerebral cell death by prevention of calpain-mediated mGluR1alpha truncation. Exp Neurol 218:75–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuddas A, Corsini GU, Barker JL, Kopin IJ, Di Porzio U (1991) Specific Reinnervation of Lesioned Mouse Striatum by Grafted Mesencephalic Dopaminergic Neurons. Eur J Neurosci 3:72–85

    Article  PubMed  Google Scholar 

  • Zwienenberg M, Gong QZ, Berman RF, Muizelaar JP, Lyeth BG (2001) The effect of groups II and III metabotropic glutamate receptor activation on neuronal injury in a rodent model of traumatic brain injury. Neurosurgery 48:1119–1126. discussion 1126-1117

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH grant P50NS071669 and a grant from the National Parkinson Disease Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoland Smith Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Masilamoni, G.J., Smith, Y. (2017). Neuroprotective Properties of Glutamate Metabotropic Glutamate Receptors in Parkinson’s Disease and Other Brain Disorders. In: Ngomba, R., Di Giovanni, G., Battaglia, G., Nicoletti, F. (eds) mGLU Receptors. The Receptors, vol 31. Humana Press, Cham. https://doi.org/10.1007/978-3-319-56170-7_6

Download citation

Publish with us

Policies and ethics