Skip to main content

Nitrogen Interaction with Carbon Nanotubes: Adsorption and Doping

  • Chapter
  • First Online:
Doping of Carbon Nanotubes

Part of the book series: NanoScience and Technology ((NANO))

  • 577 Accesses

Abstract

Nitrogen is an important impurity in CNTs. An overview of the interaction of nitrogen with impurities will be given in this chapter. The properties of a nitrogen atom depend on its place on the graphene lattice and on the closest neighboring particles. Nitrogen, which is located in the site of a graphene lattice, is a donor , however, if there is a vacancy nearby it becomes an acceptor . Processes of nitrogen interaction with the surface of nanotubes are complex. A detailed analysis is necessary to understand this interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Maiyalagan, B. Viswanathan, Template synthesis and characterization of well-aligned nitrogen containing carbon nanotubes. Mater. Chem. Phys. 93, 291–295 (2005)

    Article  Google Scholar 

  2. O. Stephen, P.M. Ajayan, C. Colliex, Ph Redlich, J.M. Lambert, P. Bernier, P. Letin, Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266, 1683–1685 (1994)

    Article  ADS  Google Scholar 

  3. J. Feng, Y. Li, F. Hou, X. Zhong, Controlled growth of high quality bamboo carbon nanotube arrays by the double injection chemical vapor deposition process. Mater. Sci. Eng. A 473, 238—243 (2008); Materials 3, 2162 (2010)

    Google Scholar 

  4. E.N. Nxumalo, V.O. Nyamori, N.J. Coville, CVD synthesis of nitrogen doped carbon nanotubes using ferrocene/aniline mixtures. J. Organomet. Chem. 693, 2942–2948 (2008)

    Article  Google Scholar 

  5. X.Y. Tao, X.B. Zhang, F.Y. Sun, J.P. Cheng, F. Liu, Z.Q. Luo, Large-scale CVD synthesis of nitrogen-doped multi-walled carbon nanotubes with controllable nitrogen content on a CoxMg1−xMoO4 catalyst. Diamond Relat. Mater. 16, 425–430 (2007)

    Article  ADS  Google Scholar 

  6. D. Usachov, O. Vilkov, A. Guneis, D. Haberer, A. Fedorov, V.K. Adamchuk, A.B. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, C. Laubschat, D.V. Vyalikh, Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett. 11, 5401–5407 (2011)

    Article  ADS  Google Scholar 

  7. K. Mondal, N.J. Coville, M.J. Witcomb, J. Havel, G. Tejral, Boron mediated synthesis of multiwalled carbon nanotubes by chemical vapor deposition. Chem. Phys. Lett. 43, 787–791 (2007)

    Google Scholar 

  8. C.P. Ewels, M. Glerup, Nitrogen doping in carbon nanotubes. J. Nanosci. Nanotechnol. 5, 1345–1363 (2005)

    Article  Google Scholar 

  9. S. Van Dommele, K.P. Van de Jong, J.H. Bitter, Nitrogen-containing carbon nanotubes as solid base catalysts. Chem. Commun. 4859–4861 (2006)

    Google Scholar 

  10. S. Van Dommele, A. Romero-Izquirdo, R. Brydson, K.P. de Jong, J.H. Bittera, Tuning nitrogen functionalities in catalytically grown nitrogen-containing carbon nanotubes. Carbon 46, 138–148 (2008)

    Article  Google Scholar 

  11. P. Ayala, R. Arenal, M. Rummeli, A. Rubio, T. Pichler, The doping of carbon nanotubes with nitrogen and their potential applications. Carbon 48, 575–586 (2010)

    Article  Google Scholar 

  12. J. Robertson, C.A. Davis, Nitrogen doping of tetrahedral amorphous carbon. Diamond Relat. Mater. 4, 441–444 (1995)

    Article  ADS  Google Scholar 

  13. E.J. Biddinger, D. von Deak, U.S. Ozkan, Nitrogen-containing carbon nanostructures as oxygen-reduction catalysts. Top. Catal. 52, 1566–1574 (2009)

    Article  Google Scholar 

  14. P.J. Letsoala, L.M. Cele, E.N. Nxumalo, N.J. Coville, The influence of nitrogen sources on nitrogen doped multi-walled carbon nanotubes. Unpublished work

    Google Scholar 

  15. P. Ghosh, M. Zamri, M. Subramanian, T. Soga, T. Jimbo, R. Katoh, M. Tanemura, Bamboo-shaped aligned CNx nanotubes synthesized using single feedstock at different temperatures and study of their field electron emission. J. Phys. D Appl. Phys. 41, 155405–155412 (2008)

    Article  ADS  Google Scholar 

  16. X.X. Zhang, Z.Q. Li, G.H. Wen, K.K. Fung, J. Chen, Y. Li, Microstructure and growth of bamboo-shaped carbon nanotubes. Chem. Phys. Lett. 333, 509–514 (2001)

    Article  ADS  Google Scholar 

  17. Y.Y. Wang, G.Y. Tang, F.A.M. Koeck, B. Brown, J.M. Garguilo, R.J. Nemanich, Experimental studies of the formation process and morphologies of carbon nanotubes with bamboo mode structures. Diamond Relat. Mater. 13, 1287–1291 (2004)

    Article  ADS  Google Scholar 

  18. A.G. Kudashov, A.V. Okotrub, L.G. Bulusheva, I.P. Asanov, Y.V. Shubin, N.F. Yudanov, L.I. Yudanova, V.S. Danilovich, O.G. Abrosimov, Influence of Ni-Co catalyst composition on nitrogen content in carbon nanotubes. J. Phys. Chem. B 108, 9048—9053 (2004); Materials 32163 (2010)

    Google Scholar 

  19. C.H. Lin, H.L. Chang, C.M. Hsu, A.Y. Lo, C.T. Kuo, The role of nitrogen in carbon nanotube formation. Diamond Relat. Mater. 12, 1851—1857 (2003); H. Choi, J. Ihm, S. Louie, M. Cohen, Defects, quasibound states, and quantum conductance in metallic carbon nanotubes. Phys. Rev. Lett. 84, 2917—20 (2000)

    Google Scholar 

  20. X. Liu, T. Pichler, M. Knupfer, J. Fink, H. Kataura, Electronic properties of FeCl3-intercalated single-wall carbon nanotubes. Phys. Rev. B 70, 205405 (2004)

    Article  ADS  Google Scholar 

  21. J. Ma, S. Guan, C.H. Lai, Disorder effect on electronic and optical properties of doped carbon nanotubes. Phys. Rev. B 74, 205401 (2006)

    Article  ADS  Google Scholar 

  22. K.Y. Chun, C.J. Lee, Potassium doping in the double-walled carbon nanotubes at room temperature. J. Phys. Chem. C 112, 4492–4497 (2008)

    Google Scholar 

  23. B. Smith, M. Monthioux, D. Luzzi, Encapsulated C60 in carbon nanotubes. Nature 396, 323–324 (1998)

    Article  Google Scholar 

  24. H. Shinohara, Endohedral metalofullerenes. Rep. Prog. Phys. 64, 843—892 (2000)

    Google Scholar 

  25. B.L.V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kaburagi, A.M. Rao et al., Intercalated nanographite: structure and electronic properties. Phys. Rev. B 64, 235407 (2001)

    Article  ADS  Google Scholar 

  26. X. Liu, T. Pichler, M. Knupfer, J. Fink, Electronic and optical properties of alkali-metal-intercalated single-wall carbon nanotubes. Phys. Rev. B 67, 125403 (2003)

    Article  ADS  Google Scholar 

  27. O. Stephan, P. Ajayan, Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266, 1863–1865 (1994)

    Article  Google Scholar 

  28. C. Ewels, M. Glerup, V. Krstić, Nitrogen and boron doping in carbon nanotubes. In Chemistry of Carbon Nanotubes, ed. by V. A. Basiuk, E.V. Basiuk (American Scientific Publishers, 2007)

    Google Scholar 

  29. S. Van Dommele, K.P. Van de Jong, J.H. Bitter, Nitrogen-containing carbon nanotubes as solid base catalysts. Chem. Commun. 4859—4861 (2006)

    Google Scholar 

  30. B.G. Sumpter, V. Meunier, J.M. Romo-Herrera, E. Cruz-Silva, D.A. Cullen, H. Terrones et al., Nitrogen-mediated carbon nanotube growth: diameter reduction, metallicity, bundle dispersability, and bamboo-like structure formation. Acs Nano. 1(4), 369–375 (2007)

    Google Scholar 

  31. C.H. Lin, H.L. Chang, C.M. Hsu, A.Y. Lo, C.T. Kuo, The role of nitrogen in carbon nanotube formation. Diamond Relat. Mater. 12, 1851–1857 (2003)

    Article  ADS  Google Scholar 

  32. V. Bajpai, L. Dai, T. Ohashi, Large-scale synthesis of perpendicularly aligned helical carbon nanotubes. J. Am. Chem. Soc. 126, 5070–5071 (2004)

    Article  Google Scholar 

  33. Y. Saito, T. Yoshikawa, Bamboo-shaped carbon tube filled partially with nickel. J. Cryst. Growth 134(1–2), 154–156 (1993)

    Article  ADS  Google Scholar 

  34. R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan et al., Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem. Phys. Lett. 303(5–6), 467–474 (1999)

    Article  ADS  Google Scholar 

  35. C.J. Lee, S.C. Lyu, H.W. Kim, J.H. Lee, K.I. Cho, Synthesis of bamboo-shaped carbon–nitrogen nanotubes using C2H2–NH3–Fe(CO)5 system. Chem. Phys. Lett. 359, 115–120 (2002)

    Article  ADS  Google Scholar 

  36. D. Qian, R. Andrews, D. Jacques, P. Kichambare, G. Lian, E.C.Dickey, Low-temperature synthesis of large-area CNx nanotube arrays. J. Nanosci. Nanotech. 3, 93–97 (2003)

    Google Scholar 

  37. M. Terrones, H. Terrones, N. Grobert, W.K. Hsu, Y.Q. Zhu, J.P. Hare et al., Efficient route to large arrays of CNx nanofibers by pyrolysis of ferrocene/melamine mixtures. Appl. Phys. Lett. 75, 3932–3934 (1999)

    Article  ADS  Google Scholar 

  38. M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos et al., Controlled production of aligned-nanotube bundles. Nature 388(6637), 52–55 (1997)

    Article  ADS  Google Scholar 

  39. R. Che, L.-M. Peng, Q. Chen, X.F. Duan, Z.N. Gu, Fe2O3 particles encapsulated inside aligned CNx nanotubes. Appl. Phys. Lett. 82, 3319–3321 (2003)

    Article  ADS  Google Scholar 

  40. C.C. Tang, Y. Bando, D. Golberg, F.F. Xu, «Structure and nitrogen incorporation of carbon nanotubes synthesized by catalytic pyrolysis of dimethylformamide. Carbon 42(12–13), 2625–2633 (2004)

    Article  Google Scholar 

  41. X.B. Wang, W.P. Hu, Y.Q. Liu, C.F. Long, Y. Xu, S.Q. Zhou et al., Bamboo-like carbon nanotubes produced by pyrolysis of iron(II) phthalocyanine. Carbon 39(10), 1533–1536 (2001)

    Article  Google Scholar 

  42. M. Becker, H. Bender, M. Jansen, L. Kienle, W. Assenmacher, Efficient access to bamboo-like carbon micro and nanofibres by pyrolysis of zinc cyanamide. J. Phys. Chem. Solids 62(8), 1431–1433 (2001)

    Article  ADS  Google Scholar 

  43. R.M. Yadav, P.S. Dobal, T. Shripathi, R.S. Katiyar, O.N. Srivastava, Effect of growth temperature on bamboo-shaped carbon–nitrogen (C–N) nanotubes synthesized using ferrocene acetonitrile precursor. Nanoscale Res. Lett. 4, 197–203 (2009)

    Article  ADS  Google Scholar 

  44. J. Jiang, T. Feng, X. Cheng, L. Dai, G. Cao, B. Jiang, X. Wang, X. Liu, S. Zou, Synthesis and growth mechanism of Fe-catalyzed carbon nanotubes by plasma-enhanced chemical vapor deposition. Nucl. Instrum. Meth. B 244, 327–332 (2006)

    Article  ADS  Google Scholar 

  45. C.J. Lee, J. Park, Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapordeposition. Appl. Phys. Lett. 77, 3397–3399 (2000)

    Article  ADS  Google Scholar 

  46. S. Trasobares, O. Stephan, C. Colliex, W.K. Hsu, H.W. Kroto, D.R.M. Walton, Compartmentalized CNx nanotubes: chemistry, morphology, and growth. J. Chem. Phys. 116, 8966—8972 (2002); S.B. Sinnot, R. Andrews, D. Qian, A.M. Rao, Z. Mao, E.C. Dickey, F. Derbyshire, Model of carbon nanotube growth through chemical vapor deposition. Chem. Phys. Lett. 315, 25—30 (1999)

    Google Scholar 

  47. R. Czerw, M. Terrones, J.C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P.M. Ajayan, W. Blau, M. Ruhle, D.L. Carroll, Identification of electron donor states in N-doped carbon nanotubes. Nano Lett. 1, 457—460 (2001)

    Google Scholar 

  48. K. Xiao, Y.Q. Liu, P.A. Hu, G. Yu, Y.M. Sun, D.B. Zhu, n-Type field-effect transistors made of an individual nitrogen-doped multiwalled carbon nanotube. J. Am. Chem. Soc. 127, 8614–8617 (2005)

    Article  Google Scholar 

  49. M. Terrones, N. Grobert, H. Terrones, Synthetic routes to nanoscale BxCyNz architectures. Carbon 40, 1665—1684 (2002); J.J. Velázquez-Salazar, E. Munoz-Sandoval, J.M. Romo-Herrera, F. Lupo, M. Ruhle, H. Terrones, M. Terrones, Synthesis and state of art characterization of BN bamboo-like nanotubes: evidence of a root growth mechanism catalyzed by Fe. Chem. Phys. Lett. 416, 342—348 (2005)

    Google Scholar 

  50. P.E. Lammert, V.H. Crespi, Stochastic heterostructures and diodium in B/N-doped carbon nanotubes. Phys. Rev. Lett. 87, 136402:1—136402:4 (2001)

    Google Scholar 

  51. B.Q. Wei, R. Spolenak, P.K. Redlich, M. Ruhle, E. Arzt, Electrical transport in pure and boron-doped carbon nanotubes. Appl. Phys. Lett. 74, 3149–3151 (1999)

    Article  ADS  Google Scholar 

  52. D.L. Carroll, P. Redlich, X. Blase, J.C. Charlier, S. Curran, P.M. Ajayan, S. Roth, M. Ruhle, Effects of nanodomain formation on the electronic structure of doped carbon nanotubes. Phys. Rev. Lett. 81, 2332–2335 (1998)

    Article  ADS  Google Scholar 

  53. D. Golberg, Y. Bando, C.C. Tang, C.Y. Zhi, Boron nitride nanotubes. Adv. Mater. 19, 2413–2432 (2007)

    Article  Google Scholar 

  54. R.B. Sharma, D.J. Late, D.S. Joag, A. Govindaraj, C.N.R. Rao, Field emission properties of boron and nitrogen doped carbon nanotubes. Chem. Phys. Lett. 428, 102—108 (2006); M.S. Dresselhaus, F. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47—99 (2005)

    Google Scholar 

  55. Y. Li, B. Zhang, X.Y. Tao, J.M. Xu, W.Z. Huang, J.H. Luo, T. Li, Y. Bao, H.J. Geise, Mass production of high-quality multi-walled carbon nanotube bundles on a Ni/Mo/MgO catalyst. Carbon 43, 295–301 (2005)

    Article  Google Scholar 

  56. P. Tan, L. An, L. Liu, Z. Guo, R. Czerw, D.L. Carroll, P.M. Ajayan, N. Zhang, H. Guo, Probing the phonon dispersion relations of graphite from the double-resonance process of Stokes and anti-stokes Raman scatterings in multiwalled carbon nanotubes. Phys. Rev. B. 66, 245410–245418 (2002)

    Article  ADS  Google Scholar 

  57. W. Lv, K. Shi, L. Li, S. Shao, Nitrogen-doped multiwalled carbon nanotubes and their electrocatalysis towards oxidation of NO. Microchim Acta 170, 91 (2010)

    Google Scholar 

  58. H.D. Zhao, Q. Wagner, Raman spectroscopy of carbon-nanotube-based composites. Phil. Trans. R. Soc. Lond. A. 362, 2407—2424 (2004)

    Google Scholar 

  59. J.-Q. Huang, M.-Q. Zhao, Q. Zhang, J.-Q. Nie, L.-D.Yao, D.S. Su, F. Wei, Efficient synthesis of aligned nitrogen-doped carbon nanotubes in a fluidized-bed reactor. Catalysis Today 186 83–92 (2012)

    Google Scholar 

  60. S.Y. Kim, J. Lee, C.W. Na, J. Park, K. Seo, B. Kim, N-doped double-walled carbon nanotubes synthesized by chemical vapor deposition. Chem. Phys. Lett. 413, 300–305 (2005)

    Google Scholar 

  61. B.C. Bayer, C. Baehtz, P.R. Kidambi, R.S. Weatherup, C. Mangler, J. Kotakoski, C.J.L. Goddard, S. Caneva, A. Cabrero-Vilatela, J.C. Meyer, S. Hofmann, Nitrogen controlled iron catalyst phase during carbon nanotube growth. Appl. Phys. Lett. 105, 143111–143115 (2014)

    Article  ADS  Google Scholar 

  62. T.-Y. Kim, K.-R. Lee, K.Y. Eun, K.-H. Oh, Carbon nanotube growth enhanced by nitrogen incorporation. Chem. Phys. Lett. 372, 603—607 (2003)

    Google Scholar 

  63. J.W. Jang, C.E. Lee, S.C. Lyu, T.J. Lee, C.J. Lee, Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes. Appl. Phys. Lett. 84(15), 2877–2879 (2004); H. Jin, N. Bing, L. Wang, L. Wang, Synthesis of nitrogen incorporated carbon nanotubes with different diameters by catalytic pyrolysis of butylamine. Chem. Res. Chinese Univ. 27(6), 903—905 (2011)

    Google Scholar 

  64. M.-H. Wu, X. Li, D. Pan, L. Liu, X.-X. Yang, Z. Xu, W.-L. Wang, Y. Sui, X.-D. Bai, Synthesis of nitrogen-doped single-walled carbon nanotubes and monitoring of doping by Raman spectroscopy. Chin. Phys. B 22(8) 086101 (2013)

    Google Scholar 

  65. S.V. Bulyarskiy, Uglerodnye nanotrubky: techologya, upravlenie svoystvami, primenenie. Ulyanovsk, Streshen, 479 s. (Rus.) (2011)

    Google Scholar 

  66. J.C. Charlier, Defects in carbon nanotubes. Acc. Chem. Res. 35(12), 1063–1069 (2002)

    Article  Google Scholar 

  67. V. Krstić, G.L.J.A. Rikken, P. Bernier, S. Roth, M. Glerup, Nitrogen doping of metallic single-walled carbon nanotubes: n-type conduction and dipole scattering. EPL (Europhysics Letters). 77(3), 37001 (2007)

    Google Scholar 

  68. M. Mananghaya, E. Rodulfo, G.N. Santos et al. Theoretical investigation on single-wall carbon nanotubes doped with nitrogen, pyridine-like nitrogen defects, and transition metal atoms. J. Nanomater. 2012, 104891 2012

    Google Scholar 

  69. S.H. Lim, H.I. Elim, X.Y. Gao, A.T.S. Wee, W. Ji, J.Y. Lee, J. Lin, Electronic and optical properties of nitrogen doped multiwalled carbon nanotubes. Phys. Rev. B. 73045402 (2006)

    Google Scholar 

  70. X. Yang, L. Yuan, V.K. Peterson, A.I. Minett, Y. Yin, A.T. Harris, Facile preparation of free-standing carbon nanotube arrays produced using two-step floating-ferrocene chemical vapor deposition. ACS Appl. Mater. Inter. 4, 1417–1422 (2012)

    Article  Google Scholar 

  71. M. Xu, D.N. Futaba, M. Yumura, K. Hata, Alignment control of carbon nanotube forest from random to nearly perfectly aligned by utilizing the crowding effect. ACS Nano 6, 5837–5844 (2012)

    Article  Google Scholar 

  72. S.P. Patole, P.S. Alegaonkar, H.-C. Shin, J.-B.Yoo, Alignment and wall control of ultra long carbon nanotubes in water assisted chemical vapour deposition. J. Phys. D: Appl. Phys. 41 155311 (2008)

    Google Scholar 

  73. X. Yang, L. Yuan, V.K. Peterson, Y. Yin, A.I. Minett, A.T. Harris, Open-ended aligned carbon nanotube arrays produced using CO2-assisted floating-ferrocene chemical vapor deposition. J. Phys. Chem. C 115, 14093–14097 (2011)

    Article  Google Scholar 

  74. S. Esconjauregui, M. Fouquet, B. Bayer, J. Robertson, Carbon nanotubes growth: from entanglement to vertical alignment. Phys. Status Solidi. B 247, 2656–2974 (2010)

    Article  ADS  Google Scholar 

  75. Z. Yang, X. Chen, H. Nie, K. Zhang, W. Li, B. Yi, L. Xu, Direct synthesis of ultralong carbon nanotube bundles by spray pyrolysis and investigation of growth mechanism. Nanotechnology 19, 085606 (2008)

    Article  ADS  Google Scholar 

  76. H. Liu, Y. Zhang, R. Li, X. Sun, S. Desilets, H. Abou-Rachid, M. Jaidann, L.-S. Lussier, Structural and morphological control of aligned nitrogen-doped carbon nanotubes. Carbon 48, 1498–1507 (2010)

    Article  Google Scholar 

  77. W. Grogger, M. Varela, R. Ristau, B. Schaffer, F. Hofer, K.M. Krishnan, Energy-filtering transmission electron microscopy on the nanometer length scale. J. Electron Spectrosc. Relat. Phenom. 143, 139–147 (2005)

    Article  Google Scholar 

  78. C.P. Liu, C.B. Boothroyd, C.J. Humphreys, Energy-filtered transmission electron microscopy of multilayers in semiconductors. J. Microsc. 194(Pt 1), 58–70 (1999)

    Google Scholar 

  79. W. Deng, X. Chen, X. Chen, Z. Liu, Y. Zeng, A. Hu, Y. Xiong, Z. Li, Q. Tang, Alignment and structural control of nitrogen doped carbon nanotubes by utilizing precursor concentration effect. Nanotechnology 25, 475601, 10 p (2014)

    Google Scholar 

  80. R. Arenal, K. March, C.P. Ewels, X. Rocquefelte, M. Kociak, A. Loiseau, O. Stéphan, Atomic configuration of nitrogen-doped single-walled carbon nanotubes. arenal@unizar.es

    Google Scholar 

  81. C. Morant, R. Torres, I. Jimenez, J.M. Sanz, E. Elizalde, Characterization of nitrogen-doped carbon nanotubes by atomic force microscopy, X-ray photoelectron spectroscopy and X-ray absorption near edge spectroscopy. J. Nanosci. Nanotechnol. 8, 1–6 (2008)

    Article  Google Scholar 

  82. C.P. Ewels, M. Glerup, Nitrogen doping in carbon nanotubes. J. Nanosci. Nanotech. 5(9), 1345–1363 (2005)

    Article  Google Scholar 

  83. T. Xing, Y. Zheng, L.H. Li, B.C.C. Cowie, D. Gunzelmann, S.Z. Qiao, S. Huang, Y. Chen, Observation of active sites for oxygen reduction reaction on nitrogen-doped multilayer graphene. ACS Nano 8(7), 6856–6862 (2014)

    Google Scholar 

  84. Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, Jianyi Lin, Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property. J. Mater. Chem. 21, 8038–8044 (2011)

    Article  Google Scholar 

  85. Z. Yang, H. Nie, X. Chen, X. Chen, S. Huang, Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction. J. Power Sources 236, 238–249 (2013)

    Google Scholar 

  86. D.Q. Duy, H.S. Kim, D.M. Yoon, J.W. Ha, K.J. Lee, Y.G. Hwang, C.H. Lee, Role of atomic and molecular nitrogen in carbon nanotube formation. J. Korean Phys. Soc. 54(4), 1554–1558 (2009)

    Google Scholar 

  87. S.-C. Chang, T.-S. Li, T.-C. Lin, Significant morphology dependence on nitrogen proportion in growing carbon nanotubes. Mater. Lett. 62, 1893–1895 (2008)

    Article  Google Scholar 

  88. J.W. Jang, C.E. Lee, S.C. Lyu, T.J. Lee, C.J. Lee, Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes. Appl. Phys. Lett. 84(15), 2877—2879 (2004)

    Google Scholar 

  89. C.H. Lin, H.L. Chang, C.M. Hsu, A.Y. Lo, C.T. Kuo, The role of nitrogen in carbon nanotube formation. Diamond Relat. Mater. 12, 1851–1857 (2003)

    Google Scholar 

  90. D. Srivastava, M. Menon, C. Daraio, S. Jin, Vacancy-mediated mechanism of nitrogen substitution in carbon nanotubes. Phys. Rev. B 69, 153414-4 (2004)

    Google Scholar 

  91. R. Ohta, K.H. Lee, N. Saito, Y. Inoue, H. Sugimura, O. Takai, Origin of N 1s spectrum in amorphous carbon nitride obtained by X-ray photoelectron spectroscopy. Thin Solid Films 434, 296–302 (2003)

    Article  ADS  Google Scholar 

  92. H. Liu, Y. Zhang, R. Li, X. Sun, S. Désilets, H. Abou-Rachid, M. Jaidann, L.-S. Lussier, Structural and morphological control of aligned nitrogen doped carbon nanotubes. Carbon 48, 1498—1507 (2010)

    Google Scholar 

  93. D. Yu, Y. Xue, L. Dai, Vertically aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. J. Phys. Chem. Lett. 3, 2863–2870 (2012)

    Article  Google Scholar 

  94. V. Krstić, G.L.J.A. Rikken, P. Bernier, S. Roth, M. Glerup, Nitrogen doping of metallic single-walled carbon nanotubes: n-type conduction and dipole scattering. EPL (Europhys. Lett.) 77(3), 37001 (2007)

    Google Scholar 

  95. M. Mananghaya, E. Rodulfo, G.N. Santos et al., Theoretical investigation on single-wall carbon nanotubes doped with nitrogen, pyridine-like nitrogen defects, and transition metal atoms. J. Nanomater. 2012, 104891 (2012)

    Article  Google Scholar 

  96. A.H. Nevidomskyy, G. Csanyi, M.C. Payne, Chemically active substitutional nitrogen impurity in carbon nanotubes. Phys. Rev. Lett. 91(10), 1055021–1055024 (2003)

    Article  Google Scholar 

  97. O.E. Глyxoвa, O.A. Tepeнтьeв, Teopeтичecкoe иccлeдoвaниe элeктpoнныx и мexaничecкиx cвoйcтв C-N oднocлoйныx нaнoтpyбoк. Физикa вoлнoвыx пpoцeccoв и paдиoтexничecкиe cиcтeмы. T. 10(4), C. 85—89 (2007)

    Google Scholar 

  98. Y. Fujimoto, S. Saito, Structure and stability of hydrogen atom adsorbed on nitrogen-doped carbon nanotubes. J. Phys. Conf. Ser. 302(1), 012006 (2011)

    Article  Google Scholar 

  99. J. Zhao, A. Buldum, J. Han, J.P. Lu, Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 13(2), 195–200 (2002)

    Article  ADS  Google Scholar 

  100. G.U. Sumanesekera, C.K.W. Adu, S. Fang, P.C. Eklund, Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes. Phys. Rev. Lett. 85(5), 1096–1099 (2000)

    Article  ADS  Google Scholar 

  101. C. Marliere, P. Poncharal, L. Vaccarini, A. Zahab, Effect of gas adsorption on the electrical properties of single-walled carbon nanotubes mats. MRS Online Proc. Libr. 593 (1999). doi:http://dx.doi.org/10.1557/PROC-593-173

  102. Z. Li, Z. Pan, S. Dai, Nitrogen adsorption characterization of aligned multiwalled carbon nanotubes and their acid modification. J. Colloid Interface Sci. 277(1), 35–42 (2004)

    Article  Google Scholar 

  103. D. Srivastava, M. Menon, B. Sadanadan et al., Vacancy mediated mechanism of nitrogen substitution in carbon nanotubes. Phys. Rev. B 69(15), 153414 (2004)

    Article  ADS  Google Scholar 

  104. S.H. Lim, R. Li, W. Ji, J. Lin, Effects of nitrogenation on single-walled carbon nanotubes within density functional theory. Phys. Rev. B 76(19), 195406 (2007)

    Article  ADS  Google Scholar 

  105. X.M. Min, D.X. Lan, F. Cheng, Study on oxygen and nitrogen adsorption in carbon nanotube. Department of Applied Chemistry, Wuhan University of Technology, Wuhan. Published in: 2nd IEEE International Nanoelectronics Conference. INEC (2008)

    Google Scholar 

  106. M. Xin-min, X. Rui-juan, H. Han-lie, Quantum chemistry calculation on oxygen and nitrogen adsorption in carbon nanotube. J. Wuhan Univ. Technol. Mater. Sci. Ed. 18(1), 1–3 (2003)

    Google Scholar 

  107. A.S. Ghsemi, F. Ashrafi, Density functional theory (DFT) study of O2, N2 adsorptions on H-capped (4,4) single-walled carbon nanotube. J. Appl. Sci. Eng. Technol. 4(15), 2523–2528 (2012)

    Google Scholar 

  108. M.R. Mananghaya, Carbon nanotubes doped with nitrogen, pyridine-like nitrogen defects, and transition metal atoms. J. Korean Chem. Soc. 56(1), 34–46 (2012)

    Article  Google Scholar 

  109. M. Rossi, A. Fazzio, A.J.R. da Silva, Theoretical study of N-complexes in carbon nanotubes. ajrsilva@if.usp.br

    Google Scholar 

  110. R. Czerw, M. Terrones, J.-C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, P. M. Ajayan, W. Blau, D. Tekleab, M. Rühle, D. L. Carroll, Identification of electron donor states in N-doped carbon nanotubes. arXiv:cond-mat/0011318v1 [cond-mat.mtrl-sci] 20 Nov 2000

  111. W.J. Mendes Lima, D.L. Azevedo, S. Guerini, B and N-doped double walled carbon nanotube: a theoretical study. Cent. Eur. J. Phys. 8(5), 811—818 (2010)

    Google Scholar 

  112. A.P. Popov, I.V. Bazhin, Influence of impurities and defects on electronic structure of carbon nanotubes. Hydrogen Mater. Sci. Chem. Carbon Nanomater. 795—799 (2007)

    Google Scholar 

  113. X.M. Min, D.X. Lan, F. Cheng, Study on oxygen and nitrogen adsorption in carbon nanotube. Department of Applied Chemistry, Wuhan University of Technology, Wuhan; Published in: 2nd IEEE International Nanoelectronics Conference. INEC (2008)

    Google Scholar 

  114. J. Liu, S. Webster, D.L. Carroll, Temperature and flow rate of NH3 effects on nitrogen content and doping environments of carbon nanotubes grown by injection CVD method. J. Phys. Chem. B 109, 15769–15774 (2005)

    Article  Google Scholar 

  115. S.V. Bulyarsky, V.P. Oleinicov, Thermodynamically evaluation of point defect density and impurity solubility in component semiconductor. Phys. Stat. Sol. (b) 141, К7–K10 (1987)

    Google Scholar 

  116. S.V. Bulyarsky, V.P. Oleinicov, Thermodynamics of defect interaction in compound semiconductors. Phys. Stat. Sol. (b) 146, 439—444 (1988)

    Google Scholar 

  117. S.V. Bulyarskiy, Uglerodnye nanotrubky: techologya, upravlenie svoystvami, primenenie. Ulyanovsk, Streshen, 479 s (2011)

    Google Scholar 

  118. S.V. Bulyarskiy, A.S. Basaev, Thermodynamics and kinetics of adsorption of atoms and molecules with carbon nanotubes. ZhETF 135(4), 788–799 (2009)

    Google Scholar 

  119. Q. Ding, X. Song, X. Yao, X. Qi, C.-T. Au, W. Zhong, Y. Du, Large-scale and controllable synthesis of metal-free nitrogen-doped carbon nanofibers and nanocoils over water-soluble Na2CO3. Nanoscale Res. Lett. 8, 545–563 (2013)

    Article  ADS  Google Scholar 

  120. E.N. Nxumalo, V.O. Nyamori, N.J. Coville, CVD synthesis of nitrogen doped carbon nanotubes using ferrocene/aniline mixtures. J. Organomet. Chem. 693, 2942–2948 (2008)

    Google Scholar 

  121. F. Villalpando-Paez, A. Zamudio, A.L. Elias, H. Son, E.B. Barros, S.G. Chou, Y.A. Kim, H. Muramatsu, T. Hayashi, J. Kong, H. Terrones, G. Dresselhaus, M. Endo, M. Terrones, M.S. Dresselhaus, Synthesis and characterization of long strands of nitrogen-doped single-walled carbon nanotubes. Chem. Phys. Lett. 424, 345–352 (2006)

    Article  ADS  Google Scholar 

  122. J. Hai-ying, B. Nai-ci, W. Ling-ling, W. Li-jun, Synthesis of nitrogen incorporated carbon nanotubes with different diameters by catalytic pyrolysis of butylamine. Chem. Res. Chin. Univ. 27(6), 903–905 (2011)

    Google Scholar 

  123. T-Feng Hung, M.-H. Tu, C.-W. Tsai, C.-J. Chen, R.-S. Liu, W.-R. Liu, M.-Y. Lo, Influence of pyrolysis temperature on oxygen reduction reaction activity of carbon-incorporating iron nitride nitrogen-doped graphene nanosheets catalyst. Int. J. Hydrogen Energy 38, 3956–3962 (2013)

    Article  Google Scholar 

  124. Y. Mao, H. Duan, L. Zhang, Y. Hu, C. Zhao, Z. Wang, L. Chen, Y. Yang, Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ. Sci. 5, 7950–7955 (2012)

    Article  Google Scholar 

  125. W. Lv, K. Shi, L. Li, S. Shao, Nitrogen-doped multiwalled carbon nanotubes and their electrocatalysis towards oxidation of NO. Microchim Acta, 170, 91–98 (2010)

    Google Scholar 

  126. A. Dorjgotov, J. Ok, Y. Jeon, S.-H. Yoon, Y.G. Shul, Activity and active sites of nitrogen-doped carbon nanotubes for oxygen reduction reaction. J. Appl. Electrochem. 43, 387–397 (2013)

    Google Scholar 

  127. W.-X. Lv, R. Zhang, T.-L. Xia, H.-M. Bi, K.-Y. Shi, Influence of NH3 flow rate on pyridine-like N content and NO electrocatalytic oxidation of N-doped multiwalled carbon nanotubes. J. Nanopart. Res. 13, 2351–2360 (2011)

    Article  ADS  Google Scholar 

  128. M.S. Bell, R.G. Lacerda, K.B.K. Teo, W.I. Milne, Characterisation of the growth mechanism during PECVD of multiwalled carbon nanotubes. Top. Appl. Phys. 100, 77–93 (2006)

    Article  Google Scholar 

  129. M. Okai, T. Muneyoshi, T. Yaguchi, S. Sasaki, Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 77(21), 3468–3470 (2000)

    Article  ADS  Google Scholar 

  130. C. Bower, W. Zhu, S. Jin, O. Zhou, Plasma-induced alignment of carbon nanotubes. Appl. Phys. Lett. 77(6), 830–832 (2000)

    Article  ADS  Google Scholar 

  131. J. Li, R. Stevens, L. Delzeit, H.T. Ng, A. Cassell, J. Han, M. Meyyappan, Nucleation and growth of carbon nanotubes by microwave plasma enhanced chemical vapor deposition. Appl. Phys. Lett. 81, 910–914 (2002)

    Article  ADS  Google Scholar 

  132. V.I. Merkulov, A.V. Melechko, M.A. Guillorn, D.H. Lowndes, M.L. Simpson, Effects of spatial separation on the growth of vertically aligned carbon nanofibers produced by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 80, 476–478 (2002)

    Article  ADS  Google Scholar 

  133. Z. Ren et al., Physics of direct current plasma-enhanced chemical vapor deposition. In Aligned Carbon Nanotubes, NanoScience and Technology (Springer, Berlin, 2013). C. pp. 93–109

    Google Scholar 

  134. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105–1107 (1998)

    Article  ADS  Google Scholar 

  135. Y. Wang, S.H. Jo, S. Chen, D.Z. Wang, Z.F. Ren, Aligned carbon nanofibres by a low-energy dark discharge for field emission and optoelectronics. Nanotechnology 17(2), 501–505 (2006)

    Article  ADS  Google Scholar 

  136. W.A. De Heer, A. Chatelain, D. Ugarte, Carbon nanotube field emission electron source. Science 270(5239), 1179–1180 (1995)

    Article  ADS  Google Scholar 

  137. N. De Jonge, Y. Lamy, K. Schoots, R.H. Oosterkamp, High brightness electron beam from a multi-walled carbon nanotube. Nature 420(6914), 393–395 (2002)

    Article  ADS  Google Scholar 

  138. J.M. Bonard, K.A. Dean, B.F. Coll, C. Klinke, Field emission of individual carbon nanotubes in the scanning electron microscope. Phys. Rev. Lett. 89(19), 197602–197605 (2002)

    Article  ADS  Google Scholar 

  139. V. Meunier, C. Roland, J. Bemholc, M.B. Nardelli, Electronic and field emission properties of boron nitride/carbon nanotube superlattices. Appl. Phys. Lett. 81(1), 46–48 (2002)

    Article  ADS  Google Scholar 

  140. Y.J. Li, Z. Sun, S.P. Lau, G.Y. Chen, B.K. Tay, Carbon nanotube films prepared by thermal chemical vapor deposition at low temperature for field emission applications. Appl. Phys. Lett. 79(11), 1670–1672 (2001)

    Article  ADS  Google Scholar 

  141. N.G. Shang, C.P. Li, W.K. Wong, C.S. Lee, I. Bello, S.T. Lee, Microstructure and field emission properties of coral-like carbon nanotubes. Appl. Phys. Lett. 81(26), 5024–5026 (2002)

    Article  ADS  Google Scholar 

  142. Y. Saito, S. Uemura, Field emission from carbon nanotubes and its application to electron sources. Carbon 38(2), 169–182 (2000)

    Article  Google Scholar 

  143. K.-Y. Chuna, H.S. Leeb, C.J. Lee, Nitrogen doping effects on the structure behavior and the field emission performance of double-walled carbon nanotubes. Carbon 47, 169–177 (2009)

    Google Scholar 

  144. S.H. Lim, H.I. Elim, X.Y. Gao, A.T.S. Wee, W. Ji, J.Y. Lee et al. Electronic and optical properties of nitrogen-doped multiwalled carbon nanotubes. Phys. Rev. B 73(4), 045402-1–045402-6 (2006)

    Google Scholar 

  145. S. Maldonado, S. Morin, J. Stevenson, Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44(8), 1429–1437 (2006)

    Article  Google Scholar 

  146. S.K. Srivastava, V.D. Vankar, D.V. Sridhar Rao, V. Kumar, Enhanced field emission characteristics of nitrogen-doped carbon nanotube films grown by microwave plasma enhanced chemical vapor deposition process. Thin Solid Films 515(4), 1851–1856 (2006)

    Google Scholar 

  147. S.H. Ahna, K.R. Lee, D.Y. Kim, S. Han, Field emission of doped carbon nanotubes. Appl. Phys. Lett. 88(9), 093122-1–093122-3 (2006)

    Google Scholar 

  148. L. Qiao, W.T. Zheng, H. Xu, L. Zhang, Q. Jiang, Field emission properties of N-doped capped single-walled carbon nanotubes: a first-principles density-functional study. J. Chem. Phys. 126(16), 164702-1–164702-7 (2007)

    Google Scholar 

  149. K.A. Dean, O. Groening, O.M. Kuttel, L. Schlapbach, Nanotube electronic states observed with thermal field emission electron spectroscopy. Appl. Phys. Lett. 75(18), 2773–2775 (1999)

    Article  ADS  Google Scholar 

  150. D. Lovall, M. Buss, E. Graugnard, R.P. Andres, R. Reifenberger, Electron emission and structural characterization of a rope of single-walled carbon nanotubes. Phys. Rev. B 61(8), 5683–5691 (2000)

    Article  ADS  Google Scholar 

  151. S.W. Yoon, S.Y. Kim, J. Park, C.J. Park, C.J. Lee, Electronic structure and field emission of multi-walled carbon nanotubes depending on growth temperature. J. Phys. Chem. B 109(43), 20403–20406 (2005)

    Article  Google Scholar 

  152. B. Ha, C.J. Lee, Electronic structure and field emission properties of in situ potassium-doped single-walled carbon nanotubes. Appl. Phys. Lett. 90(2), 023108-1–023108-3 (2007)

    Google Scholar 

  153. T. Maiyalagan, B. Viswanathan, U.V. Varadaraju, Nitrogen containing carbon nanotubes as supports for Pt—alternate anodes for fuel cell applications. Electrochem. Commun. 7(9), 905–912 (2005)

    Article  Google Scholar 

  154. X. Li, J. Liu, Y. Zhang, Y. Li, H. Liu, X. Meng et al., High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application. J. Power Sources 197, 238–245 (2012)

    Google Scholar 

  155. F. Villalpando-Páez, A.H. Romero, E. Muñoz-Sandoval, L.M. Martí et al., Fabrication of vapor and gas sensors using films of aligned CNx nanotubes. Chem. Phys. Lett. 386(1–3), 137–143 (2004)

    Google Scholar 

  156. C.R. Martin, P. Kohli, The emerging field of nanotube biotechnology. Nat. Rev. Drug Discovery 2(1), 29–37 (2003)

    Article  Google Scholar 

  157. R. Andrews, M.C. Weisenberger, Carbon nanotube polymer composites. Curr. Opin. Solid State Mater. Sci. 8(1), 31–37 (2004)

    Article  ADS  Google Scholar 

  158. A. Hirsch, O. Vostrowsky, Functionalization of carbon nanotubes. Top. Curr. Chem. 245, 193–237 (2005)

    Google Scholar 

  159. J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul et al., Fullerene pipes. Science 280(5367), 1253–1256 (1998)

    Article  ADS  Google Scholar 

  160. K.J. Ziegler, Z. Gu, H. Peng, E.L. Flor, R.H. Hauge, R.E. Smalley, Controlled oxidative cutting of single-walled carbon nanotubes. J. Am. Chem. Soc. 127(5), 1541–1547 (2005)

    Article  Google Scholar 

  161. V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou et al., Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6), 833–840 (2008)

    Article  Google Scholar 

  162. J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu et al., Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J. Phys. Chem. B 107(16), 3712–3718 (2003)

    Article  Google Scholar 

  163. Z. Spitalský, C.A. Krontiras, S.N. Georga, C. Galiotis, Effect of oxidation treatment of multiwalled carbon nanotubes on the mechanical and electrical properties of their epoxy composites. composites part A. Appl. Sci. Manuf. 40(6–7), 778–783

    Google Scholar 

  164. C.-C. Hu, J.-H. Su, T.-C. Wen, Modification of multi-walled carbon nanotubes for electric double-layer capacitors: tube opening and surface functionalization. J. Phys. Chem. Solids 68(12), 2353–2362 (2007)

    Article  ADS  Google Scholar 

  165. H. Hu, B. Zhao, M.E. Itkis, R.C. Haddon, Nitric acid purification of single-walled carbon nanotubes. J. Phys. Chem. B 107(50), 13838–13842 (2003)

    Article  Google Scholar 

  166. I.D. Rosca, F. Watari, M. Uo, T. Akasaka, Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43(15), 3124–3131 (2005)

    Article  Google Scholar 

  167. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872–876 (2009)

    Article  ADS  Google Scholar 

  168. H. Hiura, T.W. Ebbesen, K. Tanigaki, Opening and purification of carbon nanotubes in high yields. Adv. Mater. 7(3), 275–276 (1995)

    Article  Google Scholar 

  169. J.M. Simmons, B.M. Nichols, S.E. Baker, M.S. Marcus, O.M. Castellini, C.S. Lee et al., Effect of ozone oxidation on single-walled carbon nanotubes. J Phys Chem B 110(14), 7113–7118 (2006)

    Article  Google Scholar 

  170. T.S. Alaban, M.C. Alaban, S. Malik, F.Hennrich, H. Fischer Sner, Polyacylation of single-walled carbon nanotubes under Friedel–crafts conditions: an efficient method for functionalizing. Purifying, decorating, and linking carbon allotropes. Adv. Mater. 18, 2763–2767 (2006)

    Google Scholar 

  171. T. Nagaura, K. Tozawa, Prog. Batteries Sol. Cells 9, 209 (1990)

    Google Scholar 

  172. E. Stura, C. Nicolini, New nanomaterials for light weight lithium batteries. Anal. Chim. Acta 568(1–2), 57–64 (2006)

    Article  Google Scholar 

  173. M. Armand, J.M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008)

    Article  ADS  Google Scholar 

  174. J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandr Saurov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Saurov, A., Bulyarskiy, S., Bogdanova, D.A., Pavlov, A. (2017). Nitrogen Interaction with Carbon Nanotubes: Adsorption and Doping. In: Bulyarskiy, S., Saurov, A. (eds) Doping of Carbon Nanotubes. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-55883-7_5

Download citation

Publish with us

Policies and ethics