Innovative Biomaterials in Bone Tissue Engineering and Regenerative Medicine

Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


In the last few years the Authors have been coordinating researches in multi key enabling technologies that conveys together activities involving advanced materials and biotechnology. These advancements are allowing innovative biomimetic systems, which are facing societal challenges with high potential for innovation and growth. The use of biocompatible and biomechanically active materials that can be designed to reproduce bone compatible and biomimetic scaffolds that can adapt themselves in mutating physiological conditions is presented in the present chapter.


Hybrid Material Fume Silica Hybrid Scaffold Scaffolding Material Removal Torque 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Apicella A. Scienza e Tecnologia dei Materiali: Approccio Biomimetico per un uso Sostenibile dei Materiali; 2008. 1st edn. p. 118. Giannini. ISBN-10: 887431390X.Google Scholar
  2. 2.
    Apicella D, Aversa R, Ferro V, Ianniello D, Apicella A. The importance of cortical bone orthotropicity, maximum stiffness direction and thickness on the reliability of mandible numerical models. J Biomed Mater Res. 2010;93:150–63. doi: 10.1002/jbm.b.31569.Google Scholar
  3. 3.
    Apicella D, Aversa R, Tatullo M, Simeone M, Sayed S, Marrelli M, Apicella A. Direct restoration modalities of fractured central maxillary incisors: a multi-levels validated finite elements analysis with in vivo strain measurements. Dent Mater. 2015;31(12):e289–305. doi: 10.1016/ Scholar
  4. 4.
    Aversa R, Petrescu RVV, Petrescu FIT, Apicella A. Biomimetic and evolutionary design driven innovation in sustainable products development. Am J Eng Appl Sci. 2016;9(4):1027–36. doi: 10.3844/ajeassp.2016.1027.1036.CrossRefGoogle Scholar
  5. 5.
    Aversa R, RVV P, Antonio A, FIT P. Mitochondria are naturally micro robots-a review. Am J Eng Applied Sci. 2016:991–1002. doi: 10.3844/ajeassp.2016.991.1002.
  6. 6.
    Aversa R, RVV P, Antonio A, FIT P. Physiologic human fluids and swelling behavior of hydrophilic biocompatible hybrid ceramo-polymeric materials. Am J Eng Applied Sci. 2016:962–72. doi: 10.3844/ajeassp.2016.962.972.
  7. 7.
    Aversa R, Sorrentino R, Apicella A. Bio-mechanically active ceramic-polymeric hybrid scaffolds for tissue engineering. In: Proceedings of the International Conference on Biological Sciences and Technology, (BST’ 16), Atlantis Press; 2016. pp. 308–318. doi: 10.2991/bst-16.2016.46.
  8. 8.
    Aversa R, Petrescu FIT, Petrescu RVV, Apicella A. Biofidel FEA modeling of customized hybrid biological hip joint design part ii: flexible stem trabecular prostheses. Am J Biochem Biotechnol. 2016;12(4):277–85. doi: 10.3844/ajbbsp.2016.277.285.CrossRefGoogle Scholar
  9. 9.
    Sorrentino R, Apicella D, Riccio C, Gherlone ED, Zarone F, et al. Nonlinear visco-elastic finite element analysis of different porcelain veneers configuration. J Biomed Mater Res. 2009;91:727–36. doi: 10.1002/jbm.b.31449.CrossRefGoogle Scholar
  10. 10.
    Aversa R, FIT P, RVV P, Apicella A. Biomimetic FEA bone modeling for customized hybrid biological prostheses development. AJAS. 2016:1060–7. doi: 10.3844/ajassp.2016.1060.1067.
  11. 11.
    Aversa R, Apicella A, Petrescu RVV, Petrescu FIT. Physiologic human fluids and swelling behavior of hydrophilic biocompatible hybrid ceramo-polymeric materials. Am J Eng Appl Sci. 2016;9(4):962–72. doi: 10.3844/ajeassp.2016.962.972.CrossRefGoogle Scholar
  12. 12.
    Frost HM. Mathematical elements of lamellar bone remodeling. Springfield: Charles C Thomas; 1964. p. 22–5.Google Scholar
  13. 13.
    Frost HM. Structural adaptations to mechanical usage (SATMU). 2. Redifining Wolff’s law: the bone remodelling problem. Anat Rec. 1990;226:414–22.CrossRefPubMedGoogle Scholar
  14. 14.
    Frost HM. A 2003 update of bone physiology and Wolff’s law for clinicians. Angle Orthod. 2004;74:3–15.PubMedGoogle Scholar
  15. 15.
    Aversa R, Apicella D, Perillo L, Sorrentino R, Zarone F, et al. Non-linear elastic three-dimensional finite element analysis on the effect of endocrown material rigidity on alveolar bone remodeling process. Dental Mater. 2009;25:678–90. doi: 10.1016/ Scholar
  16. 16.
    Syed J, Sahar N, Aversa R, Petrescu RVV, Apicella D, et al. Periodontal bone substitutes application techniques and cost evaluation: a review. Am J Eng Appl Sci. 2016; doi: 10.3844/ofsp.10849.Google Scholar
  17. 17.
    Schwartz-Dabney CL, Dechow PC. Variation in cortical material properties throughout the human dentate mandible. Am J Phys Anthropol. 2003;120:252–77.CrossRefPubMedGoogle Scholar
  18. 18.
    Apicella D, Veltri M, Balleri P, Apicella A, Ferrari M. Influence of abutment material on the fracture strength and failure modes of abutment-fixture assemblies when loaded in a bio-faithful simulation. Clin Oral Implants Res. 2011;22(2):182–8. doi: 10.1111/j.1600-0501.2010.01979.x.CrossRefPubMedGoogle Scholar
  19. 19.
    Sorrentino R, Aversa R, Ferro V, Auriemma T, Zarone F, et al. Three-dimensional finite element analysis of strain and stress distributions in endodontically treated maxillary central incisors restored with different post, core and crown materials. Dent Mater. 2007;23:983–93. doi: 10.1016/ Scholar
  20. 20.
    Annunziata M, Aversa R, Apicella A, Annunziata A, Apicella D, et al. In vitro biological response to a light-cured composite when used for cementation of composite inlays. Dental Mater. 2006;22:1081–5. doi: 10.1016/ Scholar
  21. 21.
    Perillo L, Sorrentino R, Apicella D, Quaranta A, Gherlone E, Ferrari M, Aversa R, Apicella A. Nonlinear visco-elastic finite element analysis of porcelain veneers: a submodelling approach to strain and stress distributions in adhesive and resin cement. J Adhes Dent. 2010;12(5):403–13.PubMedGoogle Scholar
  22. 22.
    Annunziata M, Guida L, Perillo L, Aversa R, Passaro I, et al. Biological response of human bone marrow stromal cells to sandblasted titanium nitride-coated implant surfaces. J Mater Sci Mater Med. 2008;19:3585–91. doi: 10.1007/s10856-008-3514-2.CrossRefPubMedGoogle Scholar
  23. 23.
    Chen Q, Zhu C, Thouas GA. Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Progress Biomater. 2012;1:1–22. doi: 10.1186/2194-0517-1-2.CrossRefGoogle Scholar
  24. 24.
    Čepelak I, Dodig S, Čulić O. Magnesium-more than a common cation. Med Sci. 2013;39:47–68.Google Scholar
  25. 25.
    Comerun HU. Six-year results with a microporous-coated metal hip prosthesis. Clin Orthop. 1986;208:81.Google Scholar
  26. 26.
    Cormack AN, Tilocca A. Structure and biological activity of glasses and ceramics. Philos Trans Math Phys Eng Sci. 2012;370:1271–80. doi: 10.1098/rsta.2011.0371.CrossRefGoogle Scholar
  27. 27.
    Heinemann S, Heinemann C, Wenisch S, Alt V, Worch H, et al. Calcium phosphate phases integrated in silica/collagen nanocomposite xerogels enhance the bioactivity and ultimately manipulate the osteoblast/osteoclast ratio in a human co-culture model. Acta Biomater. 2013;9:4878–88. doi: 10.1016/j.actbio.2012.10.010.CrossRefPubMedGoogle Scholar
  28. 28.
    Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43. doi: 10.1016/S0142-9612(00)00121-6.CrossRefPubMedGoogle Scholar
  29. 29.
    Jones JR, Clare AG. Bio-glasses: an introduction. 1st ed. Chichester: Wiley; 2012.CrossRefGoogle Scholar
  30. 30.
    Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74. doi: 10.1016/j.biomaterials.2011.01.004.CrossRefPubMedGoogle Scholar
  31. 31.
    Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL. Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Composi Sci Technol. 2004;64:789–817. doi: 10.1016/j.compscitech.2003.09.001.CrossRefGoogle Scholar
  32. 32.
    Morales-Hernandez DG, Genetos DC, Working DM, Murphy KC, Leich JK. Ceramic identity contributes to mechanical properties and osteoblast behavior on macroporous composite scaffolds. J Funct Biomat. 2012;23:382–97. doi: 10.3390/jfb3020382.CrossRefGoogle Scholar
  33. 33.
    Mouriño V, Cattalini JP, Boccaccini AR. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface. 2012;9:401–19. doi: 10.1098/rsif.2011.0611.CrossRefPubMedGoogle Scholar
  34. 34.
    Schiraldi C, D’Agostino A, Oliva A, Flamma F, De Rosa A, et al. Development of hybrid materials based on hydroxyethylmethacrylate as supports for improving cell adhesion and proliferation. Biomaterials. 2004;25:3645–53. doi: 10.1016/j.biomaterials.2003.10.059.CrossRefPubMedGoogle Scholar
  35. 35.
    Burnstein A, Reilly DT, Martens M. Aging of bone tissue: mechanical properties. J Bone Joint Surg Am. 1976;58:82–6. PMID: 1249116 CrossRefGoogle Scholar
  36. 36.
    Oh I, Harris WH. Proximal strain distribution in the loaded femur. An in vitro comparison of the distributions in the intact femur and after insertion of different hip-replacement femoral components. J Bone Joint Surg Am. 1976;60:75–85. PMID: 624762 CrossRefGoogle Scholar
  37. 37.
    Reilly DT, Burstein AH. The mechanical properties of cortical bone. J Bone Joint Surg Am. 1974;56A(5):1001–21.CrossRefGoogle Scholar
  38. 38.
    Reilly DT, Burnestain AH. The elastic and ultimate properties of compact bone tissue. J Biomech. 1975;8:393–405. doi: 10.1016/0021-9290(75)90075-5.CrossRefPubMedGoogle Scholar
  39. 39.
    Rohlmann A, Mossner U, Bergmann G, Kolbel R. Finite-element-analysis and experimental investigation of stresses in a femur. J Biomed Eng. 1982;4:241–6. doi: 10.1016/0141-5425(82)90009-7.CrossRefPubMedGoogle Scholar
  40. 40.
    Ashman RB, Rho JY. Elastic modulus of trabecular bone material. J Biomech. 1988;21:177–1781. doi: 10.1016/0021-9290(88)90167-4.CrossRefPubMedGoogle Scholar
  41. 41.
    Ashman RB, Cowin SC, Van Buskirk WC, Rice JC. A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech. 1984;17:349–61. doi: 10.1016/0021-9290(84)90029-0.CrossRefPubMedGoogle Scholar
  42. 42.
    Dalstyra M, Huiskes R, Odgaard A, Van Erning L. Mechanical and textural properties of pelvic trabecular bone. J Biomech. 1993;26:349–61. doi: 10.1016/0021-9290(93)90014-6.Google Scholar
  43. 43.
    Gottesman T, Hashin Z. Analysis of viscoelastic behaviour of bones on the basis of microstructure. J Biomech. 1980;13:89–96. doi: 10.1016/0021-9290(80)90182-7.CrossRefPubMedGoogle Scholar
  44. 44.
    Kummer B. Biomechanical principles of the statistics of the hip joint. A critical appraisal of a new theory. Zeitschrift fur Orthopadie und Ihre Grenzgebiete. 1986;124:179–87. doi: 10.1055/s-2008-1044544.CrossRefPubMedGoogle Scholar
  45. 45.
    Gramanzini M, Gargiulo S, Zarone F, Megna R, Apicella A, et al. Combined microcomputed tomography, biomechanical and histomorphometric analysis of the peri-implant bone: a pilot study in minipig model. Dental Mater. 2016;32:794–806. doi: 10.1016/ Scholar
  46. 46.
    Beaupre GS, Hayes WC. Finite element analysis of a three dimensional open-celled model for trabecular bone. J Biomech Eng. 1985;107:249–56. PMID: 4046566 CrossRefPubMedGoogle Scholar
  47. 47.
    Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg. 1977;59A:954–62. PMID: 561786CrossRefGoogle Scholar
  48. 48.
    Bonfield W, Grynpas MD, Tully AE, Bowman J, Abram J. Hydroxyapatite reinforced polyethylene—a mechanically compatible implant material for bone replacement. Biomaterials. 1981;2:185–6. doi: 10.1016/0142-9612(81)90050-8.CrossRefPubMedGoogle Scholar
  49. 49.
    Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295:1014–7. doi: 10.1126/science.1067404.CrossRefPubMedGoogle Scholar
  50. 50.
    Hench LL, Thompson I. Twenty-first century challenges for biomaterials. J R Soc Interface. 2010;7:S379–91. doi: 10.1098/rsif.2010.0151.focus.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hench LL, Wilson J. An introduction to bioceramics. World Sci. 1993;1:396. doi: 10.1142/2028.Google Scholar
  52. 52.
    Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. BoneKEy Reports. 2014;3:481.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Kabra B, Gehrke SH, Hwang ST, Ritschel W. Modification of the dynamic swelling behavior of poly(2-hydroxyethyl methacrylate) in water. J Applied Polym Sci. 1991;42:2409–16. doi: 10.1002/app.1991.070420906.CrossRefGoogle Scholar
  54. 54.
    Montheard JP, Chatzopoulos M, Chappard D. 2-hydroxyethyl methacrylate (HEMA): chemical properties and applications in biomedical fields. J Macromol Sci Macromol Rev. 1992;32:1–34. doi: 10.1080/15321799208018377.CrossRefGoogle Scholar
  55. 55.
    Peluso G, Petillo O, Anderson JM, Ambrosio M, Nicolais L, Melone MAB, Eschbach FO, Huang SJ. The differential effects of poly(2-hydroxyethylmethacrylate) and poly(2-hydroxyethylmethacrylate)/poly(caprolactone) polymers on cell proliferation and collagen synthesis by human lung fibroblasts. J Biomed Mater Res. 1997;34:327–36.CrossRefPubMedGoogle Scholar
  56. 56.
    Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91. doi: 10.1016/j.biomaterials.2005.02.002.CrossRefPubMedGoogle Scholar
  57. 57.
    Frost HM. Wolff’s law and bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod. 1994;64:175–88.PubMedGoogle Scholar
  58. 58.
    Wolff J. 1892. Das Gesetz der transformation der KnochGoogle Scholar
  59. 59.
    Aversa R, Apicella A. Osmotic tension, plasticization and viscoelastic response of amorphous poly-ether-ether-ketone (PEEK) equilibrated in humid environments. Am J Eng Appl Sci. 2016;9(3):565–73. doi: 10.3844/ajeassp.2016.565.573.CrossRefGoogle Scholar
  60. 60.
    Holley RH, Hopfenberg HB, Stannett V. Anomalous transport of hydrocarbons in polystyrene. Polymer Eng Sci. 1970;10:376–82. doi: 10.1002/pen.760100612.CrossRefGoogle Scholar
  61. 61.
    Apicella A, Hopfenberg HB. Water-swelling behavior of an ethylene–vinyl alcohol copolymer in the presence of sorbed sodium chloride. J Appl Polymer Sci. 1982;27:1139–48. doi: 10.1002/app.1982.070270404.CrossRefGoogle Scholar
  62. 62.
    Halpin JC, Kardos JL. Halpin-Tsai equations: a review. Polym Eng Sci. 1976;16(5):344–52.CrossRefGoogle Scholar
  63. 63.
    Nicolais L, Apicella A, de Notaristefano C. Time-temperature superposition of n-hexane sorption in polystyrene. J Membr Sci. 1984;18:187–96. doi: 10.1016/S0376-7388(00)85033-4.CrossRefGoogle Scholar
  64. 64.
    Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudula B, Slooff TJ. Adaptive bone remodeling theory applied to prosthetic-design analysis. J Biomech. 1987;20:1135–50.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Advanced Materials Lab, Department of Architecture and Industrial DesignUniversity of CampaniaCasertaItaly
  2. 2.Calabrodental, Biomaterials and Scaffolds sectionCrotoneItaly
  3. 3.Advanced Technology Dental Research Laboratory, Faculty of DentistryKing Abdul Aziz UniversityJeddahSaudi Arabia

Personalised recommendations