Innovative Biomaterials in Bone Tissue Engineering and Regenerative Medicine
Chapter
First Online:
- 2 Citations
- 694 Downloads
Abstract
In the last few years the Authors have been coordinating researches in multi key enabling technologies that conveys together activities involving advanced materials and biotechnology. These advancements are allowing innovative biomimetic systems, which are facing societal challenges with high potential for innovation and growth. The use of biocompatible and biomechanically active materials that can be designed to reproduce bone compatible and biomimetic scaffolds that can adapt themselves in mutating physiological conditions is presented in the present chapter.
Keywords
Hybrid Material Fume Silica Hybrid Scaffold Scaffolding Material Removal Torque
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.Apicella A. Scienza e Tecnologia dei Materiali: Approccio Biomimetico per un uso Sostenibile dei Materiali; 2008. 1st edn. p. 118. Giannini. ISBN-10: 887431390X.Google Scholar
- 2.Apicella D, Aversa R, Ferro V, Ianniello D, Apicella A. The importance of cortical bone orthotropicity, maximum stiffness direction and thickness on the reliability of mandible numerical models. J Biomed Mater Res. 2010;93:150–63. doi: 10.1002/jbm.b.31569.Google Scholar
- 3.Apicella D, Aversa R, Tatullo M, Simeone M, Sayed S, Marrelli M, Apicella A. Direct restoration modalities of fractured central maxillary incisors: a multi-levels validated finite elements analysis with in vivo strain measurements. Dent Mater. 2015;31(12):e289–305. doi: 10.1016/j.dental.2015.09.016.CrossRefGoogle Scholar
- 4.Aversa R, Petrescu RVV, Petrescu FIT, Apicella A. Biomimetic and evolutionary design driven innovation in sustainable products development. Am J Eng Appl Sci. 2016;9(4):1027–36. doi: 10.3844/ajeassp.2016.1027.1036.CrossRefGoogle Scholar
- 5.Aversa R, RVV P, Antonio A, FIT P. Mitochondria are naturally micro robots-a review. Am J Eng Applied Sci. 2016:991–1002. doi: 10.3844/ajeassp.2016.991.1002.
- 6.Aversa R, RVV P, Antonio A, FIT P. Physiologic human fluids and swelling behavior of hydrophilic biocompatible hybrid ceramo-polymeric materials. Am J Eng Applied Sci. 2016:962–72. doi: 10.3844/ajeassp.2016.962.972.
- 7.Aversa R, Sorrentino R, Apicella A. Bio-mechanically active ceramic-polymeric hybrid scaffolds for tissue engineering. In: Proceedings of the International Conference on Biological Sciences and Technology, (BST’ 16), Atlantis Press; 2016. pp. 308–318. doi: 10.2991/bst-16.2016.46.
- 8.Aversa R, Petrescu FIT, Petrescu RVV, Apicella A. Biofidel FEA modeling of customized hybrid biological hip joint design part ii: flexible stem trabecular prostheses. Am J Biochem Biotechnol. 2016;12(4):277–85. doi: 10.3844/ajbbsp.2016.277.285.CrossRefGoogle Scholar
- 9.Sorrentino R, Apicella D, Riccio C, Gherlone ED, Zarone F, et al. Nonlinear visco-elastic finite element analysis of different porcelain veneers configuration. J Biomed Mater Res. 2009;91:727–36. doi: 10.1002/jbm.b.31449.CrossRefGoogle Scholar
- 10.Aversa R, FIT P, RVV P, Apicella A. Biomimetic FEA bone modeling for customized hybrid biological prostheses development. AJAS. 2016:1060–7. doi: 10.3844/ajassp.2016.1060.1067.
- 11.Aversa R, Apicella A, Petrescu RVV, Petrescu FIT. Physiologic human fluids and swelling behavior of hydrophilic biocompatible hybrid ceramo-polymeric materials. Am J Eng Appl Sci. 2016;9(4):962–72. doi: 10.3844/ajeassp.2016.962.972.CrossRefGoogle Scholar
- 12.Frost HM. Mathematical elements of lamellar bone remodeling. Springfield: Charles C Thomas; 1964. p. 22–5.Google Scholar
- 13.Frost HM. Structural adaptations to mechanical usage (SATMU). 2. Redifining Wolff’s law: the bone remodelling problem. Anat Rec. 1990;226:414–22.CrossRefPubMedGoogle Scholar
- 14.Frost HM. A 2003 update of bone physiology and Wolff’s law for clinicians. Angle Orthod. 2004;74:3–15.PubMedGoogle Scholar
- 15.Aversa R, Apicella D, Perillo L, Sorrentino R, Zarone F, et al. Non-linear elastic three-dimensional finite element analysis on the effect of endocrown material rigidity on alveolar bone remodeling process. Dental Mater. 2009;25:678–90. doi: 10.1016/j.dental.2008.10.015.CrossRefGoogle Scholar
- 16.Syed J, Sahar N, Aversa R, Petrescu RVV, Apicella D, et al. Periodontal bone substitutes application techniques and cost evaluation: a review. Am J Eng Appl Sci. 2016; doi: 10.3844/ofsp.10849.Google Scholar
- 17.Schwartz-Dabney CL, Dechow PC. Variation in cortical material properties throughout the human dentate mandible. Am J Phys Anthropol. 2003;120:252–77.CrossRefPubMedGoogle Scholar
- 18.Apicella D, Veltri M, Balleri P, Apicella A, Ferrari M. Influence of abutment material on the fracture strength and failure modes of abutment-fixture assemblies when loaded in a bio-faithful simulation. Clin Oral Implants Res. 2011;22(2):182–8. doi: 10.1111/j.1600-0501.2010.01979.x.CrossRefPubMedGoogle Scholar
- 19.Sorrentino R, Aversa R, Ferro V, Auriemma T, Zarone F, et al. Three-dimensional finite element analysis of strain and stress distributions in endodontically treated maxillary central incisors restored with different post, core and crown materials. Dent Mater. 2007;23:983–93. doi: 10.1016/j.dental.2006.08.006.CrossRefPubMedGoogle Scholar
- 20.Annunziata M, Aversa R, Apicella A, Annunziata A, Apicella D, et al. In vitro biological response to a light-cured composite when used for cementation of composite inlays. Dental Mater. 2006;22:1081–5. doi: 10.1016/j.dental.2005.08.009.CrossRefGoogle Scholar
- 21.Perillo L, Sorrentino R, Apicella D, Quaranta A, Gherlone E, Ferrari M, Aversa R, Apicella A. Nonlinear visco-elastic finite element analysis of porcelain veneers: a submodelling approach to strain and stress distributions in adhesive and resin cement. J Adhes Dent. 2010;12(5):403–13.PubMedGoogle Scholar
- 22.Annunziata M, Guida L, Perillo L, Aversa R, Passaro I, et al. Biological response of human bone marrow stromal cells to sandblasted titanium nitride-coated implant surfaces. J Mater Sci Mater Med. 2008;19:3585–91. doi: 10.1007/s10856-008-3514-2.CrossRefPubMedGoogle Scholar
- 23.Chen Q, Zhu C, Thouas GA. Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Progress Biomater. 2012;1:1–22. doi: 10.1186/2194-0517-1-2.CrossRefGoogle Scholar
- 24.Čepelak I, Dodig S, Čulić O. Magnesium-more than a common cation. Med Sci. 2013;39:47–68.Google Scholar
- 25.Comerun HU. Six-year results with a microporous-coated metal hip prosthesis. Clin Orthop. 1986;208:81.Google Scholar
- 26.Cormack AN, Tilocca A. Structure and biological activity of glasses and ceramics. Philos Trans Math Phys Eng Sci. 2012;370:1271–80. doi: 10.1098/rsta.2011.0371.CrossRefGoogle Scholar
- 27.Heinemann S, Heinemann C, Wenisch S, Alt V, Worch H, et al. Calcium phosphate phases integrated in silica/collagen nanocomposite xerogels enhance the bioactivity and ultimately manipulate the osteoblast/osteoclast ratio in a human co-culture model. Acta Biomater. 2013;9:4878–88. doi: 10.1016/j.actbio.2012.10.010.CrossRefPubMedGoogle Scholar
- 28.Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43. doi: 10.1016/S0142-9612(00)00121-6.CrossRefPubMedGoogle Scholar
- 29.Jones JR, Clare AG. Bio-glasses: an introduction. 1st ed. Chichester: Wiley; 2012.CrossRefGoogle Scholar
- 30.Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74. doi: 10.1016/j.biomaterials.2011.01.004.CrossRefPubMedGoogle Scholar
- 31.Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL. Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Composi Sci Technol. 2004;64:789–817. doi: 10.1016/j.compscitech.2003.09.001.CrossRefGoogle Scholar
- 32.Morales-Hernandez DG, Genetos DC, Working DM, Murphy KC, Leich JK. Ceramic identity contributes to mechanical properties and osteoblast behavior on macroporous composite scaffolds. J Funct Biomat. 2012;23:382–97. doi: 10.3390/jfb3020382.CrossRefGoogle Scholar
- 33.Mouriño V, Cattalini JP, Boccaccini AR. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface. 2012;9:401–19. doi: 10.1098/rsif.2011.0611.CrossRefPubMedGoogle Scholar
- 34.Schiraldi C, D’Agostino A, Oliva A, Flamma F, De Rosa A, et al. Development of hybrid materials based on hydroxyethylmethacrylate as supports for improving cell adhesion and proliferation. Biomaterials. 2004;25:3645–53. doi: 10.1016/j.biomaterials.2003.10.059.CrossRefPubMedGoogle Scholar
- 35.Burnstein A, Reilly DT, Martens M. Aging of bone tissue: mechanical properties. J Bone Joint Surg Am. 1976;58:82–6. PMID: 1249116 CrossRefGoogle Scholar
- 36.Oh I, Harris WH. Proximal strain distribution in the loaded femur. An in vitro comparison of the distributions in the intact femur and after insertion of different hip-replacement femoral components. J Bone Joint Surg Am. 1976;60:75–85. PMID: 624762 CrossRefGoogle Scholar
- 37.Reilly DT, Burstein AH. The mechanical properties of cortical bone. J Bone Joint Surg Am. 1974;56A(5):1001–21.CrossRefGoogle Scholar
- 38.Reilly DT, Burnestain AH. The elastic and ultimate properties of compact bone tissue. J Biomech. 1975;8:393–405. doi: 10.1016/0021-9290(75)90075-5.CrossRefPubMedGoogle Scholar
- 39.Rohlmann A, Mossner U, Bergmann G, Kolbel R. Finite-element-analysis and experimental investigation of stresses in a femur. J Biomed Eng. 1982;4:241–6. doi: 10.1016/0141-5425(82)90009-7.CrossRefPubMedGoogle Scholar
- 40.Ashman RB, Rho JY. Elastic modulus of trabecular bone material. J Biomech. 1988;21:177–1781. doi: 10.1016/0021-9290(88)90167-4.CrossRefPubMedGoogle Scholar
- 41.Ashman RB, Cowin SC, Van Buskirk WC, Rice JC. A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech. 1984;17:349–61. doi: 10.1016/0021-9290(84)90029-0.CrossRefPubMedGoogle Scholar
- 42.Dalstyra M, Huiskes R, Odgaard A, Van Erning L. Mechanical and textural properties of pelvic trabecular bone. J Biomech. 1993;26:349–61. doi: 10.1016/0021-9290(93)90014-6.Google Scholar
- 43.Gottesman T, Hashin Z. Analysis of viscoelastic behaviour of bones on the basis of microstructure. J Biomech. 1980;13:89–96. doi: 10.1016/0021-9290(80)90182-7.CrossRefPubMedGoogle Scholar
- 44.Kummer B. Biomechanical principles of the statistics of the hip joint. A critical appraisal of a new theory. Zeitschrift fur Orthopadie und Ihre Grenzgebiete. 1986;124:179–87. doi: 10.1055/s-2008-1044544.CrossRefPubMedGoogle Scholar
- 45.Gramanzini M, Gargiulo S, Zarone F, Megna R, Apicella A, et al. Combined microcomputed tomography, biomechanical and histomorphometric analysis of the peri-implant bone: a pilot study in minipig model. Dental Mater. 2016;32:794–806. doi: 10.1016/j.dental.2016.03.025.CrossRefGoogle Scholar
- 46.Beaupre GS, Hayes WC. Finite element analysis of a three dimensional open-celled model for trabecular bone. J Biomech Eng. 1985;107:249–56. PMID: 4046566 CrossRefPubMedGoogle Scholar
- 47.Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg. 1977;59A:954–62. PMID: 561786CrossRefGoogle Scholar
- 48.Bonfield W, Grynpas MD, Tully AE, Bowman J, Abram J. Hydroxyapatite reinforced polyethylene—a mechanically compatible implant material for bone replacement. Biomaterials. 1981;2:185–6. doi: 10.1016/0142-9612(81)90050-8.CrossRefPubMedGoogle Scholar
- 49.Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295:1014–7. doi: 10.1126/science.1067404.CrossRefPubMedGoogle Scholar
- 50.Hench LL, Thompson I. Twenty-first century challenges for biomaterials. J R Soc Interface. 2010;7:S379–91. doi: 10.1098/rsif.2010.0151.focus.CrossRefPubMedPubMedCentralGoogle Scholar
- 51.Hench LL, Wilson J. An introduction to bioceramics. World Sci. 1993;1:396. doi: 10.1142/2028.Google Scholar
- 52.Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. BoneKEy Reports. 2014;3:481.PubMedPubMedCentralGoogle Scholar
- 53.Kabra B, Gehrke SH, Hwang ST, Ritschel W. Modification of the dynamic swelling behavior of poly(2-hydroxyethyl methacrylate) in water. J Applied Polym Sci. 1991;42:2409–16. doi: 10.1002/app.1991.070420906.CrossRefGoogle Scholar
- 54.Montheard JP, Chatzopoulos M, Chappard D. 2-hydroxyethyl methacrylate (HEMA): chemical properties and applications in biomedical fields. J Macromol Sci Macromol Rev. 1992;32:1–34. doi: 10.1080/15321799208018377.CrossRefGoogle Scholar
- 55.Peluso G, Petillo O, Anderson JM, Ambrosio M, Nicolais L, Melone MAB, Eschbach FO, Huang SJ. The differential effects of poly(2-hydroxyethylmethacrylate) and poly(2-hydroxyethylmethacrylate)/poly(caprolactone) polymers on cell proliferation and collagen synthesis by human lung fibroblasts. J Biomed Mater Res. 1997;34:327–36.CrossRefPubMedGoogle Scholar
- 56.Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91. doi: 10.1016/j.biomaterials.2005.02.002.CrossRefPubMedGoogle Scholar
- 57.Frost HM. Wolff’s law and bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod. 1994;64:175–88.PubMedGoogle Scholar
- 58.Wolff J. 1892. Das Gesetz der transformation der KnochGoogle Scholar
- 59.Aversa R, Apicella A. Osmotic tension, plasticization and viscoelastic response of amorphous poly-ether-ether-ketone (PEEK) equilibrated in humid environments. Am J Eng Appl Sci. 2016;9(3):565–73. doi: 10.3844/ajeassp.2016.565.573.CrossRefGoogle Scholar
- 60.Holley RH, Hopfenberg HB, Stannett V. Anomalous transport of hydrocarbons in polystyrene. Polymer Eng Sci. 1970;10:376–82. doi: 10.1002/pen.760100612.CrossRefGoogle Scholar
- 61.Apicella A, Hopfenberg HB. Water-swelling behavior of an ethylene–vinyl alcohol copolymer in the presence of sorbed sodium chloride. J Appl Polymer Sci. 1982;27:1139–48. doi: 10.1002/app.1982.070270404.CrossRefGoogle Scholar
- 62.Halpin JC, Kardos JL. Halpin-Tsai equations: a review. Polym Eng Sci. 1976;16(5):344–52.CrossRefGoogle Scholar
- 63.Nicolais L, Apicella A, de Notaristefano C. Time-temperature superposition of n-hexane sorption in polystyrene. J Membr Sci. 1984;18:187–96. doi: 10.1016/S0376-7388(00)85033-4.CrossRefGoogle Scholar
- 64.Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudula B, Slooff TJ. Adaptive bone remodeling theory applied to prosthetic-design analysis. J Biomech. 1987;20:1135–50.CrossRefPubMedGoogle Scholar
Copyright information
© Springer International Publishing AG 2017