Skip to main content

Innovative Biomaterials in Bone Tissue Engineering and Regenerative Medicine

  • Chapter
  • First Online:
MSCs and Innovative Biomaterials in Dentistry

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

In the last few years the Authors have been coordinating researches in multi key enabling technologies that conveys together activities involving advanced materials and biotechnology. These advancements are allowing innovative biomimetic systems, which are facing societal challenges with high potential for innovation and growth. The use of biocompatible and biomechanically active materials that can be designed to reproduce bone compatible and biomimetic scaffolds that can adapt themselves in mutating physiological conditions is presented in the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apicella A. Scienza e Tecnologia dei Materiali: Approccio Biomimetico per un uso Sostenibile dei Materiali; 2008. 1st edn. p. 118. Giannini. ISBN-10: 887431390X.

    Google Scholar 

  2. Apicella D, Aversa R, Ferro V, Ianniello D, Apicella A. The importance of cortical bone orthotropicity, maximum stiffness direction and thickness on the reliability of mandible numerical models. J Biomed Mater Res. 2010;93:150–63. doi:10.1002/jbm.b.31569.

    Google Scholar 

  3. Apicella D, Aversa R, Tatullo M, Simeone M, Sayed S, Marrelli M, Apicella A. Direct restoration modalities of fractured central maxillary incisors: a multi-levels validated finite elements analysis with in vivo strain measurements. Dent Mater. 2015;31(12):e289–305. doi:10.1016/j.dental.2015.09.016.

    Article  Google Scholar 

  4. Aversa R, Petrescu RVV, Petrescu FIT, Apicella A. Biomimetic and evolutionary design driven innovation in sustainable products development. Am J Eng Appl Sci. 2016;9(4):1027–36. doi:10.3844/ajeassp.2016.1027.1036.

    Article  Google Scholar 

  5. Aversa R, RVV P, Antonio A, FIT P. Mitochondria are naturally micro robots-a review. Am J Eng Applied Sci. 2016:991–1002. doi:10.3844/ajeassp.2016.991.1002.

  6. Aversa R, RVV P, Antonio A, FIT P. Physiologic human fluids and swelling behavior of hydrophilic biocompatible hybrid ceramo-polymeric materials. Am J Eng Applied Sci. 2016:962–72. doi:10.3844/ajeassp.2016.962.972.

  7. Aversa R, Sorrentino R, Apicella A. Bio-mechanically active ceramic-polymeric hybrid scaffolds for tissue engineering. In: Proceedings of the International Conference on Biological Sciences and Technology, (BST’ 16), Atlantis Press; 2016. pp. 308–318. doi:10.2991/bst-16.2016.46.

  8. Aversa R, Petrescu FIT, Petrescu RVV, Apicella A. Biofidel FEA modeling of customized hybrid biological hip joint design part ii: flexible stem trabecular prostheses. Am J Biochem Biotechnol. 2016;12(4):277–85. doi:10.3844/ajbbsp.2016.277.285.

    Article  Google Scholar 

  9. Sorrentino R, Apicella D, Riccio C, Gherlone ED, Zarone F, et al. Nonlinear visco-elastic finite element analysis of different porcelain veneers configuration. J Biomed Mater Res. 2009;91:727–36. doi:10.1002/jbm.b.31449.

    Article  Google Scholar 

  10. Aversa R, FIT P, RVV P, Apicella A. Biomimetic FEA bone modeling for customized hybrid biological prostheses development. AJAS. 2016:1060–7. doi:10.3844/ajassp.2016.1060.1067.

  11. Aversa R, Apicella A, Petrescu RVV, Petrescu FIT. Physiologic human fluids and swelling behavior of hydrophilic biocompatible hybrid ceramo-polymeric materials. Am J Eng Appl Sci. 2016;9(4):962–72. doi:10.3844/ajeassp.2016.962.972.

    Article  Google Scholar 

  12. Frost HM. Mathematical elements of lamellar bone remodeling. Springfield: Charles C Thomas; 1964. p. 22–5.

    Google Scholar 

  13. Frost HM. Structural adaptations to mechanical usage (SATMU). 2. Redifining Wolff’s law: the bone remodelling problem. Anat Rec. 1990;226:414–22.

    Article  CAS  PubMed  Google Scholar 

  14. Frost HM. A 2003 update of bone physiology and Wolff’s law for clinicians. Angle Orthod. 2004;74:3–15.

    PubMed  Google Scholar 

  15. Aversa R, Apicella D, Perillo L, Sorrentino R, Zarone F, et al. Non-linear elastic three-dimensional finite element analysis on the effect of endocrown material rigidity on alveolar bone remodeling process. Dental Mater. 2009;25:678–90. doi:10.1016/j.dental.2008.10.015.

    Article  CAS  Google Scholar 

  16. Syed J, Sahar N, Aversa R, Petrescu RVV, Apicella D, et al. Periodontal bone substitutes application techniques and cost evaluation: a review. Am J Eng Appl Sci. 2016; doi:10.3844/ofsp.10849.

    Google Scholar 

  17. Schwartz-Dabney CL, Dechow PC. Variation in cortical material properties throughout the human dentate mandible. Am J Phys Anthropol. 2003;120:252–77.

    Article  CAS  PubMed  Google Scholar 

  18. Apicella D, Veltri M, Balleri P, Apicella A, Ferrari M. Influence of abutment material on the fracture strength and failure modes of abutment-fixture assemblies when loaded in a bio-faithful simulation. Clin Oral Implants Res. 2011;22(2):182–8. doi:10.1111/j.1600-0501.2010.01979.x.

    Article  PubMed  Google Scholar 

  19. Sorrentino R, Aversa R, Ferro V, Auriemma T, Zarone F, et al. Three-dimensional finite element analysis of strain and stress distributions in endodontically treated maxillary central incisors restored with different post, core and crown materials. Dent Mater. 2007;23:983–93. doi:10.1016/j.dental.2006.08.006.

    Article  CAS  PubMed  Google Scholar 

  20. Annunziata M, Aversa R, Apicella A, Annunziata A, Apicella D, et al. In vitro biological response to a light-cured composite when used for cementation of composite inlays. Dental Mater. 2006;22:1081–5. doi:10.1016/j.dental.2005.08.009.

    Article  CAS  Google Scholar 

  21. Perillo L, Sorrentino R, Apicella D, Quaranta A, Gherlone E, Ferrari M, Aversa R, Apicella A. Nonlinear visco-elastic finite element analysis of porcelain veneers: a submodelling approach to strain and stress distributions in adhesive and resin cement. J Adhes Dent. 2010;12(5):403–13.

    PubMed  Google Scholar 

  22. Annunziata M, Guida L, Perillo L, Aversa R, Passaro I, et al. Biological response of human bone marrow stromal cells to sandblasted titanium nitride-coated implant surfaces. J Mater Sci Mater Med. 2008;19:3585–91. doi:10.1007/s10856-008-3514-2.

    Article  CAS  PubMed  Google Scholar 

  23. Chen Q, Zhu C, Thouas GA. Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Progress Biomater. 2012;1:1–22. doi:10.1186/2194-0517-1-2.

    Article  Google Scholar 

  24. Čepelak I, Dodig S, Čulić O. Magnesium-more than a common cation. Med Sci. 2013;39:47–68.

    Google Scholar 

  25. Comerun HU. Six-year results with a microporous-coated metal hip prosthesis. Clin Orthop. 1986;208:81.

    Google Scholar 

  26. Cormack AN, Tilocca A. Structure and biological activity of glasses and ceramics. Philos Trans Math Phys Eng Sci. 2012;370:1271–80. doi:10.1098/rsta.2011.0371.

    Article  CAS  Google Scholar 

  27. Heinemann S, Heinemann C, Wenisch S, Alt V, Worch H, et al. Calcium phosphate phases integrated in silica/collagen nanocomposite xerogels enhance the bioactivity and ultimately manipulate the osteoblast/osteoclast ratio in a human co-culture model. Acta Biomater. 2013;9:4878–88. doi:10.1016/j.actbio.2012.10.010.

    Article  CAS  PubMed  Google Scholar 

  28. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43. doi:10.1016/S0142-9612(00)00121-6.

    Article  CAS  PubMed  Google Scholar 

  29. Jones JR, Clare AG. Bio-glasses: an introduction. 1st ed. Chichester: Wiley; 2012.

    Book  Google Scholar 

  30. Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74. doi:10.1016/j.biomaterials.2011.01.004.

    Article  CAS  PubMed  Google Scholar 

  31. Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL. Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Composi Sci Technol. 2004;64:789–817. doi:10.1016/j.compscitech.2003.09.001.

    Article  CAS  Google Scholar 

  32. Morales-Hernandez DG, Genetos DC, Working DM, Murphy KC, Leich JK. Ceramic identity contributes to mechanical properties and osteoblast behavior on macroporous composite scaffolds. J Funct Biomat. 2012;23:382–97. doi:10.3390/jfb3020382.

    Article  Google Scholar 

  33. Mouriño V, Cattalini JP, Boccaccini AR. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface. 2012;9:401–19. doi:10.1098/rsif.2011.0611.

    Article  PubMed  Google Scholar 

  34. Schiraldi C, D’Agostino A, Oliva A, Flamma F, De Rosa A, et al. Development of hybrid materials based on hydroxyethylmethacrylate as supports for improving cell adhesion and proliferation. Biomaterials. 2004;25:3645–53. doi:10.1016/j.biomaterials.2003.10.059.

    Article  CAS  PubMed  Google Scholar 

  35. Burnstein A, Reilly DT, Martens M. Aging of bone tissue: mechanical properties. J Bone Joint Surg Am. 1976;58:82–6. PMID: 1249116

    Article  Google Scholar 

  36. Oh I, Harris WH. Proximal strain distribution in the loaded femur. An in vitro comparison of the distributions in the intact femur and after insertion of different hip-replacement femoral components. J Bone Joint Surg Am. 1976;60:75–85. PMID: 624762

    Article  Google Scholar 

  37. Reilly DT, Burstein AH. The mechanical properties of cortical bone. J Bone Joint Surg Am. 1974;56A(5):1001–21.

    Article  Google Scholar 

  38. Reilly DT, Burnestain AH. The elastic and ultimate properties of compact bone tissue. J Biomech. 1975;8:393–405. doi:10.1016/0021-9290(75)90075-5.

    Article  CAS  PubMed  Google Scholar 

  39. Rohlmann A, Mossner U, Bergmann G, Kolbel R. Finite-element-analysis and experimental investigation of stresses in a femur. J Biomed Eng. 1982;4:241–6. doi:10.1016/0141-5425(82)90009-7.

    Article  CAS  PubMed  Google Scholar 

  40. Ashman RB, Rho JY. Elastic modulus of trabecular bone material. J Biomech. 1988;21:177–1781. doi:10.1016/0021-9290(88)90167-4.

    Article  CAS  PubMed  Google Scholar 

  41. Ashman RB, Cowin SC, Van Buskirk WC, Rice JC. A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech. 1984;17:349–61. doi:10.1016/0021-9290(84)90029-0.

    Article  CAS  PubMed  Google Scholar 

  42. Dalstyra M, Huiskes R, Odgaard A, Van Erning L. Mechanical and textural properties of pelvic trabecular bone. J Biomech. 1993;26:349–61. doi:10.1016/0021-9290(93)90014-6.

    Google Scholar 

  43. Gottesman T, Hashin Z. Analysis of viscoelastic behaviour of bones on the basis of microstructure. J Biomech. 1980;13:89–96. doi:10.1016/0021-9290(80)90182-7.

    Article  CAS  PubMed  Google Scholar 

  44. Kummer B. Biomechanical principles of the statistics of the hip joint. A critical appraisal of a new theory. Zeitschrift fur Orthopadie und Ihre Grenzgebiete. 1986;124:179–87. doi:10.1055/s-2008-1044544.

    Article  CAS  PubMed  Google Scholar 

  45. Gramanzini M, Gargiulo S, Zarone F, Megna R, Apicella A, et al. Combined microcomputed tomography, biomechanical and histomorphometric analysis of the peri-implant bone: a pilot study in minipig model. Dental Mater. 2016;32:794–806. doi:10.1016/j.dental.2016.03.025.

    Article  Google Scholar 

  46. Beaupre GS, Hayes WC. Finite element analysis of a three dimensional open-celled model for trabecular bone. J Biomech Eng. 1985;107:249–56. PMID: 4046566

    Article  CAS  PubMed  Google Scholar 

  47. Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg. 1977;59A:954–62. PMID: 561786

    Article  Google Scholar 

  48. Bonfield W, Grynpas MD, Tully AE, Bowman J, Abram J. Hydroxyapatite reinforced polyethylene—a mechanically compatible implant material for bone replacement. Biomaterials. 1981;2:185–6. doi:10.1016/0142-9612(81)90050-8.

    Article  CAS  PubMed  Google Scholar 

  49. Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295:1014–7. doi:10.1126/science.1067404.

    Article  CAS  PubMed  Google Scholar 

  50. Hench LL, Thompson I. Twenty-first century challenges for biomaterials. J R Soc Interface. 2010;7:S379–91. doi:10.1098/rsif.2010.0151.focus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hench LL, Wilson J. An introduction to bioceramics. World Sci. 1993;1:396. doi:10.1142/2028.

    Google Scholar 

  52. Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. BoneKEy Reports. 2014;3:481.

    PubMed  PubMed Central  Google Scholar 

  53. Kabra B, Gehrke SH, Hwang ST, Ritschel W. Modification of the dynamic swelling behavior of poly(2-hydroxyethyl methacrylate) in water. J Applied Polym Sci. 1991;42:2409–16. doi:10.1002/app.1991.070420906.

    Article  CAS  Google Scholar 

  54. Montheard JP, Chatzopoulos M, Chappard D. 2-hydroxyethyl methacrylate (HEMA): chemical properties and applications in biomedical fields. J Macromol Sci Macromol Rev. 1992;32:1–34. doi:10.1080/15321799208018377.

    Article  Google Scholar 

  55. Peluso G, Petillo O, Anderson JM, Ambrosio M, Nicolais L, Melone MAB, Eschbach FO, Huang SJ. The differential effects of poly(2-hydroxyethylmethacrylate) and poly(2-hydroxyethylmethacrylate)/poly(caprolactone) polymers on cell proliferation and collagen synthesis by human lung fibroblasts. J Biomed Mater Res. 1997;34:327–36.

    Article  CAS  PubMed  Google Scholar 

  56. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91. doi:10.1016/j.biomaterials.2005.02.002.

    Article  CAS  PubMed  Google Scholar 

  57. Frost HM. Wolff’s law and bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod. 1994;64:175–88.

    CAS  PubMed  Google Scholar 

  58. Wolff J. 1892. Das Gesetz der transformation der Knoch

    Google Scholar 

  59. Aversa R, Apicella A. Osmotic tension, plasticization and viscoelastic response of amorphous poly-ether-ether-ketone (PEEK) equilibrated in humid environments. Am J Eng Appl Sci. 2016;9(3):565–73. doi:10.3844/ajeassp.2016.565.573.

    Article  Google Scholar 

  60. Holley RH, Hopfenberg HB, Stannett V. Anomalous transport of hydrocarbons in polystyrene. Polymer Eng Sci. 1970;10:376–82. doi:10.1002/pen.760100612.

    Article  CAS  Google Scholar 

  61. Apicella A, Hopfenberg HB. Water-swelling behavior of an ethylene–vinyl alcohol copolymer in the presence of sorbed sodium chloride. J Appl Polymer Sci. 1982;27:1139–48. doi:10.1002/app.1982.070270404.

    Article  CAS  Google Scholar 

  62. Halpin JC, Kardos JL. Halpin-Tsai equations: a review. Polym Eng Sci. 1976;16(5):344–52.

    Article  CAS  Google Scholar 

  63. Nicolais L, Apicella A, de Notaristefano C. Time-temperature superposition of n-hexane sorption in polystyrene. J Membr Sci. 1984;18:187–96. doi:10.1016/S0376-7388(00)85033-4.

    Article  CAS  Google Scholar 

  64. Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudula B, Slooff TJ. Adaptive bone remodeling theory applied to prosthetic-design analysis. J Biomech. 1987;20:1135–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Apicella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Apicella, A., Apicella, D., Syed, J., Aversa, R. (2017). Innovative Biomaterials in Bone Tissue Engineering and Regenerative Medicine. In: Tatullo, M. (eds) MSCs and Innovative Biomaterials in Dentistry. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-55645-1_4

Download citation

Publish with us

Policies and ethics