Skip to main content

Application of Metallomics and Metalloproteomics for Understanding the Molecular Mechanisms of Action of Metal-Based Drugs

  • Chapter
  • First Online:
Essential and Non-essential Metals

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

  • 737 Accesses

Abstract

Metals play a significant role in biological processes, and metal-based drugs nowadays have been commonly used for therapeutic and diagnostic purposes. However, due to severe side effects with metallodrugs and acquired drug resistance, more metallodrugs are being developed, with improved pharmacological profiles and less side effects. With the rapid development of metallomic strategies in understanding metals in complex biological systems, their successful application in the field of medicinal inorganic chemistry has led to significant progresses in understanding the mechanisms of actions of metal-based drugs. This chapter introduces the concepts and research techniques in metallomics and metalloproteomics and expatiates the fate of metal-based drugs as well as metallic nanoparticles in biological systems revealed by metallomic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

16HBE:

Normal bronchial epithelial cells

2D-GE:

Two-dimensional gel electrophoresis

A549:

Human alveolar adenocarcinoma epithelial cells

APL:

Acute promyelocytic leukemia

ATO:

Arsenic trioxide

Au NRs:

Au nanorods

CBS:

Colloidal bismuth subcitrate

CE:

Capillary electrophoresis

ESI-MS:

Electrospray ionization mass spectrometry

GE-ICP-MS:

Online coupling of column-type gel electrophoresis with inductively coupled plasma-mass spectrometry

GO:

Gene ontology

H. pylori :

Helicobacter pylori

HF5:

Hollow fiber flow field-flow fractionation

HSAB:

Hard-soft acid-base

ICP-MS:

Inductively coupled plasma-mass spectrometry

ICP-TOF-MS:

Inductively coupled plasma time-of-flight mass spectrometry

IEC:

Ion-exchange chromatography

IEF:

Isoelectric focusing

IMAC:

Immobilized metal affinity chromatography

KP1019:

Trans-[Ru(III)(Ind)2Cl4][IndH]

LA-12:

(OC-6-43)-bis(acetato) (1-adamantylamine) amminedichloroplatinum (IV)

LA-ICP-MS:

Laser ablation-inductively coupled plasma-mass spectrometry

LoVo:

Human colon carcinoma cell line

MALDI-TOF-MS:

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

MAPK:

Mitogen-activated protein kinase

MRP:

Multidrug resistance protein

MS/MS:

Tandem mass spectrometry

MudPIT:

Multidimensional protein identification

NAMI-A:

Trans-[Ru(III)(dmso)(Im)Cl4][ImH]

NanoSIMS:

Nanoscale secondary ion mass spectrometry

NPs:

Nanoparticles

PAK:

Protein kinase

pIs:

Isoelectric points

PMH:

Primary hepatocytes

PTA:

1,3,5-Triaza-7-phosphatricyclo-[3.3.1.1]decane

RBC:

Ranitidine bismuth citrate

RBP4:

Retinol-binding protein 4

RPLC:

Reversed-phase liquid chromatography

RPTECs:

Renal proximal tubule epithelial cells

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SEC:

Size-exclusion chromatography

SELDI-TOF-MS:

Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry

SRIXE:

Synchrotron radiation-induced X-ray emission

SR-TXM:

Synchrotron radiation-beam transmission X-ray microscopy

SR-XANES:

SR-X-ray absorption near edge structure

SR-XRF:

Synchrotron radiation X-ray fluorescence

TEM:

Transmission electron microscopy

THP-1:

Human monocyte

WHO:

World Health Organization

XAS:

X-ray absorption spectroscopy

References

  1. Finney LA, O’Halloran TV. Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science. 2003;300(5621):931–6.

    Article  CAS  PubMed  Google Scholar 

  2. Waldron KJ, Rutherford JC, Ford D, Robinson NJ. Metalloproteins and metal sensing. Nature. 2009;460(7257):823–30.

    Article  CAS  PubMed  Google Scholar 

  3. Guo Z, Sadler PJ. Metals in medicine. Angew Chem Int Ed. 1999;38:1512–31.

    Article  CAS  Google Scholar 

  4. Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11(6):371–84.

    Article  CAS  PubMed  Google Scholar 

  5. Mjos KD, Orvig C. Metallodrugs in medicinal inorganic chemistry. Chem Rev. 2014;114(8):4540–63.

    Article  CAS  PubMed  Google Scholar 

  6. Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007;7(8):573–84.

    Article  CAS  PubMed  Google Scholar 

  7. Medici S, Peana M, Nurchi VM, Lachowicz JI, Crisponi G, Zoroddu MA. Noble metals in medicine: latest advances. Coord Chem Rev. 2015;284:329–50.

    Article  CAS  Google Scholar 

  8. Ott I. On the medicinal chemistry of gold complexes as anticancer drugs. Coord Chem Rev. 2009;253(11–12):1670–81.

    Article  CAS  Google Scholar 

  9. Li H, Sun H. Recent advances in bioinorganic chemistry of bismuth. Curr Opin Chem Biol. 2012;16(1–2):74–83.

    Article  CAS  PubMed  Google Scholar 

  10. Minandri F, Bonchi C, Frangipani E, Imperi F, Visca P. Promises and failures of gallium as an antibacterial agent. Future Microbiol. 2014;9(3):379–97.

    Article  CAS  PubMed  Google Scholar 

  11. Liu JX, Zhou GB, Chen SJ, Chen Z. Arsenic compounds: revived ancient remedies in the fight against human malignancies. Curr Opin Chem Biol. 2012;16(1–2):92–8.

    Article  CAS  PubMed  Google Scholar 

  12. Barry NP, Sadler PJ. Exploration of the medical periodic table: towards new targets. Chem Commun. 2013;49(45):5106–31.

    Article  CAS  Google Scholar 

  13. Ahamed M, AlSalhi MS, Siddiqui MKJ. Silver nanoparticle applications and human health. Clin Chim Acta. 2010;411(23–24):1841–8.

    Article  CAS  PubMed  Google Scholar 

  14. Gabbiani C, Magherini F, Modesti A, Messori L. Proteomic and metallomic strategies for understanding the mode of action of anticancer metallodrugs. Anti Cancer Agents Med Chem. 2010;10:324–37.

    Article  CAS  Google Scholar 

  15. Casini A. Exploring the mechanisms of metal-based pharmacological agents via an integrated approach. J Inorg Biochem. 2012;109:97–106.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Wang H, Li H, Sun H. Metallomic and metalloproteomic strategies in elucidating the molecular mechanisms of metallodrugs. Dalton Trans. 2015;44:437–47.

    Article  CAS  PubMed  Google Scholar 

  17. Williams RJP. Chemical selection of elements by cells. Coord Chem Rev. 2001;216:583–95.

    Article  Google Scholar 

  18. Mounicou S, Szpunar J, Lobinski R. Metallomics: the concept and methodology. Chem Soc Rev. 2009;38(4):1119–38.

    Article  CAS  PubMed  Google Scholar 

  19. Sun H, Chai Z-F. Metallomics: an integrated science for metals in biology and medicine. Annu Rep Prog Chem Sect A Inorg Chem. 2010;106:20–38.

    Article  CAS  Google Scholar 

  20. Haraguchi H. Metallomics as integrated biometal science. J Anal Atom Spectrom. 2004;19(1):5–14.

    Article  CAS  Google Scholar 

  21. Sun X, Tsang C-N, Sun H. Identification and characterization of metallodrug binding proteins by (metallo)proteomics. Metallomics. 2009;1(1):25–31.

    Article  CAS  Google Scholar 

  22. da Silva MAO, Sussulini A, Arruda MAZ. Metalloproteomics as an interdisciplinary area involving proteins and metals. Expert Rev Proteomics. 2010;7(3):387–400.

    Article  PubMed  Google Scholar 

  23. Roberts EA, Sarkar B. Metalloproteomics: focus on metabolic issues relating to metals. Curr Opin Clin Nutr. 2014;17(5):425–30.

    Article  CAS  Google Scholar 

  24. Romero-Canelon I, Sadler PJ. Next-generation metal anticancer complexes: multitargeting via redox modulation. Inorg Chem. 2013;52(21):12276–91.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Fonslow BR, Shan B, Baek MC, Yates 3rd JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev. 2013;113(4):2343–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cvetkovic A, Menon AL, Thorgersen MP, Scott JW, Poole 2nd FL, Jenney Jr FE, et al. Microbial metalloproteomes are largely uncharacterized. Nature. 2010;466(7307):779–82.

    Article  CAS  PubMed  Google Scholar 

  27. Sun X, Xiao CL, Ge R, Yin X, Li H, Li N, et al. Putative copper- and zinc-binding motifs in Streptococcus pneumoniae identified by immobilized metal affinity chromatography and mass spectrometry. Proteomics. 2011;11(16):3288–98.

    Article  PubMed  CAS  Google Scholar 

  28. Hu L, Cheng T, He B, Li L, Wang Y, Lai YT, et al. Identification of metal-associated proteins in cells by using continuous-flow gel electrophoresis and inductively coupled plasma mass spectrometry. Angew Chem Int Ed. 2013;52:4916–20.

    Article  CAS  Google Scholar 

  29. Wang Y, Tsang CN, Xu F, Kong PW, Hu L, Wang J, et al. Bio-coordination of bismuth in Helicobacter pylori revealed by immobilized metal affinity chromatography. Chem Commun. 2015;51:16479–82.

    Article  CAS  Google Scholar 

  30. Hu L, He B, Wang Y, Jiang G, Sun H. Metallomics in environmental and health related research: current status and perspectives. Chin Sci Bull. 2012;58(2):169–76.

    Article  CAS  Google Scholar 

  31. Lothian A, Hare DJ, Grimm R, Ryan TM, Masters CL, Roberts BR. Metalloproteomics: principles, challenges and applications to neurodegeneration. Front Aging Neurosci. 2013;5:35. doi:10.3389/fnagi.2013.00035.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Szpunar J. Metallomics: a new frontier in analytical chemistry. Anal Bioanal Chem. 2004;378(1):54–6.

    Article  CAS  PubMed  Google Scholar 

  33. Adhireksan Z, Davey GE, Campomanes P, Groessl M, Clavel CM, Yu H, et al. Ligand substitutions between ruthenium-cymene compounds can control protein versus DNA targeting and anticancer activity. Nat Commun. 2014;5:3462. doi:10.1038/ncomms4462.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chen Y, Qiao L, Ji L, Chao H. Phosphorescent iridium(III) complexes as multicolor probes for specific mitochondrial imaging and tracking. Biomaterials. 2014;35(1):2–13.

    Article  CAS  PubMed  Google Scholar 

  35. Ho K-S, Chan W-T. Time-resolved ICP-MS measurement for single-cell analysis and on-line cytometry. J Anal Atom Spectrom. 2010;25(7):1114–22.

    Article  CAS  Google Scholar 

  36. Tsang CN, Ho KS, Sun HZ, Chan WT. Tracking bismuth antiulcer drug uptake in single Helicobacter pylori cells. J Am Chem Soc. 2011;133(19):7355–7.

    Article  CAS  PubMed  Google Scholar 

  37. Bendall SC, Simonds EF, Qiu P, EaD A, Krutzik PO, Finck R, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 2011;332(6030):687–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sussulini A, Becker JS. Combination of PAGE and LA-ICP-MS as an analytical workflow in metallomics: state of the art, new quantification strategies, advantages and limitations. Metallomics. 2011;3(12):1271–9.

    Article  CAS  PubMed  Google Scholar 

  39. Ballihaut G, Claverie F, Pecheyran C, Mounicou S, Grimaud R, Lobinski R. Sensitive detection of selenoproteins in gel electrophoresis by high repetition rate femtosecond laser ablation-inductively coupled plasma mass spectrometry. Anal Chem. 2007;79:6874–80.

    Article  CAS  PubMed  Google Scholar 

  40. Gao Y, Chen C, Chai Z. Advanced nuclear analytical techniques for metalloproteomics. J Anal Atom Spectrom. 2007;22(8):856–66.

    Article  CAS  Google Scholar 

  41. Pushie MJ, Pickering IJ, Korbas M, Hackett MJ, George GN. Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem Rev. 2014;114(17):8499–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Parker LJ, Ascher DB, Gao C, Miles LA, Harris HH, Parker MW. Structural approaches to probing metal interaction with proteins. J Inorg Biochem. 2012;115:138–47.

    Article  CAS  PubMed  Google Scholar 

  43. Groessl M, Dyson PJ. Bioanalytical and biophysical techniques for the elucidation of the mode of action of metal-based drugs. Curr Topics Med Chem. 2011;11(21):2632–46.

    Article  CAS  Google Scholar 

  44. Hagège A, Huynh TNS, Hébrant M. Separative techniques for metalloproteomics require balance between separation and perturbation. Trends Anal Chem. 2015;64:64–74.

    Article  CAS  Google Scholar 

  45. Yannone SM, Hartung S, Menon AL, Adams MW, Tainer JA. Metals in biology: defining metalloproteomes. Curr Opin Biotechnol. 2012;23(1):89–95.

    Article  CAS  PubMed  Google Scholar 

  46. Barnett JP, Scanlan DJ, Blindauer CA. Protein fractionation and detection for metalloproteomics: challenges and approaches. Anal Bioanal Chem. 2012;402(10):3311–22.

    Article  CAS  PubMed  Google Scholar 

  47. Nowakowski AB, Wobig WJ, Petering DH. Native SDS-PAGE: high resolution electrophoretic separation of proteins with retention of native properties including bound metal ions. Metallomics. 2014;6(5):1068–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hartinger CG, Groessl M, Meier SM, Casini A, Dyson PJ. Application of mass spectrometric techniques to delineate the modes-of-action of anticancer metallodrugs. Chem Soc Rev. 2013;42(14):6186–99.

    Article  CAS  PubMed  Google Scholar 

  49. Haider SR, Sharp BL, Reid HJ. On-line coupling of gel electrophoresis and inductively coupled plasma-mass spectrometry. TrAC Trend Anal Chem. 2011;30(11):1793–808.

    Article  CAS  Google Scholar 

  50. Menon AL, Poole 2nd FL, Cvetkovic A, Trauger SA, Kalisiak E, Scott JW, et al. Novel multiprotein complexes identified in the hyperthermophilic archaeon Pyrococcus furiosus by non-denaturing fractionation of the native proteome. Mol Cell Proteomics. 2009;8(4):735–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. She YM, Narindrasorasak S, Yang S, Spitale N, Roberts EA, Sarkar B. Identification of metal-binding proteins in human hepatoma lines by immobilized metal affinity chromatography and mass spectrometry. Mol Cell Proteomics. 2003;2(12):1306–18.

    Article  CAS  PubMed  Google Scholar 

  52. Sun XS, Chiu JF, He QY. Application of immobilized metal affinity chromatography in proteomics. Expert Rev Proteomics. 2005;2(5):649–57.

    Article  CAS  PubMed  Google Scholar 

  53. Wang X, Du X, Li H, Chan DS, Sun H. The effect of the extracellular domain of human copper transporter (hCTR1) on cisplatin activation. Angew Chem Int Ed. 2011;50(12):2706–11.

    Article  CAS  Google Scholar 

  54. Du X, Wang X, Li H, Sun H. Comparison between copper and cisplatin transport mediated by human copper transporter 1 (hCTR1). Metallomics. 2012;4(7):679–85.

    Article  CAS  PubMed  Google Scholar 

  55. Wang X, Li H, Du X, Harris J, Guo Z, Sun H. Activation of carboplatin and nedaplatin by the N-terminus of human copper transporter 1 (hCTR1). Chem Sci. 2012;3(11):3206–15.

    Article  CAS  Google Scholar 

  56. Hall MD, Dillon CT, Zhang M, Beale P, Cai Z, Lai B, et al. The cellular distribution and oxidation state of platinum(II) and platinum(IV) antitumour complexes in cancer cells. J Biol Inorg Chem. 2003;8(7):726–32.

    Article  CAS  PubMed  Google Scholar 

  57. Hall MD, Alderden RA, Zhang M, Beale PJ, Cai Z, Lai B, et al. The fate of platinum(II) and platinum(IV) anti-cancer agents in cancer cells and tumours. J Struct Biol. 2006;155(1):38–44.

    Article  CAS  PubMed  Google Scholar 

  58. Davis KJ, Carrall JA, Lai B, Aldrich-Wright JR, Ralph SF, Dillon CT. Does cytotoxicity of metallointercalators correlate with cellular uptake or DNA affinity? Dalton Trans. 2012;41(31):9417–26.

    Article  CAS  PubMed  Google Scholar 

  59. Bianga J, Bouslimani A, Bec N, Quenet F, Mounicou S, Szpunar J, et al. Complementarity of MALDI and LA ICP mass spectrometry for platinum anticancer imaging in human tumor. Metallomics. 2014;6(8):1382–6.

    Article  CAS  PubMed  Google Scholar 

  60. Theiner S, Schreiber-Brynzak E, Jakupec MA, Galanski M, Koellensperger G, Keppler BK. LA-ICP-MS imaging in multicellular tumor spheroids – a novel tool in the preclinical development of metal-based anticancer drugs. Metallomics. 2016;8(4):398–402.

    Article  CAS  PubMed  Google Scholar 

  61. Theiner S, Kornauth C, Varbanov HP, Galanski M, Van Schoonhoven S, Heffeter P, et al. Tumor microenvironment in focus: LA-ICP-MS bioimaging of a preclinical tumor model upon treatment with platinum(IV)-based anticancer agents. Metallomics. 2015;7(8):1256–64.

    Article  CAS  PubMed  Google Scholar 

  62. Legin AA, Theiner S, Schintlmeister A, Reipert S, Heffeter P, Jakupec MA, et al. Multi-scale imaging of anticancer platinum(IV) compounds in murine tumor and kidney. Chem Sci. 2016;7(5):3052–61.

    Article  CAS  Google Scholar 

  63. Hall MD, Foran GJ, Zhang M, Beale PJ, Hambley TW. XANES determination of the platinum oxidation state distribution in cancer cells treated with platinum(IV) anticancer agents. J Am Chem Soc. 2003;125:7524–5.

    Article  CAS  PubMed  Google Scholar 

  64. Chen CK, Zhang JZ, Aitken JB, Hambley TW. Influence of equatorial and axial carboxylato ligands on the kinetic inertness of platinum(IV) complexes in the presence of ascorbate and cysteine and within DLD-1 cancer cells. J Med Chem. 2013;56(21):8757–64.

    Article  CAS  PubMed  Google Scholar 

  65. Casini A, Reedijk J. Interactions of anticancer Pt compounds with proteins: an overlooked topic in medicinal inorganic chemistry? Chem Sci. 2012;3(11):3135–44.

    Article  CAS  Google Scholar 

  66. Allardyce CS, Dyson PJ, Abou-Shakra FR, Birtwistle H, Coffey J. Inductively coupled plasma mass spectrometry to identify protein drug targets from whole cell systems. Chem Commun. 2001;24:2708–9.

    Article  CAS  Google Scholar 

  67. Moreno-Gordaliza E, Esteban-Fernández D, Giesen C, Lehmann K, Lázaro A, Tejedor A, et al. LA-ICP-MS and nHPLC-ESI-LTQ-FT-MS/MS for the analysis of cisplatin–protein complexes separated by two dimensional gel electrophoresis in biological samples. J Anal Atom Spectrom. 2012;27(9):1474–83.

    Article  CAS  Google Scholar 

  68. Bouchal P, Jarkovsky J, Hrazdilova K, Dvorakova M, Struharova I, Hernychova L, et al. The new platinum-based anticancer agent LA-12 induces retinol binding protein 4 in vivo. Proteome Sci. 2011;9:68. doi:10.1186/1477-5956-9-68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cho YE, Singh TS, Lee HC, Moon PG, Lee JE, Lee MH, et al. In-depth identification of pathways related to cisplatin-induced hepatotoxicity through an integrative method based on an informatics-assisted label-free protein quantitation and microarray gene expression approach. Mol Cell Proteomics. 2012;11(1):1–17. doi:10.1074/mcp.M111.010884.

    Article  CAS  Google Scholar 

  70. Levina A, Mitra A, Lay PA. Recent developments in ruthenium anticancer drugs. Metallomics. 2009;1(6):458–70.

    Article  CAS  PubMed  Google Scholar 

  71. Gill MR, Thomas JA. Ruthenium(II) polypyridyl complexes and DNA – from structural probes to cellular imaging and therapeutics. Chem Soc Rev. 2012;41(8):3179–92.

    Article  CAS  PubMed  Google Scholar 

  72. Hartinger CG, Zorbas-Seifried S, Jakupec MA, Kynast B, Zorbas H, Keppler BK. From bench to bedside – preclinical and early clinical development of the anticancer agent indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019 or FFC14A). J Inorg Biochem. 2006;100(5–6):891–904.

    Article  CAS  PubMed  Google Scholar 

  73. Aitken JB, Antony S, Weekley CM, Lai B, Spiccia L, Harris HH. Distinct cellular fates for KP1019 and NAMI-A determined by X-ray fluorescence imaging of single cells. Metallomics. 2012;4(10):1051–6.

    Article  CAS  PubMed  Google Scholar 

  74. Antony S, Aitken JB, Vogt S, Lai B, Brown T, Spiccia L, et al. X-ray fluorescence imaging of single human cancer cells reveals that the N-heterocyclic ligands of iodinated analogues of ruthenium anticancer drugs remain coordinated after cellular uptake. J Biol Inorg Chem. 2013;18(7):845–53.

    Article  CAS  PubMed  Google Scholar 

  75. Levina A, Aitken JB, Gwee YY, Lim ZJ, Liu M, Singharay AM, et al. Biotransformations of anticancer ruthenium(III) complexes: an X-ray absorption spectroscopic study. Chem Eur J. 2013;19(11):3609–19.

    Article  CAS  PubMed  Google Scholar 

  76. Murray BS, Babak MV, Hartinger CG, Dyson PJ. The development of RAPTA compounds for the treatment of tumors. Coord Chem Rev. 2016;306:86–114.

    Article  CAS  Google Scholar 

  77. Wolters DA, Stefanopoulou M, Dyson PJ, Groessl M. Combination of metallomics and proteomics to study the effects of the metallodrug RAPTA-T on human cancer cells. Metallomics. 2012;4(11):1185–96.

    Article  CAS  PubMed  Google Scholar 

  78. Babak MV, Meier SM, Huber KVM, Reynisson J, Legin AA, Jakupec MA, et al. Target profiling of an antimetastatic RAPTA agent by chemical proteomics: relevance to the mode of action. Chem Sci. 2015;6(4):2449–56.

    Article  CAS  Google Scholar 

  79. Khalaila I, Bergamo A, Bussy F, Sava G, Dyson PJ. The role of cisplatin and NAMI-A plasma-protein interactions in relation to combination therapy. Int J Oncol. 2006;29:261–8.

    CAS  PubMed  Google Scholar 

  80. Kaiser J. Combining targeted drugs to stop resistant tumors. Science. 2011;331:1542–5.

    Article  CAS  PubMed  Google Scholar 

  81. Sooriyaarachchi M, Wedding JL, Harris HH, Gailer J. Simultaneous observation of the metabolism of cisplatin and NAMI-A in human plasma in vitro by SEC-ICP-AES. J Biol Inorg Chem. 2014;19(6):1049–53.

    Article  CAS  PubMed  Google Scholar 

  82. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984;323(8390):1311–5.

    Article  Google Scholar 

  83. Pisani P, Parkin DM, Muñoz N, Ferlay J. Cancer and infection: estimates of the attributable fraction in 1990. Cancer Epidemiol Biomark Prev. 1997;6(6):387–400.

    CAS  Google Scholar 

  84. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006;118(12):3030–44.

    Article  CAS  PubMed  Google Scholar 

  85. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13(6):607–15.

    Article  PubMed  Google Scholar 

  86. Cancer IAfRo. Schistosomes, liver flukes and Helicobacter pylori. IARC Monogr Eval Carcinog Risks Hum. 1994;61:1–241.

    Google Scholar 

  87. Ge R, Sun H. Bioinorganic chemistry of bismuth and antimony: target sites of metallodrugs. Acc Chem Res. 2007;40(4):267–74.

    Article  CAS  PubMed  Google Scholar 

  88. Gerrits MM, van Vliet AHM, Kuipers EJ, Kusters JG. Helicobacter pylori and antimicrobial resistance: molecular mechanisms and clinical implications. Lancet Infect Dis. 2006;6(11):699–709.

    Article  CAS  PubMed  Google Scholar 

  89. Ge R, Sun X, Gu Q, Watt RM, Tanner JA, Wong BC, et al. A proteomic approach for the identification of bismuth-binding proteins in Helicobacter pylori. J Biol Inorg Chem. 2007;12(6):831–42.

    Article  CAS  PubMed  Google Scholar 

  90. Tsang CN, Bianga J, Sun H, Szpunar J, Lobinski R. Probing of bismuth antiulcer drug targets in H. pylori by laser ablation-inductively coupled plasma mass spectrometry. Metallomics. 2012;4(3):277–83.

    Article  CAS  PubMed  Google Scholar 

  91. Wang Y, Hu L, Yang X, Chang YY, Hu X, Li H, et al. On-line coupling of continuous-flow gel electrophoresis with inductively coupled plasma-mass spectrometry to quantitatively evaluate intracellular metal binding properties of metallochaperones HpHypA and HpHspA in E. coli cells. Metallomics. 2015;7(10):1399–406.

    Article  PubMed  Google Scholar 

  92. Hong Y, Lai YT, Chan GC, Sun H. Glutathione and multidrug resistance protein transporter mediate a self-propelled disposal of bismuth in human cells. Proc Natl Acad Sci U S A. 2015;112(11):3211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev. 2016;116(5):2826–85.

    Article  CAS  PubMed  Google Scholar 

  94. Walkey CD, Chan WCW. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev. 2012;41(7):2780–99.

    Article  CAS  PubMed  Google Scholar 

  95. Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM. Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev. 2013;113(7):4708–54.

    Article  CAS  PubMed  Google Scholar 

  96. Gunsolus IL, Haynes CL. Analytical aspects of nanotoxicology. Anal Chem. 2016;88(1):451–79.

    Article  CAS  PubMed  Google Scholar 

  97. Wang L, Zhang T, Li P, Huang W, Tang J, Wang P, et al. Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity. ACS Nano. 2015;9(6):6532–47.

    Article  CAS  PubMed  Google Scholar 

  98. Tan Z-Q, Liu J-F, Guo X-R, Yin Y-G, Byeon SK, Moon MH, et al. Toward full spectrum speciation of silver nanoparticles and ionic silver by on-line coupling of hollow fiber flow field-flow fractionation and minicolumn concentration with multiple detectors. Anal Chem. 2015;87(16):8441–7.

    Article  CAS  PubMed  Google Scholar 

  99. Drescher D, Giesen C, Traub H, Panne U, Kneipp J, Jakubowski N. Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS. Anal Chem. 2012;84(22):9684–8.

    Article  CAS  PubMed  Google Scholar 

  100. Zhang L, Wang L, Hu Y, Liu Z, Tian Y, Wu X, et al. Selective metabolic effects of gold nanorods on normal and cancer cells and their application in anticancer drug screening. Biomaterials. 2013;34(29):7117–26.

    Article  CAS  PubMed  Google Scholar 

  101. Oberemm A, Hansen U, Böhmert L, Meckert C, Braeuning A, Thünemann AF, et al. Proteomic responses of human intestinal Caco-2 cells exposed to silver nanoparticles and ionic silver. J Appl Toxicol. 2016;36(3):404–13.

    Article  CAS  PubMed  Google Scholar 

  102. Verano-Braga T, Miethling-Graff R, Wojdyla K, Rogowska-Wrzesinska A, Brewer JR, Erdmann H, et al. Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics. ACS Nano. 2014;8(3):2161–75.

    Article  CAS  PubMed  Google Scholar 

  103. Pillai S, Behra R, Nestler H, Suter MJ-F, Sigg L, Schirmer K. Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver. Proc Natl Acad Sci U S A. 2014;111(9):3490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Grants Council of Hong Kong (HKU704612, HKU703913, HKU17304614, HKU17305415), the University of Hong Kong (for an e-SRT on Integrative Biology), and the “Thousand Talents Program” start-up fund and a “Young Teacher Training Program” fund from Sun Yat-Sen University. HB Wang is acknowledged for a Hong Kong PhD Fellowship (HKPF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhe Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wang, Y., Wang, H., Li, H., Sun, H. (2017). Application of Metallomics and Metalloproteomics for Understanding the Molecular Mechanisms of Action of Metal-Based Drugs. In: Mudipalli, A., Zelikoff, J. (eds) Essential and Non-essential Metals. Molecular and Integrative Toxicology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-55448-8_9

Download citation

Publish with us

Policies and ethics