Skip to main content

Zinc and Zinc-Dependent Proteins in Cancer and Chemotherapeutics

  • Chapter
  • First Online:
Essential and Non-essential Metals

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

Zinc (Zn) is an essential element critical for numerous protein structures and catalytic functions. This chapter focuses on the importance of homeostatic concentrations and appropriate subcellular distributions of Zn within cells, as well as the structural and catalytic roles Zn plays for many important enzymes. The mechanisms and factors by which homeostatic levels of intracellular Zn are maintained are discussed, as well as means by which Zn is distributed within the cell. In addition, several important proteins that require Zn for catalytic activity, such as matrix metalloproteinases and lysine deacetylases, and structural functions, such as the transcription factor p53, are reviewed. Associations between the dysregulation of Zn-dependent proteins or intracellular Zn homeostasis and the development and progression of several cancers are detailed, with emphasis placed on mechanistic links related to Zn. Finally, the various chemotherapeutic strategies that have been developed to either modify intracellular Zn levels or directly target cancer-associated proteins that involve Zn and potential future chemotherapeutic targets are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ECM:

Extracellular matrix

ER:

Estrogen receptor

FGF-2:

Fibroblast growth factor 2

GLI:

Glioma-associated oncogene

HAT:

Histone acetyltransferase

HCC:

Hepatocellular carcinoma

HDAC:

Histone deacetylase

Hh:

Hedgehog

IL-2:

Interleukin-2

KDAC:

Lysine deacetylase

MMP:

Matrix metalloproteinase

MT:

Metallothionein

mtp53:

Mutant p53

PML:

Promyelocytic leukemia gene

RAR-α:

Retinoic acid receptor α

ROS:

Reactive oxygen species

RRE:

Ras-responsive element

RREB1:

Ras-responsive element-binding protein 1

Snai1:

Snail homolog 1

Sp1:

Specificity protein 1

TGF-β:

Transforming growth factor β

TIMP:

Tissue inhibitor of metalloproteinase

ZIP:

Zrt-, Irt-related proteins

Zn:

Zinc

ZnT:

Zinc transporters

References

  1. Plum LM, Rink L, Haase H. The essential toxin: impact of zinc on human health. Int J Environ Res Public Health. 2010;7(4):1342–65. doi:10.3390/ijerph7041342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Andreini C, Banci L, Bertini I, Rosato A. Counting the zinc-proteins encoded in the human genome. J Proteome Res. 2006;5(1):196–201. doi:10.1021/pr050361j.

    Article  CAS  PubMed  Google Scholar 

  3. Rink L, Gabriel P. Zinc and the immune system. Proc Nutr Soc. 2000;59(4):541–52.

    Article  CAS  PubMed  Google Scholar 

  4. Song Y, Leonard SW, Traber MG, Ho E. Zinc deficiency affects DNA damage, oxidative stress, antioxidant defenses, and DNA repair in rats. J Nutr. 2009;139(9):1626–31. doi:10.3945/jn.109.106369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. MacDonald RS. The role of zinc in growth and cell proliferation. J Nutr. 2000;130(5S Suppl):1500S–8S.

    CAS  PubMed  Google Scholar 

  6. Beyersmann D, Haase H. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals. 2001;14(3–4):331–41. doi:10.1023/A:1012905406548.

    Article  CAS  PubMed  Google Scholar 

  7. Stefanidou M, Maravelias C, Dona A, Spiliopoulou C. Zinc: a multipurpose trace element. Arch Toxicol. 2006;80(1):1–9. doi:10.1007/s00204-005-0009-5.

    Article  CAS  PubMed  Google Scholar 

  8. Jackson KA, Valentine RA, Coneyworth LJ, Mathers JC, Ford D. Mechanisms of mammalian zinc-regulated gene expression. Biochem Soc Trans. 2008;36:1262–6. doi:10.1042/bst0361262.

    Article  CAS  PubMed  Google Scholar 

  9. Haase H, Rink L. Signal transduction in monocytes: the role of zinc ions. Biometals. 2007;20(3–4):579–85. doi:10.1007/s10534-006-9029-8.

    Article  CAS  PubMed  Google Scholar 

  10. Coleman JE. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem. 1992;61:897–946. doi:10.1146/annurev.bi.61.070192.004341.

    Article  CAS  PubMed  Google Scholar 

  11. Vallee BL, Auld DS. Cocatalytic zinc motifs in enzyme catalysis. Proc Natl Acad Sci U S A. 1993;90(7):2715–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME. Zinc and human health: an update. Arch Toxicol. 2012;86(4):521–34. doi:10.1007/s00204-011-0775-1.

    Article  CAS  PubMed  Google Scholar 

  13. Maret W. Zinc biochemistry, physiology, and homeostasis–recent insights and current trends. Biometals. 2001;14(3):187–90.

    Article  CAS  Google Scholar 

  14. Tapiero H, Tew KD. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother. 2003;57(9):399–411.

    Article  CAS  PubMed  Google Scholar 

  15. US Department of Agriculture, Agricultural Research Service, Laboratory ND. USDA National Nutrient Database for Standard Reference, Release 28 Version Current: September 2015. 2015. http://www.ars.usda.gov/nea/bhnrc/ndl.

  16. Maret W, Sandstead HH. Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol. 2006;20(1):3–18. doi:10.1016/j.jtemb.2006.01.006.

    Article  CAS  PubMed  Google Scholar 

  17. Rink L, Haase H. Zinc homeostasis and immunity. Trends Immunol. 2007;28(1):1–4. doi:10.1016/j.it.2006.11.005.

    Article  CAS  PubMed  Google Scholar 

  18. Krezel A, Maret W. Zinc-buffering capacity of a eukaryotic cell at physiological pZn. J Biol Inorg Chem. 2006;11(8):1049–62. doi:10.1007/s00775-006-0150-5.

    Article  CAS  PubMed  Google Scholar 

  19. Cherian MG, Jayasurya A, Bay BH. Metallothioneins in human tumors and potential roles in carcinogenesis. Mutat Res. 2003;533(1–2):201–9.

    Article  CAS  PubMed  Google Scholar 

  20. Maret W. The function of zinc metallothionein: a link between cellular zinc and redox state. J Nutr. 2000;130(5S Suppl):1455S–8S.

    CAS  PubMed  Google Scholar 

  21. Institute of Medicine. Dietary reference intakes for vitamin a, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: The National Academies Press; 2001.

    Google Scholar 

  22. Hambidge K. Mild zinc deficiency in human subjects. In:Zinc in human biology. Berlin: Springer; 1989. p. 281–96.

    Chapter  Google Scholar 

  23. Prasad AS. Zinc deficiency: its characterization and treatment. Met Ions Biol Syst. 2003;41:103–37.

    Google Scholar 

  24. Cooper RG. Zinc toxicology following particulate inhalation. Indian J Occup Environ Med. 2008;12(1):10–3. doi:10.4103/0019-5278.40809.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yamaguchi M. Role of nutritional zinc in the prevention of osteoporosis. Mol Cell Biochem. 2010;338(1–2):241–54. doi:10.1007/s11010-009-0358-0.

    Article  CAS  PubMed  Google Scholar 

  26. Prasad AS. Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol. 2012;26(2–3):66–9. doi:10.1016/j.jtemb.2012.04.004.

    Article  CAS  PubMed  Google Scholar 

  27. Prasad AS, Beck F, Grabowski SM, Kaplan J, Mathog RH. Zinc deficiency: changes in cytokine production and T-cell subpopulations in patients with head and neck cancer and in noncancer subjects. Proc Assoc Am Physicians. 1997;109(1):68–77.

    CAS  PubMed  Google Scholar 

  28. Ayenimo J, Yusuf A, Adekunle A, Makinde O. Heavy metal exposure from personal care products. Bull Environ Contam Toxicol. 2010;84(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  29. Hirshon JM, Shardell M, Alles S, Powell JL, Squibb K, Ondov J, et al. Elevated ambient air zinc increases pediatric asthma morbidity. Environ Health Perspect. 2008;116(6):826–31. doi:10.1289/ehp.10759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang W, Cao J, Tao Y, Dai L, Lu SE, Hou B, et al. Seasonal variation of chemical species associated with short-term mortality effects of PM(2.5) in Xi’an, a Central City in China. Am J Epidemiol. 2012;175(6):556–66. doi:10.1093/aje/kwr342.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Valdes A, Zanobetti A, Halonen JI, Cifuentes L, Morata D, Schwartz J. Elemental concentrations of ambient particles and cause specific mortality in Santiago, Chile: a time series study. Environ Health. 2012;11:82. doi:10.1186/1476-069X-11-82.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Leone N, Courbon D, Ducimetiere P, Zureik M. Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology. 2006;17(3):308–14. doi:10.1097/01.ede.0000209454.41466.b7.

    Article  PubMed  Google Scholar 

  33. Krizkova S, Ryvolova M, Hrabeta J, Adam V, Stiborova M, Eckschlager T, et al. Metallothioneins and zinc in cancer diagnosis and therapy. Drug Metab Rev. 2012;44(4):287–301. doi:10.3109/03602532.2012.725414.

    Article  CAS  PubMed  Google Scholar 

  34. Truong-Tran AQ, Carter J, Ruffin RE, Zalewski PD. The role of zinc in caspase activation and apoptotic cell death. Biometals. 2001;14(3–4):315–30.

    Article  CAS  PubMed  Google Scholar 

  35. Sztalmachova M, Hlavna M, Gumulec J, Holubova M, Babula P, Balvan J, et al. Effect of zinc (II) ions on the expression of pro-and anti-apoptotic factors in high-grade prostate carcinoma cells. Oncol Rep. 2012;28(3):806–14.

    CAS  PubMed  Google Scholar 

  36. Maret W. Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals. Biometals. 2009;22(1):149–57. doi:10.1007/s10534-008-9186-z.

    Article  CAS  PubMed  Google Scholar 

  37. Rudolf E, Cervinka M. Zinc pyrithione induces cellular stress signaling and apoptosis in Hep-2 cervical tumor cells: the role of mitochondria and lysosomes. Biometals. 2010;23(2):339–54. doi:10.1007/s10534-010-9302-8.

    Article  CAS  PubMed  Google Scholar 

  38. Cheng WY, Tong H, Miller EW, Chang CJ, Remington J, Zucker RM, et al. An integrated imaging approach to the study of oxidative stress generation by mitochondrial dysfunction in living cells. Environ Health Perspect. 2010;118(7):902–8. doi:10.1289/ehp.0901811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kuznetsova SS, Azarkina NV, Vygodina TV, Siletsky SA, Konstantinov AA. Zinc ions as cytochrome C oxidase inhibitors: two sites of action. Biochemistry (Mosc). 2005;70(2):128–36.

    Article  CAS  Google Scholar 

  40. Costello LC, Franklin RB. Cytotoxic/tumor suppressor role of zinc for the treatment of cancer: an enigma and an opportunity. Expert Rev Anticancer Ther. 2012;12(1):121–8. doi:10.1586/era.11.190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eide DJ. The SLC39 family of metal ion transporters. Pflugers Arch. 2004;447(5):796–800. doi:10.1007/s00424-003-1074-3.

    Article  CAS  PubMed  Google Scholar 

  42. Palmiter RD, Huang L. Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Arch. 2004;447(5):744–51. doi:10.1007/s00424-003-1070-7.

    Article  CAS  PubMed  Google Scholar 

  43. Liuzzi JP, Aydemir F, Nam H, Knutson MD, Cousins RJ. Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci U S A. 2006;103(37):13612–7. doi:10.1073/pnas.0606424103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fujishiro H, Yano Y, Takada Y, Tanihara M, Himeno S. Roles of ZIP8, ZIP14, and DMT1 in transport of cadmium and manganese in mouse kidney proximal tubule cells. Metallomics. 2012;4(7):700–8. doi:10.1039/c2mt20024d.

    Article  CAS  PubMed  Google Scholar 

  45. Ohana E, Hoch E, Keasar C, Kambe T, Yifrach O, Hershfinkel M, et al. Identification of the Zn2+ binding site and mode of operation of a mammalian Zn2+ transporter. J Biol Chem. 2009;284(26):17677–86. doi:10.1074/jbc.M109.007203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Palmiter RD, Findley SD. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J. 1995;14(4):639–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Langmade SJ, Ravindra R, Daniels PJ, Andrews GK. The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J Biol Chem. 2000;275(44):34803–9. doi:10.1074/jbc.M007339200.

    Article  CAS  PubMed  Google Scholar 

  48. McMahon RJ, Cousins RJ. Regulation of the zinc transporter ZnT-1 by dietary zinc. Proc Natl Acad Sci U S A. 1998;95(9):4841–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Costas J. Comment on “current understanding of ZIP and ZnT zinc transporters in human health and diseases”. Cell Mol Life Sci. 2015;72(1):197–8. doi:10.1007/s00018-014-1746-5.

    Article  CAS  PubMed  Google Scholar 

  50. Gumulec J, Masarik M, Adam V, Eckschlager T, Provaznik I, Kizek R. Serum and tissue zinc in epithelial malignancies: a meta-analysis. PLoS One. 2014;9(6):e99790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Costello LC, Franklin RB, Zou J, Feng P, Bok R, Swanson MG, et al. Human prostate cancer ZIP1/zinc/citrate genetic/metabolic relationship in the TRAMP prostate cancer animal model. Cancer Biol Ther. 2011;12(12):1078–84. doi:10.4161/cbt.12.12.18367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zou J, Milon BC, Desouki MM, Costello LC, Franklin RB. hZIP1 zinc transporter down-regulation in prostate cancer involves the overexpression of ras responsive element binding protein-1 (RREB-1). Prostate. 2011;71(14):1518–24. doi:10.1002/pros.21368.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Franklin RB, Ma J, Zou J, Guan Z, Kukoyi BI, Feng P, et al. Human ZIP1 is a major zinc uptake transporter for the accumulation of zinc in prostate cells. J Inorg Biochem. 2003;96(2–3):435–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Milon BC, Agyapong A, Bautista R, Costello LC, Franklin RB. Ras responsive element binding protein-1 (RREB-1) down-regulates hZIP1 expression in prostate cancer cells. Prostate. 2010;70(3):288–96. doi:10.1002/pros.21063.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Desouki MM, Geradts J, Milon B, Franklin RB, Costello LC. hZip2 and hZip3 zinc transporters are down regulated in human prostate adenocarcinomatous glands. Mol Cancer. 2007;6:37. doi:10.1186/1476-4598-6-37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Costello LC, Levy BA, Desouki MM, Zou J, Bagasra O, Johnson LA, et al. Decreased zinc and downregulation of ZIP3 zinc uptake transporter in the development of pancreatic adenocarcinoma. Cancer Biol Ther. 2011;12(4):297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Costello LC, Zou J, Desouki MM, Franklin RB. Evidence for changes in RREB-1, ZIP3, and Zinc in the early development of pancreatic adenocarcinoma. J Gastrointest Cancer. 2012;43(4):570–8. doi:10.1007/s12029-012-9378-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Franklin RB, Zou J, Costello LC. The cytotoxic role of RREB1, ZIP3 zinc transporter, and zinc in human pancreatic adenocarcinoma. Cancer Biol Ther. 2014;15(10):1431–7. doi:10.4161/cbt.29927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Franklin RB, Levy BA, Zou J, Hanna N, Desouki MM, Bagasra O, et al. ZIP14 zinc transporter downregulation and zinc depletion in the development and progression of hepatocellular cancer. J Gastrointest Cancer. 2012;43(2):249–57. doi:10.1007/s12029-011-9269-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Taylor KM, Morgan HE, Johnson A, Hadley LJ, Nicholson RI. Structure-function analysis of LIV-1, the breast cancer-associated protein that belongs to a new subfamily of zinc transporters. Biochem J. 2003;375(Pt 1):51–9. doi:10.1042/BJ20030478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kagara N, Tanaka N, Noguchi S, Hirano T. Zinc and its transporter ZIP10 are involved in invasive behavior of breast cancer cells. Cancer Sci. 2007;98(5):692–7. doi:10.1111/j.1349-7006.2007.00446.x.

    Article  CAS  PubMed  Google Scholar 

  62. Lopez V, Foolad F, Kelleher SL. ZnT2-overexpression represses the cytotoxic effects of zinc hyper-accumulation in malignant metallothionein-null T47D breast tumor cells. Cancer Lett. 2011;304(1):41–51. doi:10.1016/j.canlet.2011.01.027.

    Article  CAS  PubMed  Google Scholar 

  63. Bostanci Z, Alam S, Soybel DI, Kelleher SL. Prolactin receptor attenuation induces zinc pool redistribution through ZnT2 and decreases invasion in MDA-MB-453 breast cancer cells. Exp Cell Res. 2014;321(2):190–200.

    Article  CAS  PubMed  Google Scholar 

  64. Mawson CA, Fischer MI. The occurrence of zinc in the human prostate gland. Can J Med Sci. 1952;30(4):336–9.

    CAS  PubMed  Google Scholar 

  65. Costello LC, Franklin RB. Zinc is decreased in prostate cancer: an established relationship of prostate cancer! J Biol Inorg Chem. 2011;16(1):3–8. doi:10.1007/s00775-010-0736-9.

    Article  CAS  PubMed  Google Scholar 

  66. Ogunlewe JO, Osegbe DN. Zinc and cadmium concentrations in indigenous blacks with normal, hypertrophic, and malignant prostate. Cancer. 1989;63(7):1388–92.

    Article  CAS  PubMed  Google Scholar 

  67. Zaichick V, Sviridova TV, Zaichick SV. Zinc in the human prostate gland: normal, hyperplastic and cancerous. Int Urol Nephrol. 1997;29(5):565–74.

    Article  PubMed  Google Scholar 

  68. Franklin RB, Feng P, Milon B, Desouki MM, Singh KK, Kajdacsy-Balla A, et al. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol Cancer. 2005;4:32. doi:10.1186/1476-4598-4-32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Johnson LA, Kanak MA, Kajdacsy-Balla A, Pestaner JP, Bagasra O. Differential zinc accumulation and expression of human zinc transporter 1 (hZIP1) in prostate glands. Methods. 2010;52(4):316–21. doi:10.1016/j.ymeth.2010.08.004.

    Article  CAS  PubMed  Google Scholar 

  70. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2007;1773(8):1263–84.

    Article  CAS  PubMed  Google Scholar 

  71. Ray SK, Nishitani J, Petry MW, Fessing MY, Leiter AB. Novel transcriptional potentiation of BETA2/NeuroD on the secretin gene promoter by the DNA-binding protein Finb/RREB-1. Mol Cell Biol. 2003;23(1):259–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang S, Qian X, Redman C, Bliskovski V, Ramsay ES, Lowy DR, et al. p16INK4a gene promoter variation and differential binding of a repressor, the ras-responsive zinc-finger transcription factor, RREB. Oncogene. 2003;22(15):2285–95.

    Article  CAS  PubMed  Google Scholar 

  73. Donadelli M, Dalla Pozza E, Scupoli MT, Scupoli MT, Costanzo C, Scarpa A, et al. Intracellular zinc increase inhibits p53−/− pancreatic adenocarcinoma cell growth by ROS/AIF-mediated apoptosis. Biochim Biophys Acta. 2009;1793(2):273–80. doi:10.1016/j.bbamcr.2008.09.010.

    Article  CAS  PubMed  Google Scholar 

  74. Jayaraman AK, Jayaraman S. Increased level of exogenous zinc induces cytotoxicity and up-regulates the expression of the ZnT-1 zinc transporter gene in pancreatic cancer cells. J Nutr Biochem. 2011;22(1):79–88.

    Article  CAS  PubMed  Google Scholar 

  75. Gurusamy K. Trace element concentration in primary liver cancers—a systematic review. Biol Trace Elem Res. 2007;118(3):191–206. doi:10.1007/s12011-007-0008-x.

    Article  CAS  PubMed  Google Scholar 

  76. Lemire J, Mailloux R, Appanna VD. Zinc toxicity alters mitochondrial metabolism and leads to decreased ATP production in hepatocytes. J Appl Toxicol. 2008;28(2):175–82. doi:10.1002/jat.1263.

    Article  CAS  PubMed  Google Scholar 

  77. Costello LC, Franklin RB. The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol Cancer. 2006;5:17. doi:10.1186/1476-4598-5-17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Riesop D, Hirner AV, Rusch P, Bankfalvi A. Zinc distribution within breast cancer tissue: a possible marker for histological grading? J Cancer Res Clin Oncol. 2015;141(7):1321–31. doi:10.1007/s00432-015-1932-3.

    Article  CAS  PubMed  Google Scholar 

  79. Jin R, Bay B, Tan P, Tan BK. Metallothionein expression and zinc levels in invasive ductal breast carcinoma. Oncol Rep. 1999;6(4):871–5.

    CAS  PubMed  Google Scholar 

  80. Santoliquido PM, Southwick HW, Olwin JH. Trace metal levels in cancer of the breast. Surg Gynecol Obstet. 1976;142(1):65–70.

    CAS  PubMed  Google Scholar 

  81. Margalioth EJ, Schenker JG, Chevion M. Copper and zinc levels in normal and malignant tissues. Cancer. 1983;52(5):868–72.

    Article  CAS  PubMed  Google Scholar 

  82. Cui Y, Vogt S, Olson N, Glass AG, Rohan TE. Levels of zinc, selenium, calcium, and iron in benign breast tissue and risk of subsequent breast cancer. Cancer Epidemiol Biomark Prev. 2007;16(8):1682–5. doi:10.1158/1055-9965.EPI-07-0187.

    Article  CAS  Google Scholar 

  83. Farquharson MJ, Al-Ebraheem A, Geraki K, Leek R, Jubb A, Harris AL. Zinc presence in invasive ductal carcinoma of the breast and its correlation with oestrogen receptor status. Phys Med Biol. 2009;54(13):4213–23. doi:10.1088/0031-9155/54/13/016.

    Article  CAS  PubMed  Google Scholar 

  84. Kasper G, Weiser AA, Rump A, Sparbier K, Dahl E, Hartmann A, et al. Expression levels of the putative zinc transporter LIV-1 are associated with a better outcome of breast cancer patients. Int J Cancer. 2005;117(6):961–73. doi:10.1002/ijc.21235.

    Article  CAS  PubMed  Google Scholar 

  85. Taylor KM, Vichova P, Jordan N, Hiscox S, Hendley R, Nicholson RI. ZIP7-mediated intracellular zinc transport contributes to aberrant growth factor signaling in antihormone-resistant breast cancer Cells. Endocrinology. 2008;149(10):4912–20. doi:10.1210/en.2008-0351.

    Article  CAS  PubMed  Google Scholar 

  86. Taylor KM, Nicholson RI. The LZT proteins; the LIV-1 subfamily of zinc transporters. Biochim Biophys Acta. 2003;1611(1–2):16–30.

    Article  CAS  PubMed  Google Scholar 

  87. Manning DL, Daly RJ, Lord PG, Kelly KF, Green CD. Effects of oestrogen on the expression of a 4.4 kb mRNA in the ZR-75-1 human breast cancer cell line. Mol Cell Endocrinol. 1988;59(3):205–12.

    Article  CAS  PubMed  Google Scholar 

  88. Hogstrand C, Kille P, Ackland ML, Hiscox S, Taylor KM. A mechanism for epithelial-mesenchymal transition and anoikis resistance in breast cancer triggered by zinc channel ZIP6 and STAT3 (signal transducer and activator of transcription 3). Biochem J. 2013;455(2):229–37. doi:10.1042/BJ20130483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Alam S, Kelleher SL. Cellular mechanisms of zinc dysregulation: a perspective on zinc homeostasis as an etiological factor in the development and progression of breast cancer. Forum Nutr. 2012;4(8):875–903. doi:10.3390/nu4080875.

    CAS  Google Scholar 

  90. Thirumoorthy N, Shyam Sunder A, Manisenthil Kumar K, Senthil Kumar M, Ganesh G, Chatterjee M. A review of metallothionein isoforms and their role in pathophysiology. World J Surg Oncol. 2011;9:54. doi:10.1186/1477-7819-9-54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Margoshes M, Vallee BL. A cadmium protein from equine kidney cortex. J Am Chem Soc. 1957;79(17):4813–4.

    Article  CAS  Google Scholar 

  92. Thirumoorthy N, Manisenthil Kumar KT, Shyam Sundar A, Panayappan L, Chatterjee M. Metallothionein: an overview. World J Gastroenterol. 2007;13(7):993–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jacob C, Maret W, Vallee BL. Control of zinc transfer between thionein, metallothionein, and zinc proteins. Proc Natl Acad Sci U S A. 1998;95(7):3489–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ostrakhovitch EA, Olsson PE, Jiang S, Cherian MG. Interaction of metallothionein with tumor suppressor p53 protein. FEBS Lett. 2006;580(5):1235–8. doi:10.1016/j.febslet.2006.01.036.

    Article  CAS  PubMed  Google Scholar 

  95. Kondo Y, Woo ES, Michalska AE, Choo KH, Lazo JS. Metallothionein null cells have increased sensitivity to anticancer drugs. Cancer Res. 1995;55(10):2021–3.

    CAS  PubMed  Google Scholar 

  96. Kondo Y, Rusnak JM, Hoyt DG, Settineri CE, Pitt BR, Lazo JS. Enhanced apoptosis in metallothionein null cells. Mol Pharmacol. 1997;52(2):195–201.

    CAS  PubMed  Google Scholar 

  97. Dziegiel P, Pula B, Kobierzycki C, Stasiolek M, Podhorska-Okolow M. The role of metallothioneins in carcinogenesis. In:Metallothioneins in normal and cancer cells. Berlin: Springer; 2016. p. 29–63.

    Chapter  Google Scholar 

  98. Jayasurya A, Bay BH, Yap WM, Tan NG. Correlation of metallothionein expression with apoptosis in nasopharyngeal carcinoma. Br J Cancer. 2000;82(6):1198–203. doi:10.1054/bjoc.1999.1063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jayasurya A, Bay BH, Yap WM, Tan NG, Tan BK. Proliferative potential in nasopharyngeal carcinoma: correlations with metallothionein expression and tissue zinc levels. Carcinogenesis. 2000;21(10):1809–12.

    Article  CAS  PubMed  Google Scholar 

  100. Bakka A, Endresen L, Johnsen AB, Edminson PD, Rugstad HE. Resistance against cis-dichlorodiammineplatinum in cultured cells with a high content of metallothionein. Toxicol Appl Pharmacol. 1981;61(2):215–26.

    Article  CAS  PubMed  Google Scholar 

  101. Satoh M, Cherian MG, Imura N, Shimizu H. Modulation of resistance to anticancer drugs by inhibition of metallothionein synthesis. Cancer Res. 1994;54(20):5255–7.

    CAS  PubMed  Google Scholar 

  102. Shimoda R, Achanzar WE, Qu W, Nagamine T, Takagi H, Mori M, et al. Metallothionein is a potential negative regulator of apoptosis. Toxicol Sci. 2003;73(2):294–300.

    Article  CAS  PubMed  Google Scholar 

  103. Namdarghanbari M, Wobig W, Krezoski S, Tabatabai NM, Petering DH. Mammalian metallothionein in toxicology, cancer, and cancer chemotherapy. J Biol Inorg Chem. 2011;16(7):1087–101. doi:10.1007/s00775-011-0823-6.

    Article  CAS  PubMed  Google Scholar 

  104. Heger Z, Rodrigo MA, Krizkova S, Ruttkay-Nedecky B, Zalewska M, Del Pozo EM, et al. Metallothionein as a scavenger of free radicals—new cardioprotective therapeutic agent or initiator of tumor chemoresistance? Curr Drug Targets. 2015;17(12):1438–51.

    Article  CAS  Google Scholar 

  105. Lai Y, Yip GW, Bay BH. Targeting metallothionein for prognosis and treatment of breast cancer. Recent Pat Anticancer Drug Discov. 2011;6(2):178–85.

    Article  CAS  PubMed  Google Scholar 

  106. Magda D, Lecane P, Wang Z, Hu W, Thiemann P, Ma X, et al. Synthesis and anticancer properties of water-soluble zinc ionophores. Cancer Res. 2008;68(13):5318–25. doi:10.1158/0008-5472.CAN-08-0601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Feng P, Li TL, Guan ZX, Franklin RB, Costello LC. Effect of zinc on prostatic tumorigenicity in nude mice. Ann N Y Acad Sci. 2003;1010:316–20.

    Article  CAS  PubMed  Google Scholar 

  108. Eby GA. Treatment of acute lymphocytic leukemia using zinc adjuvant with chemotherapy and radiation–a case history and hypothesis. Med Hypotheses. 2005;64(6):1124–6.

    Article  CAS  PubMed  Google Scholar 

  109. Yu H, Zhou Y, Lind SE, Ding WQ. Clioquinol targets zinc to lysosomes in human cancer cells. Biochem J. 2009;417(1):133–9. doi:10.1042/BJ20081421.

    Article  CAS  PubMed  Google Scholar 

  110. Ding WQ, Liu B, Vaught JL, Yamauchi H, Lind SE. Anticancer activity of the antibiotic clioquinol. Cancer Res. 2005;65(8):3389–95. doi:10.1158/0008-5472.CAN-04-3577.

    CAS  PubMed  Google Scholar 

  111. Zheng J, Zhang XX, Yu H, Taggart JE, Ding WQ. Zinc at cytotoxic concentrations affects posttranscriptional events of gene expression in cancer cells. Cell Physiol Biochem. 2012;29(1–2):181–8. doi:10.1159/000337599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Costello LC, Franklin RB, Zou J, Naslund MJ. Evidence that human prostate cancer is a ZIP1-deficient malignancy that could be effectively treated with a zinc ionophore (Clioquinol) approach. Chemotherapy (Los Angel). 2015;4(2). doi:10.4172/2167-7700.1000152.

  113. Mao X, Schimmer AD. The toxicology of Clioquinol. Toxicol Lett. 2008;182(1–3):1–6. doi:10.1016/j.toxlet.2008.08.015.

    Article  CAS  PubMed  Google Scholar 

  114. Jacobsen JA, Jourden JLM, Miller MT, Cohen SM. To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. Biochim Biophys Acta. 2010;1803(1):72–94.

    Article  CAS  PubMed  Google Scholar 

  115. Maskos K. Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie. 2005;87(3–4):249–63. doi:10.1016/j.biochi.2004.11.019.

    Article  CAS  PubMed  Google Scholar 

  116. Gomis-Rüth FX. Hemopexin domains. 2004 handbook of metalloproteins. Chichester: Wiley; 2004. p. 631–46.

    Google Scholar 

  117. Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem. 1999;274(31):21491–4. doi:10.1074/jbc.274.31.21491.

    Article  CAS  PubMed  Google Scholar 

  118. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562–73. doi:10.1016/j.cardiores.2005.12.002.

    Article  CAS  PubMed  Google Scholar 

  119. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases structure, function, and biochemistry. Circ Res. 2003;92(8):827–39.

    Article  CAS  PubMed  Google Scholar 

  120. Van Wart HE, Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A. 1990;87(14):5578–82.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Gomez D, Alonso D, Yoshiji H, Thorgeirsson U. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol. 1997;74(2):111–22.

    CAS  PubMed  Google Scholar 

  122. Fernandez-Catalan C, Bode W, Huber R, Turk D, Calvete JJ, Lichte A, et al. Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. EMBO J. 1998;17(17):5238–48. doi:10.1093/emboj/17.17.5238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gomis-Ruth FX, Maskos K, Betz M, Bergner A, Huber R, Suzuki K, et al. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature. 1997;389(6646):77–81. doi:10.1038/37995.

    Article  CAS  PubMed  Google Scholar 

  124. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25(1):9–34. doi:10.1007/s10555-006-7886-9.

    Article  CAS  PubMed  Google Scholar 

  125. Hadler-Olsen E, Winberg JO, Uhlin-Hansen L. Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol. 2013;34(4):2041–51. doi:10.1007/s13277-013-0842-8.

    Article  CAS  PubMed  Google Scholar 

  126. Chambers AF, Matrisian LM. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst. 1997;89(17):1260–70.

    Article  CAS  PubMed  Google Scholar 

  127. Overall CM, Kleifeld O. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer. 2006;6(3):227–39.

    Article  CAS  PubMed  Google Scholar 

  128. Shay G, Lynch CC, Fingleton B. Moving targets: emerging roles for MMPs in cancer progression and metastasis. Matrix Biol. 2015;44–46:200–6. doi:10.1016/j.matbio.2015.01.019.

    Article  PubMed  CAS  Google Scholar 

  129. Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science. 2002;295(5564):2387–92. doi:10.1126/science.1067100.

    Article  CAS  PubMed  Google Scholar 

  130. Tallant C, Marrero A, Gomis-Ruth FX. Matrix metalloproteinases: fold and function of their catalytic domains. Biochim Biophys Acta. 2010;1803(1):20–8. doi:10.1016/j.bbamcr.2009.04.003.

    Article  CAS  PubMed  Google Scholar 

  131. Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem. 2007;76:75–100. doi:10.1146/annurev.biochem.76.052705.162114.

    Article  CAS  PubMed  Google Scholar 

  132. Cosgrove MS, Wolberger C. How does the histone code work? Biochem Cell Biol. 2005;83(4):468–76. doi:10.1139/o05-137.

    Article  CAS  PubMed  Google Scholar 

  133. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003;370(Pt 3):737–49. doi:10.1042/BJ20021321.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene. 2005;363:15–23. doi:10.1016/j.gene.2005.09.010.

    Article  CAS  PubMed  Google Scholar 

  135. Hassig CA, Schreiber SL. Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr Opin Chem Biol. 1997;1(3):300–8.

    Article  CAS  PubMed  Google Scholar 

  136. Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999;401(6749):188–93. doi:10.1038/43710.

    Article  CAS  PubMed  Google Scholar 

  137. Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13(4):225–38. doi:10.1038/nrm3293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Liu T, Liu PY, Marshall GM. The critical role of the class III histone deacetylase SIRT1 in cancer. Cancer Res. 2009;69(5):1702–5. doi:10.1158/0008-5472.CAN-08-3365.

    Article  CAS  PubMed  Google Scholar 

  139. Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997;389(6649):349–52.

    Article  CAS  PubMed  Google Scholar 

  140. Spange S, Wagner T, Heinzel T, Krämer OH. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol. 2009;41(1):185–98.

    Article  CAS  PubMed  Google Scholar 

  141. Montezuma D, Henrique R, Jeronimo C. Altered expression of histone deacetylases in cancer. Crit Rev Oncogen. 2015;20(1–2):19–34.

    Article  Google Scholar 

  142. Parbin S, Kar S, Shilpi A, Sengupta D, Deb M, Rath SK, et al. Histone deacetylases: a saga of perturbed acetylation homeostasis in cancer. J Histochem Cytochem. 2014;62(1):11–33. doi:10.1369/0022155413506582.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Nakagawa M, Oda Y, Eguchi T, Aishima S, Yao T, Hosoi F, et al. Expression profile of class I histone deacetylases in human cancer tissues. Oncol Rep. 2007;18(4):769–74.

    CAS  PubMed  Google Scholar 

  144. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi:10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  145. Weichert W, Roske A, Gekeler V, Beckers T, Ebert MP, Pross M, et al. Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis. Lancet Oncol. 2008;9(2):139–48. doi:10.1016/S1470-2045(08)70004-4.

    Article  CAS  PubMed  Google Scholar 

  146. Sudo T, Mimori K, Nishida N, Kogo R, Iwaya T, Tanaka F, et al. Histone deacetylase 1 expression in gastric cancer. Oncol Rep. 2011;26(4):777–82. doi:10.3892/or.2011.1361.

    CAS  PubMed  Google Scholar 

  147. Mutze K, Langer R, Becker K, Ott K, Novotny A, Luber B, et al. Histone deacetylase (HDAC) 1 and 2 expression and chemotherapy in gastric cancer. Ann Surg Oncol. 2010;17(12):3336–43. doi:10.1245/s10434-010-1182-1.

    Article  PubMed  Google Scholar 

  148. Choi JH, Kwon HJ, Yoon BI, Kim JH, Han SU, Joo HJ, et al. Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn J Cancer Res. 2001;92(12):1300–4.

    Article  CAS  PubMed  Google Scholar 

  149. Weichert W, Roske A, Niesporek S, Noske A, Buckendahl AC, Dietel M, et al. Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo. Clin Cancer Res. 2008;14(6):1669–77. doi:10.1158/1078-0432.CCR-07-0990.

    Article  CAS  PubMed  Google Scholar 

  150. Wilson AJ, Byun DS, Popova N, Murray LB, L’Italien K, Sowa Y, et al. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem. 2006;281(19):13548–58. doi:10.1074/jbc.M510023200.

    Article  CAS  PubMed  Google Scholar 

  151. Stypula-Cyrus Y, Damania D, Kunte DP, Cruz MD, Subramanian H, Roy HK, et al. HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure. PLoS One. 2013;8(5):e64600. doi:10.1371/journal.pone.0064600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Eom M, Oh SS, Lkhagvadorj S, Han A, Park KH. HDAC1 expression in invasive ductal carcinoma of the breast and its value as a good prognostic factor. Korean J Pathol. 2012;46(4):311–7. doi:10.4132/KoreanJPathol.2012.46.4.311.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Muller BM, Jana L, Kasajima A, Lehmann A, Prinzler J, Budczies J, et al. Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer--overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC Cancer. 2013;13:215. doi:10.1186/1471-2407-13-215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Zhang Z, Yamashita H, Toyama T, Sugiura H, Ando Y, Mita K, et al. Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast*. Breast Cancer Res Treat. 2005;94(1):11–6. doi:10.1007/s10549-005-6001-1.

    Article  CAS  PubMed  Google Scholar 

  155. Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature. 1998;391(6669):815–8. doi:10.1038/35901.

    Article  CAS  PubMed  Google Scholar 

  156. Taira N, Yoshida K. Post-translational modifications of p53 tumor suppressor: determinants of its functional targets. Histol Histopathol. 2012;27(4):437–43.

    CAS  PubMed  Google Scholar 

  157. Luo J, Li M, Tang Y, Laszkowska M, Roeder RG, Gu W. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc Natl Acad Sci U S A. 2004;101(8):2259–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Juan L-J, Shia W-J, Chen M-H, Yang W-M, Seto E, Lin Y-S, et al. Histone deacetylases specifically down-regulate p53-dependent gene activation. J Biol Chem. 2000;275(27):20436–43.

    Article  CAS  PubMed  Google Scholar 

  159. Johnstone RW, Licht JD. Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell. 2003;4(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  160. Federico M, Bagella L. Histone deacetylase inhibitors in the treatment of hematological malignancies and solid tumors. Journal of Biomedicine and Biotechnology. 2010;2011:1–12. doi:10.1155/2011/475641.

  161. Ceccacci E, Minucci S. Inhibition of histone deacetylases in cancer therapy: lessons from leukaemia. Br J Cancer. 2016;114(6):605–11. doi:10.1038/bjc.2016.36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Richon V. Cancer biology: mechanism of antitumour action of vorinostat (suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor. Br J Cancer. 2006;95:S2–6.

    Article  CAS  PubMed Central  Google Scholar 

  163. Subramanian S, Bates SE, Wright JJ, Espinoza-Delgado I, Piekarz RL. Clinical toxicities of histone deacetylase inhibitors. Pharmaceuticals. 2010;3(9):2751–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wagner JM, Hackanson B, Lubbert M, Jung M. Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenetics. 2010;1(3–4):117–36. doi:10.1007/s13148-010-0012-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Pavletich NP, Pabo CO. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. 1991;252(5007):809–17.

    Article  CAS  PubMed  Google Scholar 

  166. Matthews JM, Sunde M. Zinc fingers—folds for many occasions. IUBMB Life. 2002;54(6):351–5.

    Article  CAS  PubMed  Google Scholar 

  167. Hurley LH. DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer. 2002;2(3):188–200. doi:10.1038/nrc749.

    Article  CAS  PubMed  Google Scholar 

  168. Infante P, Alfonsi R, Botta B, Mori M, Di Marcotullio L. Targeting GLI factors to inhibit the Hedgehog pathway. Trends Pharmacol Sci. 2015;36(8):547–58. doi:10.1016/j.tips.2015.05.006.

    Article  CAS  PubMed  Google Scholar 

  169. Gewirtz D. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 1999;57(7):727–41.

    Article  CAS  PubMed  Google Scholar 

  170. Pugh BF, Tjian R. Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell. 1990;61(7):1187–97.

    Article  CAS  PubMed  Google Scholar 

  171. Vizcaino C, Mansilla S, Portugal J. Sp1 transcription factor: a long-standing target in cancer chemotherapy. Pharmacol Ther. 2015;152:111–24. doi:10.1016/j.pharmthera.2015.05.008.

    Article  CAS  PubMed  Google Scholar 

  172. Safe S, Abdelrahim M. Sp transcription factor family and its role in cancer. Eur J Cancer. 2005;41(16):2438–48. doi:10.1016/j.ejca.2005.08.006.

    Article  CAS  PubMed  Google Scholar 

  173. Kaczynski J, Cook T, Urrutia R. Sp1- and Kruppel-like transcription factors. Genome Biol. 2003;4(2):206.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Wang L, Wei D, Huang S, Peng Z, Le X, Wu TT, et al. Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res. 2003;9(17):6371–80.

    CAS  PubMed  Google Scholar 

  175. Yao JC, Wang L, Wei D, Gong W, Hassan M, Wu T-T, et al. Association between expression of transcription factor Sp1 and increased vascular endothelial growth factor expression, advanced stage, and poor survival in patients with resected gastric cancer. Clin Cancer Res. 2004;10(12):4109–17.

    Article  CAS  PubMed  Google Scholar 

  176. Jiang NY, Woda BA, Banner BF, Whalen GF, Dresser KA, Lu D. Sp1, a new biomarker that identifies a subset of aggressive pancreatic ductal adenocarcinoma. Cancer Epidemiol Biomark Prev. 2008;17(7):1648–52.

    Article  CAS  Google Scholar 

  177. Abdelrahim M, Smith R, Burghardt R, Safe S. Role of Sp proteins in regulation of vascular endothelial growth factor expression and proliferation of pancreatic cancer cells. Cancer Res. 2004;64(18):6740–9.

    Article  CAS  PubMed  Google Scholar 

  178. Zannetti A, Del Vecchio S, Carriero MV, Fonti R, Franco P, Botti G, et al. Coordinate up-regulation of Sp1 DNA-binding activity and urokinase receptor expression in breast carcinoma. Cancer Res. 2000;60(6):1546–51.

    CAS  PubMed  Google Scholar 

  179. Fernandez-Guizan A, Mansilla S, Barcelo F, Vizcaino C, Nunez LE, Moris F, et al. The activity of a novel mithramycin analog is related to its binding to DNA, cellular accumulation, and inhibition of Sp1-driven gene transcription. Chem Biol Interact. 2014;219:123–32. doi:10.1016/j.cbi.2014.05.019.

    Article  CAS  PubMed  Google Scholar 

  180. Blume S, Snyder R, Ray R, Thomas S, Koller C, Miller D. Mithramycin inhibits SP1 binding and selectively inhibits transcriptional activity of the dihydrofolate reductase gene in vitro and in vivo. J Clin Invest. 1991;88(5):1613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Mansilla S, Portugal J. Sp1 transcription factor as a target for anthracyclines: effects on gene transcription. Biochimie. 2008;90(7):976–87.

    Article  CAS  PubMed  Google Scholar 

  182. Frederick CA, Williams LD, Ughetto G, van der Marel GA, van Boom JH, Rich A, et al. Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. Biochemistry. 1990;29(10):2538–49.

    Article  CAS  PubMed  Google Scholar 

  183. Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3(3):155–66.

    Article  CAS  PubMed  Google Scholar 

  184. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2(2):76–83. doi:10.1038/35000025.

    Article  CAS  PubMed  Google Scholar 

  185. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2(2):84–9. doi:10.1038/35000034.

    Article  CAS  PubMed  Google Scholar 

  186. Peinado H, Olmeda D, Cano A. Snail, ZEB and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415–28. doi:10.1038/nrc2131.

    Article  CAS  PubMed  Google Scholar 

  187. Kroepil F, Fluegen G, Totikov Z, Baldus SE, Vay C, Schauer M, et al. Down-regulation of CDH1 is associated with expression of SNAI1 in colorectal adenomas. PLoS One. 2012;7(9):e46665. doi:10.1371/journal.pone.0046665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Palmer HG, Larriba MJ, Garcia JM, Ordonez-Moran P, Pena C, Peiro S, et al. The transcription factor SNAIL represses vitamin D receptor expression and responsiveness in human colon cancer. Nat Med. 2004;10(9):917–9. doi:10.1038/nm1095.

    Article  CAS  PubMed  Google Scholar 

  189. Pena C, Garcia JM, Garcia V, Silva J, Dominguez G, Rodriguez R, et al. The expression levels of the transcriptional regulators p300 and CtBP modulate the correlations between SNAIL, ZEB1, E-cadherin and vitamin D receptor in human colon carcinomas. Int J Cancer. 2006;119(9):2098–104. doi:10.1002/ijc.22083.

    Article  CAS  PubMed  Google Scholar 

  190. Thorne J, Campbell MJ. The vitamin D receptor in cancer. Proc Nutr Soc. 2008;67(02):115–27.

    Article  CAS  PubMed  Google Scholar 

  191. Peiro S, Escriva M, Puig I, Barbera MJ, Dave N, Herranz N, et al. Snail1 transcriptional repressor binds to its own promoter and controls its expression. Nucleic Acids Res. 2006;34(7):2077–84. doi:10.1093/nar/gkl141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Miyoshi A, Kitajima Y, Kido S, Shimonishi T, Matsuyama S, Kitahara K, et al. Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. Br J Cancer. 2005;92(2):252–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Yokoyama K, Kamata N, Fujimoto R, Tsutsumi S, Tomonari M, Taki M, et al. Increased invasion and matrix metalloproteinase-2 expression by Snail-induced mesenchymal transition in squamous cell carcinomas. Int J Oncol. 2003;22(4):891–8.

    CAS  PubMed  Google Scholar 

  194. Ruiz i Altaba A, Sánchez P, Dahmane N. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer. 2002;2(5):361–72.

    Article  CAS  PubMed  Google Scholar 

  195. Aza-Blanc P, Lin H-Y, Ruiz i Altaba A, Kornberg TB. Expression of the vertebrate Gli proteins in Drosophila reveals a distribution of activator and repressor activities. Development. 2000;127(19):4293–301.

    PubMed  Google Scholar 

  196. Kinzler KW, Bigner SH, Bigner DD, Trent JM, Law ML, O’Brien SJ, et al. Identification of an amplified, highly expressed gene in a human glioma. Science. 1987;236(4797):70–3.

    Article  CAS  PubMed  Google Scholar 

  197. Gonnissen A, Isebaert S, Haustermans K. Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened. Oncotarget. 2015;6(16):13899–913.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Dlugosz A, Agrawal S, Kirkpatrick P. Vismodegib. Nat Rev Drug Discov. 2012;11(6):437–8. doi:10.1038/nrd3753.

    Article  CAS  PubMed  Google Scholar 

  199. Fu J, Rodova M, Roy SK, Sharma J, Singh KP, Srivastava RK, et al. GANT-61 inhibits pancreatic cancer stem cell growth in vitro and in NOD/SCID/IL2R gamma null mice xenograft. Cancer Lett. 2013;330(1):22–32. doi:10.1016/j.canlet.2012.11.018.

    Article  CAS  PubMed  Google Scholar 

  200. Huang L, Walter V, Hayes DN, Onaitis M. Hedgehog-GLI signaling inhibition suppresses tumor growth in squamous lung cancer. Clin Cancer Res. 2014;20(6):1566–75. doi:10.1158/1078-0432.CCR-13-2195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Mazumdar T, DeVecchio J, Agyeman A, Shi T, Houghton JA. The GLI genes as the molecular switch in disrupting Hedgehog signaling in colon cancer. Oncotarget. 2011;2(8):638–45. doi:10.18632/oncotarget.310.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Agyeman A, Jha BK, Mazumdar T, Houghton JA. Mode and specificity of binding of the small molecule GANT61 to GLI determines inhibition of GLI-DNA binding. Oncotarget. 2014;5(12):4492–503. doi:10.18632/oncotarget.2046.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Friedman PN, Chen XB, Bargonetti J, Prives C. The p53 protein is an unusually shaped tetramer that binds directly to DNA. Proc Natl Acad Sci U S A. 1993;90(8):3319–23. doi:10.1073/pnas.90.8.3319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Pavletich NP, Chambers KA, Pabo CO. The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes Dev. 1993;7(12B):2556–64.

    Article  CAS  PubMed  Google Scholar 

  205. Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 1994;265(5170):346–55.

    Article  CAS  PubMed  Google Scholar 

  206. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387(6630):296–9. doi:10.1038/387296a0.

    Article  CAS  PubMed  Google Scholar 

  207. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88(3):323–31.

    Article  CAS  PubMed  Google Scholar 

  208. Soussi T, Lozano G. p53 mutation heterogeneity in cancer. Biochem Biophys Res Commun. 2005;331(3):834–42. doi:10.1016/j.bbrc.2005.03.190.

    Article  CAS  PubMed  Google Scholar 

  209. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007;28(6):622–9. doi:10.1002/humu.20495.

    Article  CAS  PubMed  Google Scholar 

  210. Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP. Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer. 2009;9(12):862–73. doi:10.1038/nrc2763.

    Article  CAS  PubMed  Google Scholar 

  211. Loh SN. The missing zinc: p53 misfolding and cancer. Metallomics. 2010;2(7):442–9. doi:10.1039/c003915b.

    Article  CAS  PubMed  Google Scholar 

  212. Duan J, Nilsson L. Effect of Zn2+ on DNA recognition and stability of the p53 DNA-binding domain. Biochemistry. 2006;45(24):7483–92. doi:10.1021/bi0603165.

    Article  CAS  PubMed  Google Scholar 

  213. Butler JS, Loh SN. Zn2+-dependent misfolding of the p53 DNA binding domain. Biochemistry. 2007;46(10):2630–9.

    Article  CAS  PubMed  Google Scholar 

  214. Butler JS, Loh SN. Structure, function, and aggregation of the zinc-free form of the p53 DNA binding domain. Biochemistry. 2003;42(8):2396–403. doi:10.1021/bi026635n.

    Article  CAS  PubMed  Google Scholar 

  215. Meplan C, Richard MJ, Hainaut P. Metalloregulation of the tumor suppressor protein p53: zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene. 2000;19(46):5227–36. doi:10.1038/sj.onc.1203907.

    Article  CAS  PubMed  Google Scholar 

  216. van Oijen MG, Slootweg PJ. Gain-of-function mutations in the tumor suppressor gene p53. Clin Cancer Res. 2000;6(6):2138–45.

    PubMed  Google Scholar 

  217. Strano S, Munarriz E, Rossi M, Cristofanelli B, Shaul Y, Castagnoli L, et al. Physical and functional interaction between p53 mutants and different isoforms of p73. J Biol Chem. 2000;275(38):29503–12. doi:10.1074/jbc.M003360200.

    Article  CAS  PubMed  Google Scholar 

  218. Di Como CJ, Gaiddon C, Prives C. p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol. 1999;19(2):1438–49.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Yan W, Chen X. Identification of GRO1 as a critical determinant for mutant p53 gain of function. J Biol Chem. 2009;284(18):12178–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Oren M, Rotter V. Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol. 2010;2(2):a001107. doi:10.1101/cshperspect.a001107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Selivanova G, Wiman KG. Reactivation of mutant p53: molecular mechanisms and therapeutic potential. Oncogene. 2007;26(15):2243–54. doi:10.1038/sj.onc.1210295.

    Article  CAS  PubMed  Google Scholar 

  222. Blanden AR, Yu X, Loh SN, Levine AJ, Carpizo DR. Reactivating mutant p53 using small molecules as zinc metallochaperones: awakening a sleeping giant in cancer. Drug Discov Today. 2015; doi:10.1016/j.drudis.2015.07.006.

    PubMed  PubMed Central  Google Scholar 

  223. Yu X, Blanden AR, Narayanan S, Jayakumar L, Lubin D, Augeri D, et al. Small molecule restoration of wildtype structure and function of mutant p53 using a novel zinc-metallochaperone based mechanism. Oncotarget. 2014;5(19):8879–92.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Cirone M, Garufi A, Di Renzo L, Granato M, Faggioni A, D’Orazi G. Zinc supplementation is required for the cytotoxic and immunogenic effects of chemotherapy in chemoresistant p53-functionally deficient cells. Oncoimmunology. 2013;2(9):e26198. doi:10.4161/onci.26198.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Margalit O, Simon AJ, Yakubov E, Puca R, Yosepovich A, Avivi C, et al. Zinc supplementation augments in vivo antitumor effect of chemotherapy by restoring p53 function. Int J Cancer. 2012;131(4):E562–8. doi:10.1002/ijc.26441.

    Article  CAS  PubMed  Google Scholar 

  226. Puca R, Nardinocchi L, Porru M, Simon AJ, Rechavi G, Leonetti C, et al. Restoring p53 active conformation by zinc increases the response of mutant p53 tumor cells to anticancer drugs. Cell Cycle. 2011;10(10):1679–89. doi:10.4161/cc.10.10.15642.

    Article  CAS  PubMed  Google Scholar 

  227. Di Agostino S, Cortese G, Monti O, Dell’Orso S, Sacchi A, Eisenstein M, et al. The disruption of the protein complex mutant p53/p73 increases selectively the response of tumor cells to anticancer drugs. Cell Cycle. 2008;7(21):3440–7. doi:10.4161/cc.7.21.6995.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenna Guynn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Guynn, J., Chan, E.A.W. (2017). Zinc and Zinc-Dependent Proteins in Cancer and Chemotherapeutics. In: Mudipalli, A., Zelikoff, J. (eds) Essential and Non-essential Metals. Molecular and Integrative Toxicology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-55448-8_4

Download citation

Publish with us

Policies and ethics