Skip to main content

Membrane Microdomains and cAMP Compartmentation in Cardiac Myocytes

  • Chapter
  • First Online:
Microdomains in the Cardiovascular System

Part of the book series: Cardiac and Vascular Biology ((Abbreviated title: Card. vasc. biol.,volume 3))

  • 757 Accesses

Abstract

Signaling through the diffusible second messenger, 3′,5′-cyclic adenosine monophosphate (cAMP) is critical to the regulation of cardiac function. Several different G-protein-coupled receptors, including β-adrenergic receptors, muscarinic receptors, and E-type prostaglandin receptors, elicit distinct responses using this ubiquitous second messenger. One critical paradigm that has emerged to explain this behavior is that cAMP signaling is compartmentalized. Spatially confining specific receptors and their downstream effector proteins to form subcellular signaling complexes has been proposed to allow for the high efficiency and fidelity in producing specific functional responses. In cardiac myocytes, lipid rafts created by cholesterol- and sphingolipid-rich membrane microdomains have been demonstrated to act as one means of sorting appropriate receptors and corresponding effectors to relevant subcellular locations. Caveolae, which represent a specific subset of lipid rafts, can dynamically attract or exclude specific signaling proteins through a variety of mechanisms to create highly localized and self-sufficient multi-molecular signaling complexes. Furthermore, disruption of this organization in disease states such as heart failure has been found to alter cAMP responses. In this review, we summarize the current understanding of the role of membrane domains in cAMP signaling in cardiac myocytes. We also highlight the insights gained from previous studies to offer new avenues of research in this expanding field of study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AC:

Adenylyl cyclase

ACh:

Acetylcholine

AKAP:

A-kinase-anchoring protein

cAMP:

3′,5′-Cyclic adenosine monophosphate

Cav3:

Caveolin 3

CSD:

Caveolin scaffolding domain

DRM:

Detergent-resistant membrane

EC:

Excitation-contraction

eNOS:

Endothelial nitric oxide synthase

Epac:

Exchange protein directly activated by cAMP

EPR:

E-type prostaglandin receptor

GPCR:

G-protein-coupled receptor

GPI:

Glycosylphosphatidylinositol

M2R:

M2 muscarinic receptor

MβCD:

Methyl-β-cyclodextrin

NO:

Nitric oxide

PDE:

Phosphodiesterase

PKA:

Protein kinase A

PLB:

Phospholamban

SICM:

Scanning ion conductance microscopy

SR:

Sarcoplasmic reticulum

T tubule:

Transverse tubule

β1AR:

β1-Adrenergic receptor

β2AR:

β2-Adrenergic receptor

References

  • Agarwal SR, Clancy CE, Harvey RD (2016) Mechanisms restricting diffusion of intracellular cAMP. Sci Rep 6:19577. doi:10.1038/srep19577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Agarwal SR, Macdougall DA, Tyser R et al (2011) Effects of cholesterol depletion on compartmentalized cAMP responses in adult cardiac myocytes. J Mol Cell Cardiol 50:500–509

    Google Scholar 

  • Agarwal SR, Yang PC, Rice M et al (2014) Role of membrane microdomains in compartmentation of cAMP signaling. PLoS One 9:e95835

    PubMed  PubMed Central  Google Scholar 

  • Allen JA, Halverson-Tamboli RA, Rasenick MM (2007) Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 8:128–140

    PubMed  CAS  Google Scholar 

  • Aprigliano O, Rybin VO, Pak E et al (1997) β1- and β2-adrenergic receptors exhibit differing susceptibility to muscarinic accentuated antagonism. Am J Physiol 272:H2726–H2735

    PubMed  CAS  Google Scholar 

  • Baillie GS, Sood A, McPhee I et al (2003) beta-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi. Proc Natl Acad Sci U S A 100:940–945

    PubMed  PubMed Central  CAS  Google Scholar 

  • Balijepalli RC, Foell JD, Hall DD et al (2006) Localization of cardiac L-type Ca(2+) channels to a caveolar macromolecular signaling complex is required for beta(2)-adrenergic regulation. Proc Natl Acad Sci U S A 103:7500–7505

    PubMed  PubMed Central  CAS  Google Scholar 

  • Balligand JL (1999) Regulation of cardiac beta-adrenergic response by nitric oxide. Cardiovasc Res 43:607–620

    PubMed  CAS  Google Scholar 

  • Belevych AE, Harvey RD (2000) Muscarinic inhibitory and stimulatory regulation of the L-type Ca2+ current is not altered in cardiac ventricular myocytes from mice lacking endothelial nitric oxide synthase. J Physiol (Lond) 528:279–289

    CAS  Google Scholar 

  • Belevych AE, Sims C, Harvey RD (2001) ACh-induced rebound stimulation of L-type Ca(2+) current in guinea-pig ventricular myocytes, mediated by Gbetagamma-dependent activation of adenylyl cyclase. J Physiol (Lond) 536:677–692

    CAS  Google Scholar 

  • Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    CAS  PubMed  Google Scholar 

  • Bethani I, Skanland SS, Dikic I et al (2010) Spatial organization of transmembrane receptor signalling. EMBO J 29:2677–2688

    PubMed  PubMed Central  CAS  Google Scholar 

  • Brown DA (2006) Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology 21:430–439

    PubMed  CAS  Google Scholar 

  • Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    PubMed  CAS  Google Scholar 

  • Brunton LL, Hayes JS, Mayer SE (1979) Hormonally specific phosphorylation of cardiac troponin I and activation of glycogen phosphorylase. Nature 280:78–80

    PubMed  CAS  Google Scholar 

  • Buxton IL, Brunton LL (1983) Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J Biol Chem 258:10233–10239

    PubMed  CAS  Google Scholar 

  • Calaghan S, White E (2006) Caveolae modulate excitation-contraction coupling and beta2-adrenergic signalling in adult rat ventricular myocytes. Cardiovasc Res 69:816–824

    PubMed  CAS  Google Scholar 

  • Chen-Izu Y, Xiao RP, Izu LT et al (2000) G(i)-dependent localization of beta(2)-adrenergic receptor signaling to L-type Ca(2+) channels. Biophys J 79:2547–2556

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chini B, Parenti M (2004) G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J Mol Endocrinol 32:325–338

    PubMed  CAS  Google Scholar 

  • Corbin JD, Sugden PH, Lincoln TM et al (1977) Compartmentalization of adenosine 3′:5′-monophosphate and adenosine 3′:5′-monophosphate-dependent protein kinase in heart tissue. J Biol Chem 252:3854–3861

    PubMed  CAS  Google Scholar 

  • Defer N, Best-Belpomme M, Hanoune J (2000) Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase. Am J Physiol 279:F400–F416

    CAS  Google Scholar 

  • Devic E, Xiang Y, Gould D et al (2001) Beta-adrenergic receptor subtype-specific signaling in cardiac myocytes from beta(1) and beta(2) adrenoceptor knockout mice. Mol Pharmacol 60:577–583

    PubMed  CAS  Google Scholar 

  • Dhein S, Van Koppen CJ, Brodde OE (2001) Muscarinic receptors in the mammalian heart. Pharmacol Res 44:161–182

    PubMed  CAS  Google Scholar 

  • Di Benedetto G, Zoccarato A, Lissandron V et al (2008) Protein kinase A type I and type II define distinct intracellular signaling compartments. Circ Res 103:836–844

    PubMed  CAS  Google Scholar 

  • Eggeling C, Ringemann C, Medda R et al (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162

    CAS  PubMed  Google Scholar 

  • Feron O, Dessy C, Opel DJ et al (1998) Modulation of the endothelial nitric-oxide synthase-caveolin interaction in cardiac myocytes. Implications for the autonomic regulation of heart rate. J Biol Chem 273:30249–30254

    PubMed  CAS  Google Scholar 

  • Feron O, Smith TW, Michel T et al (1997) Dynamic targeting of the agonist-stimulated m2 muscarinic acetylcholine receptor to caveolae in cardiac myocytes. J Biol Chem 272:17744–17748

    PubMed  CAS  Google Scholar 

  • Fischmeister R, Castro LR, Abi-Gerges A et al (2006) Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 99:816–828

    PubMed  CAS  Google Scholar 

  • Gancedo JM (2013) Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol Rev Camb Philos Soc 88:645–668

    PubMed  Google Scholar 

  • Gödecke A, Heinicke T, Kamkin A et al (2001) Inotropic response to beta-adrenergic receptor stimulation and anti- adrenergic effect of ACh in endothelial NO synthase-deficient mouse hearts. J Physiol (Lond) 532:195–204

    Google Scholar 

  • Hanson MA, Cherezov V, Griffith MT et al (2008) A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 16:897–905

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hartzell HC (1988) Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Prog Biophys Mol Biol 52:165–247

    PubMed  CAS  Google Scholar 

  • Harvey RD, Belevych AE (2003) Muscarinic regulation of cardiac ion channels. Br J Pharmacol 139:1074–1084

    PubMed  PubMed Central  CAS  Google Scholar 

  • Harvey RD, Calaghan SC (2012) Caveolae create local signalling domains through their distinct protein content, lipid profile and morphology. J Mol Cell Cardiol 52:366–375

    CAS  PubMed  Google Scholar 

  • Hayes JS, Brunton LL, Brown JH et al (1979) Hormonally specific expression of cardiac protein kinase activity. Proc Natl Acad Sci U S A 76:1570–1574

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hayes JS, Brunton LL, Mayer SE (1980) Selective activation of particulate cAMP-dependent protein kinase by isoproterenol and prostaglandin E1. J Biol Chem 255:5113–5119

    CAS  PubMed  Google Scholar 

  • Head BP, Patel HH, Roth DM et al (2005) G-protein-coupled receptor signaling components localize in both sarcolemmal and intracellular caveolin-3-associated microdomains in adult cardiac myocytes. J Biol Chem 280:31036–31044

    PubMed  CAS  Google Scholar 

  • Head BP, Patel HH, Roth DM et al (2006) Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components. J Biol Chem 281:26391–26399

    PubMed  CAS  Google Scholar 

  • Iancu RV, Jones SW, Harvey RD (2007) Compartmentation of cAMP signaling in cardiac myocytes: a computational study. Biophys J 92:3317–3331

    PubMed  PubMed Central  CAS  Google Scholar 

  • Iancu RV, Ramamurthy G, Warrier S et al (2008) Cytoplasmic cAMP concentrations in intact cardiac myocytes. Am J Physiol Cell Physiol 295:C414–C422

    PubMed  PubMed Central  CAS  Google Scholar 

  • Insel PA, Head BP, Patel HH et al (2005) Compartmentation of G-protein-coupled receptors and their signalling components in lipid rafts and caveolae. Biochem Soc Trans 33:1131–1134

    PubMed  CAS  Google Scholar 

  • Ishikawa Y, Homcy CJ (1997) The adenylyl cyclases as integrators of transmembrane signal transduction. Circ Res 80:297–304

    PubMed  CAS  Google Scholar 

  • Jacobson K, Mouritsen OG, Anderson RGW (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14

    CAS  PubMed  Google Scholar 

  • Keely SL (1977) Activation of cAMP-dependent protein kinase without a corresponding increase in phosphorylase activity. Res Commun Chem Pathol Pharmacol 18:283–290

    PubMed  CAS  Google Scholar 

  • Kuschel M, Zhou YY, Cheng H et al (1999a) G(i) protein-mediated functional compartmentalization of cardiac beta(2)-adrenergic signaling. J Biol Chem 274:22048–22052

    PubMed  CAS  Google Scholar 

  • Kuschel M, Zhou YY, Spurgeon HA et al (1999b) Beta2-adrenergic cAMP signaling is uncoupled from phosphorylation of cytoplasmic proteins in canine heart. Circulation 99:2458–2465

    PubMed  CAS  Google Scholar 

  • Kuznetsov V, Pak E, Robinson RB et al (1995) β2-adrenergic receptor actions in neonatal and adult rat ventricular myocytes. Circ Res 76:40–52

    PubMed  CAS  Google Scholar 

  • Levin KR, Page E (1980) Quantitative studies on plasmalemmal folds and caveolae of rabbit ventricular myocardial cells. Circ Res 46:244–255

    PubMed  CAS  Google Scholar 

  • Levy MN (1971) Sympathetic-parasympathetic interactions in the heart. Circ Res:437–445

    Google Scholar 

  • Löffelholz K, Pappano AJ (1985) The parasympathetic neuroeffector junction of the heart. Pharmacol Rev 37:1–24

    PubMed  Google Scholar 

  • Macdougall DA, Agarwal SR, Stopford EA et al (2012) Caveolae compartmentalise beta2-adrenoceptor signals by curtailing cAMP production and maintaining phosphatase activity in the sarcoplasmic reticulum of the adult ventricular myocyte. J Mol Cell Cardiol 52:388–400

    PubMed  PubMed Central  CAS  Google Scholar 

  • Melkonian KA, Ostermeyer AG, Chen JZ et al (1999) Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J Biol Chem 274:3910–3917

    PubMed  CAS  Google Scholar 

  • Mika D, Leroy J, Vandecasteele G et al (2012) PDEs create local domains of cAMP signaling. J Mol Cell Cardiol 52:323–329

    PubMed  CAS  Google Scholar 

  • Moffett S, Brown DA, Linder ME (2000) Lipid-dependent targeting of G proteins into rafts. J Biol Chem 275:2191–2198

    PubMed  CAS  Google Scholar 

  • Nichols CB, Rossow CF, Navedo MF et al (2010) Sympathetic stimulation of adult cardiomyocytes requires association of AKAP5 with a subpopulation of L-type calcium channels. Circ Res 107:747–756

    CAS  PubMed  Google Scholar 

  • Nikolaev VO, Bunemann M, Hein L et al (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218

    PubMed  CAS  Google Scholar 

  • Nikolaev VO, Bunemann M, Schmitteckert E et al (2006) Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta-1 adrenergic but locally confined beta-2 adrenergic receptor-mediated signaling. Circ Res 99:1084–1091

    CAS  PubMed  Google Scholar 

  • Nikolaev VO, Moshkov A, Lyon AR et al (2010) Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327:1653–1657

    CAS  PubMed  Google Scholar 

  • Ostrom RS, Bundey RA, Insel PA (2004) Nitric oxide inhibition of adenylyl cyclase type 6 activity is dependent upon lipid rafts and caveolin signaling complexes. J Biol Chem 279:19846–19853

    PubMed  CAS  Google Scholar 

  • Ostrom RS, Gregorian C, Drenan RM et al (2001) Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase. J Biol Chem 276:42063–42069

    PubMed  CAS  Google Scholar 

  • Ostrom RS, Insel PA (2004) The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br J Pharmacol 143:235–245

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ostrom RS, Post SR, Pa I (2000a) Stoichiometry and compartmentation in G protein-coupled receptor signaling: implications for therapeutic interventions involving G(s). J Pharmacol Exp Ther 294:407–412

    PubMed  CAS  Google Scholar 

  • Ostrom RS, Violin JD, Coleman S et al (2000b) Selective enhancement of beta-adrenergic receptor signaling by overexpression of adenylyl cyclase type 6: colocalization of receptor and adenylyl cyclase in caveolae of cardiac myocytes. Mol Pharmacol 57:1075–1079

    PubMed  CAS  Google Scholar 

  • Pagano M, Clynes MA, Masada N et al (2009) Insights into the residence in lipid rafts of adenylyl cyclase AC8 and its regulation by capacitative calcium entry. Am J Physiol Cell Physiol 296:C607–C619

    PubMed  PubMed Central  CAS  Google Scholar 

  • Perino A, Ghigo A, Scott JD et al (2012) Anchoring proteins as regulators of signaling pathways. Circ Res 111:482–492

    PubMed  PubMed Central  CAS  Google Scholar 

  • Perry SJ, Baillie GS, Kohout TA et al (2002) Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins. Science 298:834–836

    PubMed  CAS  Google Scholar 

  • Pugh SD, MacDougall DA, Agarwal SR et al (2014) Caveolin contributes to the modulation of basal and beta-adrenoceptor stimulated function of the adult rat ventricular myocyte by simvastatin: a novel pleiotropic effect. PLoS One 9:e106905

    PubMed  PubMed Central  Google Scholar 

  • Resh MD (2006) Trafficking and signaling by fatty-acylated and prenylated proteins. Nat Chem Biol 2:584–590

    PubMed  CAS  Google Scholar 

  • Richards M, Lomas O, Jalink K et al (2016) Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes. Cardiovasc Res 110:395–407

    PubMed  PubMed Central  CAS  Google Scholar 

  • Robison GA, Butcher RW, Sutherland EW (1968) Cyclic AMP. Annu Rev Biochem 37:149–174

    PubMed  CAS  Google Scholar 

  • Rybin VO, Xu X, Lisanti MP et al (2000) Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem 275:41447–41457

    PubMed  CAS  Google Scholar 

  • Scott JD, Dessauer CW, Tasken K (2013) Creating Order from Chaos: Cellular Regulation by Kinase Anchoring. Annu Rev Pharmacol Toxicol 53:187–210

    PubMed  CAS  Google Scholar 

  • Scriven DR, Dan P, Moore ED (2000) Distribution of proteins implicated in excitation-contraction coupling in rat ventricular myocytes. Biophys J 79:2682–2691

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shenoy SK, Lefkowitz RJ (2011) beta-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 32:521–533

    PubMed  PubMed Central  CAS  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    PubMed  CAS  Google Scholar 

  • Sprenger JU, Nikolaev VO (2013) Biophysical techniques for detection of cAMP and cGMP in living cells. Int J Mol Sci 14:8025–8046

    PubMed  PubMed Central  Google Scholar 

  • Steinberg SF (1999) The molecular basis for distinct beta-adrenergic receptor subtype actions in cardiomyocytes. Circ Res 85:1101–1111

    PubMed  CAS  Google Scholar 

  • Steinberg SF, Brunton LL (2001) Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu Rev Pharmacol Toxicol 41:751–773

    PubMed  CAS  Google Scholar 

  • Sunahara RK, Dessauer CW, Gilman AG (1996) Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol 36:461–480

    PubMed  CAS  Google Scholar 

  • Timofeyev V, Myers RE, Kim HJ et al (2013) Adenylyl cyclase subtype-specific compartmentalization: differential regulation of L-type Ca2+ current in ventricular myocytes. Circ Res 112:1567–1576

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tolkovsky AM, Levitzki A (1978) Mode of coupling between the beta-adrenergic receptor and adenylate cyclase in turkey erythrocytes. Biochemistry 17:3795

    PubMed  CAS  Google Scholar 

  • Toya Y, Schwencke C, Couet J et al (1998) Inhibition of adenylyl cyclase by caveolin peptides. Endocrinology 139:2025–2031

    PubMed  CAS  Google Scholar 

  • Vandecasteele G, Eschenhagen T, Scholz H et al (1999) Muscarinic and beta-adrenergic regulation of heart rate, force of contraction and calcium current is preserved in mice lacking endothelial nitric oxide synthase. Nat Med 5:331–334

    PubMed  CAS  Google Scholar 

  • Wang YG, Rechenmacher CE, Lipsius SL (1998) Nitric oxide signaling mediates stimulation of L-type Ca2+ current elicited by withdrawal of acetylcholine in cat atrial myocytes. J Gen Physiol 111:113–125

    PubMed  PubMed Central  CAS  Google Scholar 

  • Warrier S, Belevych AE, Ruse M et al (2005) Beta-adrenergic and muscarinic receptor induced changes in cAMP activity in adult cardiac myocytes detected using a FRET based biosensor. Am J Physiol Cell Physiol 289:C455–C461

    PubMed  CAS  Google Scholar 

  • Warrier S, Ramamurthy G, Eckert RL et al (2007) cAMP microdomains and L-type Ca2+ channel regulation in guinea-pig ventricular myocytes. J Physiol (Lond) 580:765–776

    CAS  Google Scholar 

  • Wickman K, Clapham DE (1995) Ion channel regulation by G proteins. Physiol Rev 75:865–885

    PubMed  CAS  Google Scholar 

  • Williams TM, Lisanti MP (2004) The caveolin proteins. Genome Biol 5:214

    PubMed  PubMed Central  Google Scholar 

  • Willoughby D, Cooper DM (2007) Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 87:965–1010

    CAS  PubMed  Google Scholar 

  • Wright PT, Nikolaev VO, O’Hara T et al (2014) Caveolin-3 regulates compartmentation of cardiomyocyte beta2-adrenergic receptor-mediated cAMP signaling. J Mol Cell Cardiol 67:38–48

    PubMed  CAS  Google Scholar 

  • Xiang Y, Devic E, Kobilka B (2002a) The PDZ binding motif of the beta 1 adrenergic receptor modulates receptor trafficking and signaling in cardiac myocytes. J Biol Chem 277:33783–33790

    PubMed  CAS  Google Scholar 

  • Xiang Y, Kobilka B (2003) The PDZ-binding motif of the beta2-adrenoceptor is essential for physiologic signaling and trafficking in cardiac myocytes. Proc Natl Acad Sci U S A 100:10776–10781

    PubMed  PubMed Central  CAS  Google Scholar 

  • Xiang Y, Naro F, Zoudilova M et al (2005) Phosphodiesterase 4D is required for beta2 adrenoceptor subtype-specific signaling in cardiac myocytes. Proc Natl Acad Sci U S A 102:909–914

    PubMed  PubMed Central  CAS  Google Scholar 

  • Xiang Y, Rybin VO, Steinberg SF et al (2002b) Caveolar localization dictates physiologic signaling of beta 2-adrenoceptors in neonatal cardiac myocytes. J Biol Chem 277:34280–34286

    PubMed  CAS  Google Scholar 

  • Xiao RP (2001) Beta-adrenergic signaling in the heart: dual coupling of the beta2-adrenergic receptor to G(s) and G(i) proteins. Science STKE 2001:RE15

    PubMed  CAS  Google Scholar 

  • Xiao RP, Avdonin P, Zhou YY et al (1999) Coupling of beta2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ Res 84:43–52

    PubMed  CAS  Google Scholar 

  • Xiao RP, Hohl C, Altschuld R et al (1994) Beta 2-adrenergic receptor-stimulated increase in cAMP in rat heart cells is not coupled to changes in Ca2+ dynamics, contractility, or phospholamban phosphorylation. J Biol Chem 269:19151–19156

    PubMed  CAS  Google Scholar 

  • Xiao RP, Ji X, Lakatta EG (1995) Functional coupling of the beta 2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. Mol Pharmacol 47:322–329

    PubMed  CAS  Google Scholar 

  • Yang PC, Boras BW, Jeng MT et al (2016) A computational modeling and simulation approach to investigate mechanisms of subcellular cAMP compartmentation. PLoS Comput Biol 12:e1005005

    PubMed  PubMed Central  Google Scholar 

  • Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711–1715

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health grants GM101928 and GM107094.

Compliance with Ethical Standards

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Harvey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Agarwal, S.R., Ostrom, R.S., Harvey, R.D. (2017). Membrane Microdomains and cAMP Compartmentation in Cardiac Myocytes. In: Nikolaev, V., Zaccolo, M. (eds) Microdomains in the Cardiovascular System. Cardiac and Vascular Biology, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-54579-0_2

Download citation

Publish with us

Policies and ethics